首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 972 毫秒
1.
2.
3.
4.
5.
6.
7.
Although gcm was first recognized for its role in specifying glial cell fate in Drosophila melanogaster, its mammalian counterparts are expressed predominantly in non-neural tissues. Here we demonstrate expression of the mouse and human GCM 1 proteins in placenta. We have prepared a highly specific antibody that recognizes the GCM 1 protein and have used it to assess the temporal and spatial expression profile of the protein. In both mouse and human placenta, the protein is associated with cells that are involved with exchange between maternal and fetal blood supplies: the labyrinthine cells of the mouse placenta and the syncytio- and cytotrophoblasts of the human placenta. Using the full-length hGcm 1 cDNA as a probe, we have mapped the gene on human chromosome 6p12 by fluorescent in situ hybridization.  相似文献   

8.
9.
10.
11.
Rho-associated kinase (ROCK), including the ROCK-I and ROCK-II isoforms, is a protein kinase involved in signaling from Rho to actin cytoskeleton. However, in vivo functions of each ROCK isoform remain largely unknown. We generated mice deficient in ROCK-II by gene targeting. ROCK-II(-/-) embryos were found at the expected Mendelian frequency until 13.5 days postcoitum, but approximately 90% died thereafter in utero. ROCK-II(-/-) mice of both genders that survived were born runts, subsequently developed without gross abnormality, and were fertile. Whole-mount staining for a knocked-in lacZ reporter gene revealed that ROCK-II was highly expressed in the labyrinth layer of the placenta. Disruption of architecture and extensive thrombus formation were found in the labyrinth layer of ROCK-II(-/-) mice. While no obvious alteration in actin filament structures was found in the labyrinth layer of ROCK-II(-/-) placenta and stress fibers were formed in cultured ROCK-II(-/-) trophoblasts, elevated expression of plasminogen activator inhibitor 1 was found in ROCK-II(-/-) placenta. These results suggest that ROCK-II is essential in inhibiting blood coagulation and maintaining blood flow in the endothelium-free labyrinth layer and that loss of ROCK-II leads to thrombus formation, placental dysfunction, intrauterine growth retardation, and fetal death.  相似文献   

12.
BACKGROUND: Methylnitrosourea (MNU) is a potent carcinogen and teratogen that is associated with central nervous system, craniofacial, skeletal, ocular, and appendicular birth defects following transplacental exposure at critical time points during development, and preliminary studies have suggested that nonspecific maternal immunostimulation may offer protection against development of these birth defects. METHODS: Our study examined morphologic alterations in fetal limb and digital development and placental integrity following maternal exposure to MNU on GD 9 in CD-1 mice, and characterized the improvement in placental integrity and abrogation of fetal defects following maternal immune stimulation with interferon-gamma (IFN-gamma) on GD 7. RESULTS: Fetal limbs were significantly shortened (p < 0.0001) and incidence of limb and digital defects (syndactyly, polydactyly, oligodactyly, clubbing, and webbing) was dramatically increased following mid-gestational maternal MNU exposure. Maternal immune stimulation with IFN-gamma on GD 7 lessened incidence of fetal limb shortening and maldevelopment on GD 12 and 14. Further, disruption of placental spongiotrophoblast integrity, increased cell death in placental trophoblasts with increased intercellular spaces in the spongiotrophoblast layer and minimal inflammation, and increased loss of fetal labyrinthine endothelial cells from MNU-exposed dams suggested that MNU-induced placental breakdown may contribute to fetal limb and digital maldevelopment. MNU + IFN-gamma was associated with diminished cell death within all layers of the placenta, especially in the labyrinthine layer. CONCLUSIONS: These data verify improved distal limb development in MNU-exposed mice as a result of maternal IFN-gamma administration, and suggest a link between placental integrity and proper fetal development.  相似文献   

13.
14.
15.
16.
17.
18.
PDGFB is a growth factor which is vital for the completion of normal prenatal development. In this study, we report the phenotypic analysis of placentas from mouse conceptuses that lack a functional PDGFB or PDGFRbeta gene. Placentas of both types of mutant exhibit changes in the labyrinthine layer, including dilated embryonic blood vessels and reduced numbers of both pericytes and trophoblasts. These changes are seen from embryonic day (E) 13.5, which coincides with the upregulation of PDGFB mRNA levels in normal placentas. By E17, modifications in shape, size, and number of the fetal blood vessels in the mutant placentas cause an abnormal ratio of the surface areas between the fetal and the maternal blood vessels in the labyrinthine layer. Our data suggest that PDGFB acts locally to contribute to the development of the labyrinthine layer of the fetal placenta and the formation of a proper nutrient-waste exchange system during fetal development. We point out that the roles of PDGFB/Rbeta signaling in the placenta may be analogous to those in the developing kidney, by controlling pericytes in the labyrinthine layer and mesangial cells in the kidney.  相似文献   

19.
Calbindin-D(9k) (CaBP-9k) and -D(28k) (CaBP-28k) are cytosolic proteins with EF-hand motifs that have a high affinity for calcium ions. Many types of calcium channels and intracellular calcium binding proteins, such as sodium/calcium exchangers (NCXs) and transient receptor potential cation channels (TRPVs), have been detected in the placenta. In this study, the expression of calcium channels involved in maternal-fetal calcium transport were investigated in wild-type mice versus CaBP-9k, CaBP-28k, and CaBP-9k/28k double knockout (KO) mouse models. The expression of calcium transport genes in three dissected sections of the placenta (maternal, central, and fetal) was examined on gestational day 19 (GD 19). The expression of CaBP-9k, TRPV6, TRPV5, and NCX1 mRNA was high in fetal compared to maternal placenta, while CaBP-28k was abundant in the maternal placenta. CaBP-9k was enhanced in all sections of placenta in CaBP-28k KO mice, whereas CaBP-28k was reduced in CaBP-9k KO mice. The expression of TRPV6, TRPV5, and NCX1 were induced in both maternal and fetal placentas in CaBP-9k KO mice, but were upregulated in maternal and central placentas of CaBP-28k KO mice. The levels of these proteins showed similar patterns with those of their mRNA. Placental CaBP-9k, TRPV6, TRPV5, and NCX1 proteins were abundantly expressed in the intraplacental yolk sac located in the fetal placenta. CaBP-28k did not colocalize with other calcium transport genes, although it was enriched in the placental trophoblasts of the decidual zone in the maternal placenta. These results indicate that placental TRPV6, TRPV5, and NCX1 compensate for CaBPs in CaBP-9k and/or CaBP-28k KO mice, and may take over the roles of CaBP-9k and CaBP-28k to transfer calcium ions in the placenta. Taken together, these results indicate that TRPV6, NCX1, and CaBP-9k in the fetal placenta and CaBP-28k in the maternal placenta may play key roles in controlling calcium transport across the placenta during pregnancy.  相似文献   

20.
Evaluation of bidirectional transfer of plasma DNA through placenta   总被引:11,自引:0,他引:11  
To clarify the origin of cell-free fetal DNA in maternal plasma, we analyzed bidirectional transfer of plasma DNA between fetus and mother. We analyzed maternal and fetal plasma DNA obtained from 15 pregnant women at the time of Cesarean section. The subjects were five patients with preeclampsia and 10 gestational-age-matched normal controls. DNA was extracted from 1.5-ml plasma samples and the cellular fraction of maternal and umbilical blood. Seven polymorphic marker genes were analyzed. The relative concentration of fetal DNA in maternal plasma and maternal DNA in cord blood were evaluated. The relative concentration of maternal DNA in fetal circulation (median, 0.9%; range, 0.2–8.4%) was significantly lower than that of fetal DNA in maternal blood (14.3%, 2.3–64%), with P=0.007. The relative concentration of maternal DNA in fetal blood was not affected by preeclampsia. These findings indicate that cell-free DNA is unequally transferred through the placenta. The structural characteristics of the placenta suggest that the majority of cell-free fetal DNA in maternal plasma is derived from villous trophoblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号