首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Maltose binding protein (MBP) is a large, monomeric two domain protein containing 370 amino acids. In the absence of denaturant at neutral pH, the protein is in the native state, while at pH 3.0 it forms a molten globule. The molten globule lacks a tertiary circular dichroism signal but has secondary structure similar to that of the native state. The molten globule binds 8-anilino-1-naphthalene sulfonate (ANS). The unfolding thermodynamics of MBP at both pHs were measured by carrying out a series of isothermal urea melts at temperatures ranging from 274-329 K. At 298 K, values of deltaGdegrees , deltaCp, and Cm were 3.1+/-0.2 kcal mol(-1), 5.9+/-0.8 kcal mol(-1) K(-1) (15.9 cal (mol-residue)(-1) K(-1)), and 0.8 M, respectively, at pH 3.0 and 14.5+/-0.4 kcal mol(-1), 8.3+/-0.7 kcal mol(-1) K(-1) (22.4 kcal (mol-residue)(-1) K(-1)), and 3.3 M, respectively, at pH 7.1. Guanidine hydrochloride denaturation at pH 7.1 gave values of deltaGdegrees and deltaCp similar to those obtained with urea. The m values for denaturation are strongly temperature dependent, in contrast to what has been previously observed for small globular proteins. The value of deltaCp per mol-residue for the molten globule is comparable to corresponding values of deltaCp for the unfolding of typical globular proteins and suggests that it is a highly ordered structure, unlike molten globules of many small proteins. The value of deltaCp per mol-residue for the unfolding of the native state is among the highest currently known for any protein.  相似文献   

2.
A new method for determining the heat capacity change for protein folding   总被引:10,自引:0,他引:10  
C N Pace  D V Laurents 《Biochemistry》1989,28(6):2520-2525
In order to use results from calorimetry or thermal unfolding curves to estimate the free energy change for protein unfolding at 25 degrees C, it is necessary to know the change in heat capacity for unfolding, delta Cp. We describe a new method for measuring delta Cp which is based on results from urea and thermal unfolding curves but does not require a calorimeter. We find that delta Cp = 1650 +/- 200 cal/(deg.mol) for the unfolding of ribonuclease T1 and that delta Cp = 2200 +/- 300 cal/(deg.mol) for the unfolding of ribonuclease A.  相似文献   

3.
The thermal denaturation of recombinant human growth hormone (rhGH) was studied by differential scanning calorimetry and circular dichroism spectroscopy (CD). The thermal unfolding is reversible only below pH 3.5, and under these conditions a single two-state transition was observed between 0 and 100 degrees C. The magnitudes of the deltaH and deltaCp of this transition indicate that it corresponds to a partial unfolding of rhGH. This is also supported by CD data, which show that significant secondary structure remains after the unfolding. Above pH 3.5 the thermal denaturation is irreversible due to the aggregation of rhGH upon unfolding. This aggregation is prevented in aqueous solutions of alcohols such as n-propanol, 2-propanol, or 1,2-propanediol (propylene glycol), which suggests that the self-association of rhGH is caused by hydrophobic interactions. In addition, it was found that the native state of rhGH is stable in relatively high concentrations of propylene glycol (up to 45% v/v at pH 7-8 or 30% at pH 3) and that under these conditions the thermal unfolding is cooperative and corresponds to a transition from the native state to a partially folded state, as observed at acidic pH in the absence of alcohols. In higher concentrations of propylene glycol, the tertiary structure of rhGH is disrupted and the cooperativity of the unfolding decreases. Moreover, the CD and DSC data indicate that a partially folded intermediate with essentially native secondary structure and disordered tertiary structure becomes significantly populated in 70-80% propylene glycol.  相似文献   

4.
Thermodynamic nonideality arising from the space-filling effect of added sucrose is employed to confirm that the reversible unfolding of ribonuclease A effected by acid may be described as an equilibrium between native and unfolded states of the enzyme. However, the extent of the volume change is far too small for the larger isomer to be the fully expanded state, a result signifying that the acid-mediated unfolding of ribonuclease does not conform with the two-state equilibrium model of protein denaturation. Although the thermal denaturation of ribonuclease A is characterized by a larger increase in volume, quantitative reappraisal of published results on the effects of glycerol on this transition at pH 2.8 (Gekko, K., and Timasheff, S. N., 1981 Biochemistry 20, 4677-4686) leads to an estimated volume increase that is much smaller than that inferred from hydrodynamic studies--a disparity attributed to the dual actions of glycerol as a space-filling solute and as a ligand that binds preferentially to the thermally unfolded form of the enzyme. Even in this unfavorable circumstance the fact that glycerol exerts a net excluded volume effect at least confirms that the thermal unfolding of ribonuclease A is an equilibrium transition between two discrete states. The strengths and limitations of using thermodynamic nonideality as a probe of the two-state equilibrium model of protein denaturation are discussed in the light of these findings.  相似文献   

5.
Two mechanisms have been proposed for the thermal unfolding of ribonuclease S (RNase S). The first is a sequential partial unfolding of the S peptide/S protein complex followed by dissociation, whereas the second is a concerted denaturation/dissociation. The thermal denaturation of ribonuclease S and its fragment, the S protein, were followed with circular dichroism and infrared spectra. These spectra were analyzed by the principal component method of factor analysis. The use of multiple spectral techniques and of factor analysis monitored different aspects of the denaturation simultaneously. The unfolding pathway was compared with that of the parent enzyme ribonuclease A (RNase A), and a model was devised to assess the importance of the dissociation in the unfolding. The unfolding patterns obtained from the melting curves of each protein imply the existence of multiple intermediate states and/or processes. Our data provide evidence that the pretransition in the unfolding of ribonuclease S is due to partial unfolding of the S protein/S peptide complex and that the dissociation occurs at higher temperature. Our observations are consistent with a sequential denaturation mechanism in which at least one partial unfolding step comes before the main conformational transition, which is instead a concerted, final unfolding/dissociation step.  相似文献   

6.
Thermal transitions of many proteins have been found to be calorimetrically irreversible and scan-rate dependent. Calorimetric determinations of stability parameters of proteins which unfold irreversibly according to a first-order kinetic scheme have been reported. These methods require the approximation that the increase in heat capacity upon denaturation deltaCp is zero. A method to obtain thermodynamic parameters and activation energy for the two-state irreversible process N --> D from nonlinear fitting to calorimetric traces is proposed here. It is based on a molar excess heat capacity function which considers irreversibility and a nonzero constant deltaCp. This function has four parameters: (1) temperature at which the calorimetric profile reaches its maximal value (Tm), (2) calorimetric enthalpy at Tm (deltaHm), (3) deltaCp, and (4) activation energy (E). The thermal irreversible denaturation of subtilisin BPN' from Bacillus amyloliquefaciens was studied by differential scanning calorimetry at pH 7.5 to test our model. Transitions were found to be strongly scanning-rate dependent with a mean deltaCp value of 5.7 kcal K(-1)mol(-1), in agreement with values estimated by accessible surface area and significantly higher than a previously reported value.  相似文献   

7.
The stability of a protein or of its folding intermediates is frequently characterized by its resistance to chemical and/or thermal denaturation. The folding/unfolding process is generally followed by spectroscopic methods such as absorbance, fluorescence, circular dichroism spectroscopy, etc. Here, we demonstrate a new method, by using HPLC, for determining the thermal unfolding transitions of disulfide-containing proteins and their structured folding intermediates. The thermal transitions of a model protein, ribonuclease A (RNase A), and a recently found unfolding intermediate of onconase (ONC), des [30-75], have been estimated by this method. Finally, the advantages of this method over traditional techniques are discussed by providing specific examples.  相似文献   

8.
The method of limited proteolysis has proven to be appropriate for the determination of unfolding rate constants (k(U)) of ribonuclease A in the transition region of thermal denaturation [Arnold, U. & Ulbrich-Hofmann, R. (1997) Biochemistry 36, 2166-2172]. The aim of the present paper was to extend this procedure to the pretransition region of thermally and urea-induced denaturation where spectroscopic methods do not allow direct measurement of k(U). The results show that the approach can be applied successfully to denaturing (free energy of unfolding Delta G < 10 kJ.mol(-1)) and to marginally native conditions (Delta G = 10-25 kJ.mol(-1)). Under moderately (Delta G = 25-30 kJ.mol(-1)) and strongly native conditions (Delta G > 30 kJ.mol(-1)), however, the determination of kU was not possible in this way as the proteolytic degradation of ribonuclease A by thermolysin or trypsin was no longer determined by global unfolding. Here, proteolysis proceeds via the native RNase A. In the presence of low concentrations of urea, the rate constants of proteolysis were, surprisingly, smaller than in the absence of urea. As the protease activity has been taken into account, this result points to a local stabilization of the RNase A molecule.  相似文献   

9.
Data are reported for T(m), the temperature midpoint of the thermal unfolding curve, of ribonuclease A, versus pH (range 2-9) and salt concentration (range 0-1 M) for two salts, Na(2)SO(4) and NaCl. The results show stabilization by sulfate via anion-specific binding in the concentration range 0-0.1 M and via the Hofmeister effect in the concentration range 0.1-1.0 M. The increase in T(m) caused by anion binding at 0.1 M sulfate is 20 degrees at pH 2 but only 1 degree at pH 9, where the net proton charge on the protein is near 0. The 10 degrees increase in T(m) between 0.1 and 1.0 M Na(2)SO(4), caused by the Hofmeister effect, is independent of pH. A striking property of the NaCl results is the absence of any significant stabilization by 0.1 M NaCl, which indicates that any Debye screening is small. pH-dependent stabilization is produced by 1 M NaCl: the increase in T(m) between 0 and 1.0 M is 14 degrees at pH 2 but only 1 degree at pH 9. The 14 degree increase at pH 2 may result from anion binding or from both binding and Debye screening. Taken together, the results for Na(2)SO(4) and NaCl show that native ribonuclease A is stabilized at low pH in the same manner as molten globule forms of cytochrome c and apomyoglobin, which are stabilized at low pH by low concentrations of sulfate but only by high concentrations of chloride.  相似文献   

10.
Eosinophil cationic protein (ECP)/ribonuclease 3 is a member of the RNase A superfamily involved in inflammatory processes mediated by eosinophils. ECP is bactericidal, helminthotoxic, and cytotoxic to tracheal epithelium cells and to several mammalian cell lines although its RNase activity is low. We studied the thermal stability of ECP by fourth-derivative UV absorbance spectra, circular dichroism, differential scanning calorimetry, and Fourier transform infrared spectroscopy. The T (1/2) values obtained with the different techniques were in very good agreement (T (1/2) approximately 72 degrees C), and the stability was maintained in the pH range between 5 and 7. The ECP calorimetric melting curve showed, in addition to the main transition, a pretransitional conformational change with a T (1/2) of 44 degrees C. Both calorimetric transitions disappeared after successive re-heatings, and the ratio DeltaH versus DeltaH (vH) of 2.2 indicated a significant deviation from the two-state model. It was observed that the thermal unfolding was irreversible. The unfolding process gives rise to changes in the environment of aromatic amino acids that are partially maintained in the refolded protein with the loss of secondary structure and the formation of oligomers. From the thermodynamic analysis of ECP variants, the contribution of specific amino acids, such as Trp10 and the region 115-122, to thermal stability was also determined. The high thermal stability of ECP may contribute to its resistance to degradation when the protein is secreted to the extracellular medium during the immune response.  相似文献   

11.
Circular dichroism was used to monitor the thermal unfolding of ribonuclease A in 50% aqueous methanol. The spectrum of the protein at temperatures below -10 degrees C (pH* 3.0) was essentially identical to that of native ribonuclease A in aqueous solution. The spectrum of the thermally denatured material above 70 degrees C revealed some residual secondary structure in comparison to protein unfolded by 5 M Gdn.HCl at 70 degrees C in the presence or absence of methanol. The spectra as a function of temperature were deconvoluted to determine the contributions of different types of secondary structure. The position of the thermal unfolding transition as monitored by alpha-helix, with a midpoint at 38 degrees C, was at a much higher temperature than that monitored by beta-sheet, 26 degrees C, which also corresponded to that observed by delta A286, tyrosine fluorescence and hydrodynamic radius (from light scattering measurements). Thus, the loss of beta-sheet structure is decoupled from that of alpha-helix, suggesting a step-wise unfolding of the protein. The transition observed for loss of alpha-helix coincides with the previously measured transition for His-12 by NMR from a partially folded state to the unfolded state, suggesting that the unfolding of the N-terminal helix in RNase A is lost after unfolding of the core beta-sheet during thermal denaturation. The thermally denatured protein was relatively compact, as measured by dynamic light scattering.  相似文献   

12.
The kinetics of the reversible thermal unfolding, irreversible thermal unfolding, and reductive unfolding processes of bovine pancreatic ribonuclease A (RNase A) were investigated in NaCl/Pi solutions. Image parameters including Shannon entropy, Hamming distance, mutual information and correlation coefficient were used in the analysis of the CD and 1D NMR spectra. The irreversible thermal unfolding transition of RNase A was not a cooperative process, pretransitional structure changes occur before the main thermal denaturation. Different dithiothreitol (dithiothreitolred) concentration dependencies were observed between 303 and 313 K during denaturation induced by a small amount of reductive reagent. The protein selectively follows a major unfolding kinetics pathway with the selectivity can be altered by temperature and reductive reagent concentration. Two possible explanations of the selectivity mechanism were discussed.  相似文献   

13.
The unfolding of ribonuclease A by urea, guanidine hydrochloride, lithium perchlorate, lithium chloride, and lithium bromide has been followed by circular dichroic and difference spectral measurements. All three abnormal tyrosyl residues are normalized in urea and guanidine hydrochloride (delta epsilon 287 = -2700), only two are normalized in lithium bromide and lithium perchlorate (delta epsilon 287 = -1700), and only one is exposed in lithium chloride solutions (delta epsilon 287 = -700). The Gibbs energies are 4.7 +/- 0.1 kcal mol-1 for urea- and guanidine hydrochloride-denaturation, 3.8 +/- 0.2 kcal mol-1 for lithium perchlorate-denaturation, and 12.7 +/- 0.2 kcal mol-1 for lithium chloride- and lithium bromide-denaturation of ribonuclease A. The latter results suggest that the mechanism of the unfolding process in urea and guanidine hydrochloride is quite different from that in lithium salts.  相似文献   

14.
Most protease prosegments are co-synthesized at the N-termini of cysteine proteases and are involved in folding assistance, inhibition, and activation of their mature enzymes. By using circular dichroism, UV-difference and fluorescence spectroscopies, we studied the thermal unfolding of papain prosegment. The transition seems to be two-state and reversible, with an unfolded state prone to aggregation. Unfolding thermodynamic parameters obtained show low values both for deltaH(Tm) and deltaCp(U), indicative of a loosely packed three-dimensional conformation for the prosegment at near-neutral pH conditions. In spite of these results, fluorescence experiments demonstrate that papain prosegment is able to recognize and inhibit its cognate protease. An acid medium induces a molten globule-like state without intermediates, which in turn undergoes an irreversible thermal unfolding. Our results suggest that papain prosegment has a high degree of conformational flexibility, with the ability to form not only a molten globule-like structure in activating conditions, but also requiring an induced fit in order to be functional as inhibitor.  相似文献   

15.
A shortened, recombinant protein comprising residues 109-666 of the tailspike endorhamnosidase of Salmonella phage P22 was purified from Escherichia coli and crystallized. Like the full-length tailspike, the protein lacking the amino-terminal head-binding domain is an SDS-resistant, thermostable trimer. Its fluorescence and circular dichroism spectra indicate native structure. Oligosaccharide binding and endoglycosidase activities of both proteins are identical. A number of tailspike folding mutants have been obtained previously in a genetic approach to protein folding. Two temperature-sensitive-folding (tsf) mutations and the four known global second-site suppressor (su) mutations were introduced into the shortened protein and found to reduce or increase folding yields at high temperature. The mutational effects on folding yields and subunit folding kinetics parallel those observed with the full-length protein. They mirror the in vivo phenotypes and are consistent with the substitutions altering the stability of thermolabile folding intermediates. Because full-length and shortened tailspikes aggregate upon thermal denaturation, and their denaturant-induced unfolding displays hysteresis, kinetics of thermal unfolding were measured to assess the stability of the native proteins. Unfolding of the shortened wild-type protein in the presence of 2% SDS at 71 degrees C occurs at a rate of 9.2 x 10(-4) s(-1). It reflects the second kinetic phase of unfolding of the full-length protein. All six mutations were found to affect the thermal stability of the native protein. Both tsf mutations accelerate thermal unfolding about 10-fold. Two of the su mutations retard thermal unfolding up to 5-fold, while the remaining two mutations accelerate unfolding up to 5-fold. The mutational effects can be rationalized on the background of the recently determined crystal structure of the protein.  相似文献   

16.
Moderate temperatures or low concentrations of denaturants diminish the catalytic activity of some enzymes before spectroscopic methods indicate protein unfolding. To discriminate between possible reasons for the inactivation of ribonuclease A, we investigated the influence of temperature and guanidine hydrochloride on its proteolytic susceptibility to proteinase K by determining the proteolytic rate constants and fragment patterns. The results were related to changes of activity and spectroscopic properties of ribonuclease A. With thermal denaturation, the changes in activity and in the rate constants of proteolytic degradation coincide and occur slightly before the spectroscopically observable transition. In the case of guanidine hydrochloride-induced denaturation, however, proteolytic resistance of ribonuclease A initially increases accompanied by a drastic activity decrease far before unfolding of the protein is detected by spectroscopy or proteolysis. In addition to ionic effects, a tightening of the protein structure at low guanidine hydrochloride concentrations is suggested to be responsible for ribonuclease A inactivation.  相似文献   

17.
A theoretical model is presented to study the stepwise thermal unfolding of globular proteins using the stabilizing/destabilizing characters of amino acid residues in protein crystals. A multiple regression relation connecting the melting temperature and the amounts of stabilizing and destabilizing groups of residues in a protein, when used for the thermal behavior of peptide segments, provides reliable results on the stepwise unfolding nature of the protein. In ribonuclease A, the shell residues 16–22 are predicted to unfold earlier in the temperature range 30–45°C; the -sheet structures undergo thermal denaturation as a single cooperative unit and there is evidence indicating the segment 106–118 as a nucleation site. In ribonuclease S, the S-peptide unfolds earlier than S-protein. The predicted average and the range of melting temperatures, and the folding pathways of a set of globular proteins, agree very well with the experimental results. The results obtained in the present study indicate that (i) most of the nucleation parts possess high relative thermal stability, (ii) the unfolded state retains some residual structure, and (iii) some segments undergo gradual and overlapping thermal denaturation.  相似文献   

18.
We provide evidence that in vitro protein cross-linking can be accomplished in three concerted steps: (i) a change in protein conformation; (ii) formation of interchain disulfide bonds; and (iii) formation of interchain isopeptide cross-links. Oxidative refolding and thermal unfolding of ribonuclease A, lysozyme, and protein disulfide isomerase led to the formation of cross-linked dimers/oligomers as revealed by SDS-polyacrylamide gel electrophoresis. Chemical modification of free amino groups in these proteins or unfolding at pH < 7.0 resulted in a loss of interchain isopeptide cross-linking without affecting interchain disulfide bond cross-linking. Furthermore, preformed interchain disulfide bonds were pivotal for promoting subsequent interchain isopeptide cross-links; no dimers/oligomers were detected when the refolding and unfolding solution contained the reducing agent dithiothreitol. Similarly, the Cys326Ser point mutation in protein disulfide isomerase abrogated its ability to cross-link into homodimers. Heterogeneous proteins become cross-linked following the formation of heteromolecular interchain disulfide bonds during thermal unfolding of a mixture of of ribonuclease A and lysozyme. The absence of glutathione and glutathione disulfide during the unfolding process attenuated both the interchain disulfide bond cross-links and interchain isopeptide cross-links. No dimers/oligomers were detected when the thermal unfolding temperature was lower than the midpoint of thermal denaturation temperature.  相似文献   

19.
Onconase is a member of the ribonuclease A superfamily currently in phase IIIb clinical trials as a treatment for malign mesothelioma due to its cytotoxic activity selective against tumor-cells. In this work, we have studied the equilibrium thermal unfolding of onconase using a combination of several structural and biophysical techniques. Our results indicate that at least one significantly populated intermediate, which implies the exposure of hydrophobic surface and significant changes in the environment around Trp3, occurs during the equilibrium unfolding process of this protein. The intermediate begins to populate at about 30° below the global unfolding temperature, reaching a maximum population of nearly 60%, 10° below the global unfolding temperature.  相似文献   

20.
Conformational stability and mechanism of folding of ribonuclease T1   总被引:5,自引:0,他引:5  
Urea and thermal unfolding curves for ribonuclease T1 (RNase T1) were determined by measuring several different physical properties. In all cases, steep, single-step unfolding curves were observed. When these results were analyzed by assuming a two-state folding mechanism, the plots of fraction unfolded protein versus denaturant were coincident. The dependence of the free energy of unfolding, delta G (in kcal/mol), on urea concentration is given by delta G = 5.6 - 1.21 (urea). The parameters characterizing the thermodynamics of unfolding are: midpoint of the thermal unfolding curve, Tm = 48.1 degrees C, enthalpy change at Tm, delta Hm = 97 kcal/mol, and heat capacity change, delta Cp = 1650 cal/mol deg. A single kinetic phase was observed for both the folding and unfolding of RNase T1 in the transition and post-transition regions. However, two slow kinetic phases were observed during folding in the pre-transition region. These two slow phases account for about 90% of the observed amplitude, indicating that a faster kinetic phase is also present. The slow phases probably result from cis-trans isomerization at the 2 proline residues that have a cis configuration in folded RNase T1. These results suggest that RNase T1 folds by a highly cooperative mechanism with no structural intermediates once the proline residues have assumed their correct isomeric configuration. At 25 degrees C, the folded conformation is more stable than the unfolded conformations by 5.6 kcal/mol at pH 7 and by 8.9 kcal/mol at pH 5, which is the pH of maximum stability. At pH 7, the thermodynamic data indicate that the maximum conformational stability of 8.3 kcal/mol will occur at -6 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号