首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Serine proteases and matrix metalloproteinases have been shown to often cooperate in multiple physiological and pathological processes associated with changes in the extracellular matrix (ECM). We have examined the interaction between the plasminogen activator (PA)-plasmin system and matrix metalloproteinases (MMPs) in HT1080 human fibrosarcoma cells treated with 12-O-tetradecanoyl-phorbol-13-acetate (TPA). While TPA treatment evoked a temporary increased expression of urokinase type PA (uPA), the production of both types of plasminogen activator inhibitors (PAI) was induced and sustained over 12 h by TPA treatment shifting the protease-protease inhibitors balance in favor of the inhibitors. TPA treatment of HT1080 cells induced the expression of interstitial collagenase (MMP-1) and increased the expression of gelatinase B (MMP-9), tissue inhibitor of metalloproteinases-1 (TIMP-1), and MT-MMP, a membrane-bound activator of progelatinase A (proMMP-2), while MMP-2 and TIMP-2 expression were decreased. Increased MT-MMP expression by TPA treatment was associated with increased activation of proMMP-2. These data show that the regulation of PA-plasmin and metalloproteinase and their specific inhibitors is uncoordinated. In addition, inhibition of the PA-plasmin system by PAI-2 or aprotinin did not prevent the activation of proMMP-2 by TPA, suggesting that plasmin is not involved in MT-MMP-mediated activation of proMMP-2. © 1996 Wiley-Liss, Inc.  相似文献   

2.
3.
The urokinase-type plasminogen activator (uPA) and the matrix-degrading metalloproteinases MMP-2 and MMP-9 (type IV collagenases/gelatinases) have been implicated in a variety of invasive processes, including tumor invasion, metastasis and angiogenesis. MMP-2 and MMP-9 are secreted in the form of inactive zymogens that are activated extracellularly, a fundamental process for the control of their activity. The physiological mechanism(s) of gelatinase activation are still poorly understood; their comprehension may provide tools to control cell invasion. The data reported in this paper show multiple roles of the uPA-plasmin system in the control of gelatinase activity: (i) both gelatinases are associated with the cell surface; binding of uPA and plasmin(ogen) to the cell surface results in gelatinase activation without the action of other metallo- or acid proteinases; (ii) inhibition of uPA or plasminogen binding to the cell surface blocks gelatinase activation; (iii) in soluble phase plasmin degrades both gelatinases; and (iv) gelatinase activation and degradation occur in a dose- and time-dependent manner in the presence of physiological plasminogen and uPA concentrations. Thus, the uPA-plasmin system may represent a physiological mechanism for the control of gelatinase activity.  相似文献   

4.
Secreted metalloproteinases in testicular cell culture   总被引:1,自引:0,他引:1  
It is well known that cultured Sertoli cells secrete plasminogen activators (Lacroix et al., Mol Cell Endocrinol 1977; 9:227-236; Hettle et al., Biol Reprod 1986; 34:895-904). We now show that testicular cells in culture also secrete gelatinolytic metalloproteinases. Gelatin zymographic analysis of concentrated culture medium proteins reveals that Sertoli cells secrete gelatinases of 185 kDa, 110 kDa, 83 kDa, 76 kDa, and 72 kDa in addition to plasminogen activators (PAs). Gelatinase 185 kDa is induced by FSH. Media from Sertoli (epithelial)/peritubular (mesenchymal) cell cocultures contain the Sertoli cell gelatinases and one FSH-stimulated gelatinase of 50 kDa, indicating that gelatinase 50 kDa is regulated by both FSH and cell-cell interactions. A 50-kDa fibronectinolytic activity is also present in the coculture medium from cells grown in the presence of FSH. Casein zymography demonstrates a prominent 30-kDa protease only in media from cocultures. Peritubular cells secrete urokinase-type plasminogen activator (u-PA) and exhibit slight degrading activity at 86 kDa and 74 kDa. The gelatinases are most active in the pH range 7.3-8.5 and are completely or partially inhibited by metal ion chelators indicating that they are metalloproteinases. Our data demonstrate that testicular cells in culture secrete several gelatinases in addition to PAs, and that FSH and coculture conditions regulate some of these secreted proteases. We suggest that the highly regulated secretion of these proteases may well be of physiological importance during testicular development and spermatogenesis.  相似文献   

5.
While human dermal fibroblasts increase the expression and secretion of distinct matrix metalloproteinases (MMPs) in response to ultraviolet (UV) irradiation, much less is known about regulation of MMPs with regard to normal human epidermal keratinocytes (NHEK). In this in vitro study, the effect of ultraviolet A (UVA) irradiation on gelatinase expression and secretion by NHEK was investigated. Irradiation of NHEK with non-toxic doses of UVA resulted in a dose-dependent downregulation of MMP-2 (gelatinase A) and MMP-9 (gelatinase B). A single dose of 30JUVA/cm(2) lowered MMP-2 activity to 26% and MMP-9 activity to 33% compared with mock-irradiated cells at 24h after irradiation. Downregulation of MMP-2 and MMP-9 steady-state mRNA levels was observed at 4h after UVA irradiation. The inhibitory effect of UVA on gelatinases was mediated by UVA-generated singlet oxygen (1O(2)). These findings suggest an inverse response to UVA irradiation in NHEK than in fibroblasts.  相似文献   

6.
As a subfamily of matrix metalloproteinases (MMPs), gelatinases including MMP-2 and MMP-9 play an important role in remodeling and homeostasis of the extracellular matrix. However, conflicting results have been reported regarding their expression level and activity in the diabetic kidney. This study investigated whether and how MMP-9 expression and activity were changed in glomerular epithelial cells upon albumin overload. In situ zymography, immunostaining and Western blot for renal MMP gelatinolytic activity and MMP-9 protein expression were performed in Zucker lean and Zucker diabetic rats. Confocal microscopy revealed a focal increase in gelatinase activity and MMP-9 protein in the glomeruli of diabetic rats. Increased glomerular MMP-9 staining was mainly observed in hyperplastic parietal epithelial cells (PECs) expressing claudin-1 in the diabetic kidneys. Interestingly, increased parietal MMP-9 was often accompanied by decreased staining for podocyte markers (nephrin and podocalyxin) in the sclerotic area of affected glomeruli in diabetic rats. Additionally, urinary excretion of podocyte marker proteins was significantly increased in association with the levels of MMP-9 and albumin in the urine of diabetic animals. To evaluate the direct effect of albumin on expression and activity of MMP-9, primary cultured rat glomerular PECs were incubated with rat serum albumin (0.25 - 1 mg/ml) for 24 - 48 hrs. MMP-9 mRNA levels were significantly increased following albumin treatment. Meanwhile, albumin administration resulted in a dose-dependent increase in MMP-9 protein and activity in culture supernatants of PECs. Moreover, albumin activated p44/42 mitogen-activated protein kinase (MAPK) in PECs. Inhibition of p44/42 MAPK suppressed albumin-induced MMP-9 secretion from glomerular PECs. Taken together, we have demonstrated that an up-regulation of MMP-9 in activated parietal epithelium is associated with a loss of adjacent podocytes in progressive diabetic nephropathy. Albumin overload may induce MMP-9 expression and secretion by PECs via the activation of p44/42 MAPK pathway.  相似文献   

7.
Our prior work shows that cultured BR cells derived from dog mastocytomas secrete the 92-kDa proenzyme form of gelatinase B. We provided a possible link between mast cell activation and metalloproteinase-mediated matrix degradation by demonstrating that alpha-chymase, a serine protease released from secretory granules by degranulating mast cells, converts progelatinase B to an enzymatically active form. The current work shows that these cells also secrete gelatinase A. Furthermore, gelatinases A and B both colocalize to alpha-chymase-expressing cells of canine airway, suggesting that normal mast cells are a source of gelatinases in the lung. In BR cells, gelatinase B and alpha-chymase expression are regulated, whereas gelatinase A expression is constitutive. Progelatinase B mRNA and enzyme expression are strongly induced by the critical mast cell growth factor, kit ligand, which is produced by fibroblasts and other stromal cells. Induction of progelatinase B is blocked by U-73122, Ro31-8220, and thapsigargin, implicating phospholipase C, protein kinase C, and Ca2+, respectively, in the kit ligand effect. The profibrotic cytokine TGF-beta virtually abolishes the gelatinase B mRNA signal and also attenuates kit ligand-mediated induction of gelatinase B expression, suggesting that an excess of TGF-beta in inflamed or injured tissues may alter mast cell expression of gelatinase B, which is implicated in extracellular matrix degradation, angiogenesis, and apoptosis. In summary, these data provide the first evidence that normal mast cells express gelatinases A and B and suggest pathways by which their regulated expression by mast cells can influence matrix remodeling and fibrosis.  相似文献   

8.
Human glomerular epithelial cells (GECs) in culture synthesize single-chain, urokinase-type plasminogen activator (SC-uPA), tissue-type plasminogen activator (t-PA), and plasminogen activator inhibitor 1 (PAI-1) and possess specific membrane-binding sites for u-PA. Using purified 125I-alpha thrombin, we demonstrate here the presence of two populations of specific binding sites for thrombin on GECs (1.Kd = 4.3 +/- 1.0 x 10(-10) M, 5.4 +/- 1.4 x 10(4) M sites per cell, 2. Kd = 1.6 +/- 0.5 x 10(-8) M, 7.9 +/- 1.8 x 10(5) sites per cell). Purified human alpha thrombin promoted the proliferation of GECs and induced a time- and dose-dependent increase of SC-uPA, t-PA, and PAI-1 antigens released by GECs. Thrombin-mediated increase in antigen was paralleled by an increase in the levels of corresponding u-PA and PAI-1 messenger RNA. In contrast, thrombin decreased u-PA activity in conditioned medium. This discrepancy between u-PA antigen and u-PA activity was explained by a limited proteolysis of SC-uPA by thrombin, leading to a two-chain form detected by immunoblotting and that could not be activated by plasmin. Thrombin also decreased the number of u-PA binding sites on GECs (p less than 0.05) without changing receptor affinity. Hirudin inhibited the binding and the cellular effects of thrombin, whereas thrombin inactivated by diisopropylfluorophosphate had no effect, indicating that both membrane binding and catalytic activity of thrombin were required. We conclude that thrombin, through specific membrane receptors, stimulates proliferation of GECs and decreases the fibrinolytic activity of GECs both at the cell surface and in the conditioned medium. These results suggest that thrombin could be involved in the pathogenesis of extracapillary proliferation and persistency of fibrin deposits in crescentic glomerulonephritis.  相似文献   

9.
10.
Remodeling of extracellular matrix (ECM) is one of the key events in many developmental processes. In the present study, a temporal profile of gelatinase activities in regenerating salamander limbs was examined zymographically. In addition, the effect of retinoic acid (RA) on these enzyme activities was examined to relate the pattern-duplicating effect of RA in limb regenerates with gelatinase activities. During regeneration, various types of gelatinase activities were detected, and these activities were at their maximum levels at the dedifferentiation stage. Upon treatment with chelating agents EDTA and 1,10-phenanthroline, the enzyme activities were inhibited indicating that those enzymes are likely matrix metalloproteinases (MMPs). Considering the molecular sizes and the decrease of molecular sizes by treatment with p-aminophenylmercuric acetate, an artificial activator of proMMP, some of the gelatinases expressed during limb regeneration are presumed to be MMP-2 and MMP-9. In RA-treated regenerates, overall gelatinase activities increased, especially the MMP-2-like gelatinase activity which increased markedly. These results suggest that MMP-2-like and MMP-9-like gelatinases play a role in ECM remodeling during regeneration, and that gelatinases are involved in the excessive dedifferentiation after RA treatment.  相似文献   

11.
Various proteases are involved in cancer progression and metastasis. In particular, gelatinases, matrix metalloproteinase-2 (MMP-2) and MMP-9, have been implicated to play a role in colon cancer progression and metastasis in animal models and patients. In the present review, the clinical relevance and the prognostic value of messenger ribonucleic acid (mRNA) and protein expression and proenzyme activation of MMP-2 and MMP-9 are evaluated in relation to colorectal cancer. Expression of tissue inhibitors of MMPs (TIMPs) in relation with MMP expression in cancer tissues and the relevance of detection of plasma or serum levels of MMP-2 and/or MMP-9 and TIMPs for prognosis are also discussed. Furthermore, involvement of MMP-2 and MMP-9 in experimental models of colorectal cancer is reviewed. In vitro studies have suggested that gelatinase is expressed in cancer cells but animal models indicated that gelatinase expression in non-cancer cells in tumors contributes to cancer progression. In fact, interactions between cancer cells and host tissues have been shown to modulate gelatinase expression in host cells. Inhibition of gelatinases by synthetic MMP inhibitors has been considered to be an attractive approach to block cancer progression. However, despite promising results in animal models, clinical trials with MMP inhibitors have been disappointing so far. To obtain more insight in the (patho)physiological functions of gelatinases, regulation of MMP-2 and MMP-9 expression is discussed. Mitogen activated protein kinase (MAPK) signalling has been shown to be involved in regulation of gelatinase expression in both cancer cells and non-cancer cells. Expression can be triggered by a variety of stimuli including growth factors, cytokines and extracellular matrix (ECM) components. On the other hand, MMP-2 and MMP-9 activity regulates bioavailability and activity of growth factors and cytokines, affects the immune response and is involved in angiogenesis. Because of the multifunctionality of gelatinases, it is unpredictable at what stage of cancer development and in which processes gelatinase activity is involved. Therefore, it is concluded that the use of MMP inhibitors to treat cancer should be considered carefully.  相似文献   

12.
Matrix remodelling enzymes, the protease cascade and glycosylation.   总被引:6,自引:0,他引:6  
Glycosylation influences the specific activities of serine proteases including tissue-type plasminogen activator and plasmin which act together in a ternary complex with fibrin. Serine proteases and matrix metalloproteinases (MMPs), including gelatinase B, participate in a protease cascade to remodel the extracellular matrix. In addition to the recognition and targeting functions of carbohydrates and the fact that they confer protease resistance on glycoproteins, oligosaccharides may extend particular protein domains of matrix remodelling enzymes and fine-control their activities within the context of the extracellular matrix. For example, the sialic acids of gelatinase B influence the catalytic activity of this enzyme in a complex with the tissue inhibitor of metalloproteinases-1 (TIMP-1).  相似文献   

13.
The matrix metalloproteinases gelatinase A (MMP-2) and gelatinase B (MMP-9) are implicated in the physiological and pathological breakdown of several extracellular matrix proteins. In the present study, we show that long-chain fatty acids (e.g. oleic acid, elaidic acid, and cis- and trans-parinaric acids) inhibit gelatinase A as well as gelatinase B with K(i) values in the micromolar range but had only weak inhibitory effect on collagenase-1 (MMP-1), as assessed using synthetic or natural substrates. The inhibition of gelatinases depended on fatty acid chain length (with C18 > C16, C14, and C10), and the presence of unsaturations increased their inhibitory capacity on both types of gelatinase. Ex vivo experiments on human skin tissue sections have shown that micromolar concentrations of a long-chain unsaturated fatty acid (elaidic acid) protect collagen and elastin fibers against degradation by gelatinases A and B, respectively. In order to understand why gelatinases are more susceptible than collagenase-1 to inhibition by long-chain fatty acids, the possible role of the fibronectin-like domain (a domain unique to gelatinases) in binding inhibitory fatty acids was investigated. Affinity and kinetic studies with a recombinant fibronectin-like domain of gelatinase A and with a recombinant mutant of gelatinase A from which this domain had been deleted pointed to an interaction of long-chain fatty acids with the fibronectin-like domain of the protease. Surface plasmon resonance studies on the interaction of long-chain fatty acids with the three individual type II modules of the fibronectin-like domain of gelatinase A revealed that the first type II module is primarily responsible for binding these compounds.  相似文献   

14.
 In situ gelatin zymography is a technique, which utilises a gelatin-based emulsion overlay to detect and, more importantly, localise the gelatinase activity in underlying tissue. Gelatinase A [matrix metalloproteinase-2 (MMP-2)] and gelatinase B [matrix metalloproteinase-9 (MMP-9)] are present in equine hoof homogenates and supernatants from cultured hoof explants by SDS-PAGE gelatin zymography, and it has been assumed that the enzymes are derived solely from matrix and epithelia and not from other sources such as leucocytes. Using in situ zymography, gelatinases are shown to be localised within the equine epidermal hoof lamellae and, more specifically, are apparently produced by epidermal basal and/or parabasal cells. The pattern of expression correlates with that expected based on the progression of pathological changes observed during the onset of laminitis, thus providing further evidence that laminitis pathology probably arises as a result of inadequate local MMP regulation. Accepted: 15 June 1998  相似文献   

15.
16.
Relaxin participates in extracellular matrix (ECM) remodeling in many reproductive organs, including the ovary, by regulating proteolytic enzyme activity. Accumulated evidence indicates this action of relaxin is involved in ovarian follicle development and ovulation. Equine follicles are embedded in cortex that is at the center of the ovary and they must expand/emigrate to the fossa, the only site in the ovary for ovulation. Due to the tremendous expansion of the follicle in this species, we hypothesized that ovarian stromal remodeling would be extensive. Therefore, cultured equine ovarian stromal cell (EOSC) lines were obtained from stroma at the apex of large follicles and the effects of relaxin on gelatinases A and B, tissue inhibitors of matrix metalloproteinases (TIMPs), plasminogen activators (PAs) and PA inhibitor-1 (PAI-1) activities were assessed. Our results showed that equine relaxin increased the activity of total gelatinase A (both pro forms and mature forms) and latent progelatinase B present in conditioned medium, latent progelatinase A present in cell extracts, and TIMP-1 and TIMP-2 present in conditioned medium. This study also revealed that equine relaxin increased the urokinase-type PA activity in conditioned medium and cell extracts, tissue-type PA activity in ECM and PAI-1 activity in conditioned medium. These results suggest that relaxin may contribute to equine follicle growth and migration, and facilitate ovulation by modulating the degradation of ECM in ovarian stromal tissue.  相似文献   

17.
Own results of long-term studies of expression of matrix metalloproteinases (MMPs) and their endogenous regulators examined in fibroblasts transformed by oncogene E7 HPV16 (TF), immortalized fibroblasts (IF), cell lines associated with HPV16 and HPV18, and tumor tissue samples from patients with squamous cervical carcinoma (SCC) associated with HPV16 have been summarized. Transfection of fibroblasts with the E7 HPV16 oncogen was accompanied by induction of collagenase (MMP-1, MMP-14) and gelatinase (MMP-9) gene expression and the increase in catalytic activity of these MMP, while gelatinase MMP-2 expression remained unchanged. MMP expression correlated with the tumorigenic of transformed clones. Expression of MMP-9 was found only in TF. In TF expression mRNA TIMP-1 decreased, while expression of the genatinase inhibitor, TIMP-2, increased. Collagenase activity and expression of the MMP-14 (collagenase) mRNA increased, while gelatinase activity remained unchanged. The destructive potential of TF is associated with induction of collagenases, gelatinase MMP-9 and decreased levels of MMP inhibitors. MMP-9 may serve as a TF marker. Invasive potential of cell lines associated with HPV18 (HeLa and S4-1) was more pronounced than that of cell lines associated with HPV16 (SiHa and Caski). In most cell lines mRNA levels of collagenases MMP-1 and MMP-14 and the activator (uPA) increased, while gelatinase MMP-2 mRNA and tissue inhibitors mRNAs changed insignificantly. MMP-2 activity significantly increased in Caski and HeLa cell lines, while MMP-9 expression in these cell lines was not detected. The comparative study of expression MMP of and their endogenous regulators performed using SCC tumor samples associated with HPV16 has shown that the invasive and metastatic potentials of tumor tissue in SCC is obviously associated with increased expression of collagenases MMP-1, MMP-14 and gelatinase MMP-9, as well as decreased expression of inhibitors (TIMP-1 and TIMP-2), and to a lesser extent with increased expression of MMP-2. MMP-1 and MMP-9 can serve as markers of invasive and metastatic potential of the SCC tumor. The morphologically normal tissue adjacent to the tumor tissue is characterized by significant expression of MMP-1, MMP-2, and MMP-9. This also contributes to the increased destructive potential of the tumor.  相似文献   

18.
Matrix metalloproteinases (MMP) play a critical role in tumor invasion and metastasis. The goal of this study was to elucidate peculiarities of expression of gelatinases A and B (MMP-2 and MMP-9), membrane type MMP (MT1-MMP) and tissue inhibitor of MMP (TIMP-2) in immortal (IF) and transformed fibroblasts (TF). The study was carried out using embryo rat fibroblasts, sequentially immortalized with the polyomavirus LT gene and transformed with the E7 gene of human papillomavirus (HPV-16). Papillomaviruses type16 and 18 are the etiological factor for cervical cancer. A primary fibroblast (PF) culture of Fisher rats was used as control. Analysis of TF and IF included determination of MMP-2 and MMP-9 activity by hydrolysis of the specific substrate, radioactive collagen type IV; analysis of MMP spectra by a zymographic assay, and estimation of the mRNA expression by RT-PCR. It was found that: (1) collagenolytic activity of MMP was increased only in TF and it depended on the degree of cell tumorigenicity; (2) the study of MMP spectra revealed the presence of MMP-9 only in TF, whereas MMP-2 was found in IF as well; (3) the mRNA expression of MMP-9, MT1-MMP and TIMP-2 increased in all TF while the MMP-2 expression increased in TF only after TF cell selection on rats; (4) the collagenolytic activity as well as the mRNA expression of MMP-2 and MMP-9 and endogenous regulators (MT1-MMP and TIMP-2) did not change in immortalized fibroblasts compared to the PF culture. The data obtained indicate changes in the ratio enzyme/activator/inhibitor and also suggest a significant increase in the TF destructive potential. MMP-9 is supposed to be a marker of fibroblasts transformed by E7 HPV16 gene in a cell culture.  相似文献   

19.
Bone matrix turnover is regulated by matrix metalloproteinases (MMPs), tissue inhibitors of matrix metalloproteinases (TIMPs), and the plasminogen activation system, including tissue-type plasminogen activator (tPA), urokinase-type plasminogen activator (uPA), and plasminogen activator inhibitor type-1 (PAI-1). We previously demonstrated that 1.0g/cm(2) of compressive force was an optimal condition for inducing bone formation by osteoblastic Saos-2 cells. Here, we examined the effect of mechanical stress on the expression of MMPs, TIMPs, tPA, uPA, and PAI-1 in Saos-2 cells. The cells were cultured in Dulbecco's modified Eagle's medium containing 10% fetal bovine serum and with or without continuously compressive force (0.5-3.0g/cm(2)) for up to 24h. The levels of MMPs, TIMPs, uPA, tPA, and PAI-1 gene expression were estimated by determining the mRNA levels using real-time PCR, and the protein levels were determined using ELISA. The expression levels of MMP-1, MMP-2, MMP-14, and TIMP-1 markedly exceeded the control levels at 1.0g/cm(2) of compressive force, whereas the expression levels of MMP-3, MMP-13, TIMP-2, TIMP-3, TIMP-4, tPA, uPA, and PAI-1 markedly exceeded the control levels at 3.0g/cm(2). These results suggest that mechanical stress stimulates bone matrix turnover by increasing these proteinases and inhibitors, and that the mechanism for the proteolytic degradation of bone matrix proteins differs with the strength of the mechanical stress.  相似文献   

20.
Among matrix metalloproteinases (MMPs), gelatinases MMP-2 (gelatinase A) and MMP-9 (gelatinase B) play a key role in a number of physiological processes such as tissue repair and fibrosis. Many evidences point out their involvement in a series of pathological events, such as arthritis, multiple sclerosis, cardiovascular diseases, inflammatory processes and tumor progression by degradation of the extracellular matrix. To date, the identification of non-specific MMP inhibitors has made difficult the selective targeting of gelatinases. In this work we report the identification, design and synthesis of new gelatinase inhibitors with appropriate drug-like properties and good profile in terms of affinity and selectivity. By a detailed in silico protocol and innovative and versatile solid phase approaches, a series of 4-thiazolydinyl-N-hydroxycarboxyamide derivatives were identified. In particular, compounds 9a and 10a showed a potent inhibitory activity against gelatinase B and good selectivity over the other MMP considered in this study. The identified compounds could represent novel potential candidates as therapeutic agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号