首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Positional homologs to the UL51 open reading frame of herpes simplex virus type 1 have been identified throughout the herpesvirus family. However, no respective protein has so far been described for any of the herpesviruses. With rabbit antisera directed against oligopeptides predicted to comprise antigenic regions of the deduced pseudorabies virus (PrV) UL51 protein, a polypeptide with a size of 30 kDa was identified in PrV-infected cell lysates and in purified virions. This molecular mass correlates reasonably well with the predicted mass of 25 kDa of the 236-amino-acid deduced UL51 protein. Antisera raised against peptides derived from different predicted antigenic regions all detected the 30-kDa protein in Western blot (immunoblot) analyses. Specificity was ascertained by peptide competition. Subcellular fractionation showed the presence of the UL51 protein mainly in the nucleus of infected cells. After separation of purified virion preparations into envelope and capsid, the PrV UL51 protein was detected in the capsid fraction. In summary, we identified the first herpesvirus UL51 protein and demonstrate that it represents a structural component of PrV virions.  相似文献   

2.
Many of the products of the ca. 80 genes encoded by alphaherpesviruses have already been identified and, at least tentatively, functionally characterized. Among the least characterized proteins are the products of the genes homologous to herpes simplex virus UL3, which are present only in the subfamily Alphaherpesvirinae: To identify the UL3 protein of the porcine alphaherpesvirus pseudorabies virus (PrV), the complete PrV UL3 open reading frame was cloned, expressed in Escherichia coli as a glutathione S-transferase fusion protein, and used for immunization of a rabbit. In Western blots, the generated antiserum specifically detected a 34-kDa protein in PrV-infected cells, which was absent from purified virus preparations, indicating that PrV UL3 encodes a nonstructural protein. In indirect immunofluorescence analysis, the anti-UL3 serum produced predominantly nuclear staining in transfected as well as in infected cells, which was not altered in the absence of other virus-encoded nuclear proteins such as the UL31 and UL34 gene products. To investigate UL3 function, a deletion mutant, PrV-DeltaUL3F2, was constructed and characterized. This mutant replicated and formed plaques on noncomplementing cells indistinguishable from wild-type PrV, demonstrating that PrV UL3 is not required for virus propagation in cultured cells. Moreover, ultrastructural examinations revealed no impairment of capsid formation in the nucleus, nuclear egress of capsids, virion maturation in the cytoplasm, or virus release. Thus, the overall properties of PrV UL3 are similar to those described for the homologous herpes simplex virus proteins which may be indicative of a common, yet hitherto unknown, function in alphaherpesvirus replication. However, based on our studies, an involvement of the UL3 homologs in virion formation appears unlikely.  相似文献   

3.
Homologs of the UL17 gene of the alphaherpesvirus herpes simplex virus 1 (HSV-1) are conserved in all three subfamilies of herpesviruses. However, only the HSV-1 protein has so far been characterized in any detail. To analyze UL17 of pseudorabies virus (PrV) the complete 597-amino-acid protein was expressed in Escherichia coli and used for rabbit immunization. The antiserum recognized a 64-kDa protein in PrV-infected cell lysates and purified virions, identifying PrV UL17 as a structural virion component. In indirect immunofluorescence analyses of PrV-infected cells the protein was predominantly found in the nucleus. In electron microscopic studies after immunogold labeling of negatively stained purified virion preparations, UL17-specific label was detected on single, mostly damaged capsids, whereas complete virions and the majority of capsids were free of label. In ultrathin sections of infected cells, label was primarily found dispersed around scaffold-containing B-capsids, whereas on DNA-filled C-capsids it was located in the center. Empty intranuclear A-capsids were free of label, as were extracellular capsid-less L-particles. Functional characterization of PrV-DeltaUL17F, a deletion mutant lacking codons 23 to 444, demonstrated that cleavage of viral DNA into unit-length genomes was inhibited in the absence of UL17. In electron microscopic analyses of PrV-DeltaUL17F-infected RK13 cells, DNA-containing capsids were not detected, while numerous capsidless L-particles were observed. In summary, our data indicate that the PrV UL17 protein is an internal nucleocapsid protein necessary for DNA cleavage and packaging but suggest that the protein is not a prominent part of the tegument.  相似文献   

4.
Genes homologous to the herpes simplex virus UL49.5 open reading frame are conserved throughout the Herpesviridae. In the alphaherpesvirus pseudorabies virus (PrV), the UL49.5 product is an O-glycosylated structural protein of the viral envelope, glycoprotein N (gN) (A. Jöns, H. Granzow, R. Kuchling, and T. C. Mettenleiter, J. Virol. 70:1237–1241, 1996). For functional characterization of gN, a gN-negative PrV mutant, PrV-gNβ, and the corresponding rescuant, PrV-gNβR, were constructed, gN-negative PrV was able to productively replicate on noncomplementing cells, and one-step growth in cell culture was only slightly reduced compared to that of wild-type PrV. However, penetration was significantly delayed. In indirect immunofluorescence assays with rabbit serum directed against baculovirus-expressed gN, specific staining of wild-type PrV-infected cells occurred only after permeabilization of cells, whereas live cells failed to react with the antiserum. This indicates the lack of surface accessibility of gN in the plasma membrane of a PrV-infected cell. Western blot analyses and radioimmunoprecipitation experiments under reducing and nonreducing conditions led to the discovery of a heteromeric complex composed of gM and gN. The complex was stable in the absence of 2-mercaptoethanol but dissociated after the addition of the reducing agent, indicating that the partners are linked by disulfide bonds. Finally, gN was absent from gM-negative PrV virions, whereas gM was readily detected in virions in the absence of gN. Thus, gM appears to be required for virion localization of gN.  相似文献   

5.
The UL36 open reading frame encoding the tegument protein ICP1/2 represents the largest open reading frame in the genome of herpes simplex virus type 1 (HSV-1). Polypeptides homologous to the HSV-1 UL36 protein are present in all subfamilies of HERPESVIRIDAE: We sequenced the UL36 gene of the alphaherpesvirus pseudorabies virus (PrV) and prepared a monospecific polyclonal rabbit antiserum against a bacterial glutathione S-transferase (GST)-UL36 fusion protein for identification of the protein. The antiserum detected a >300-kDa protein in PrV-infected cells and in purified virions. Interestingly, in coprecipitation analyses using radiolabeled infected-cell extracts, the anti-UL36 serum reproducibly coprecipitated the UL37 tegument protein, and antiserum directed against the UL37 protein coprecipitated the UL36 protein. This physical interaction could be verified using yeast two-hybrid analysis which demonstrated that the UL37 protein interacts with a defined region within the amino-terminal part of the UL36 protein. By use of immunogold labeling, capsids which accumulate in the cytoplasm in the absence of the UL37 protein (B. G. Klupp, H. Granzow, E. Mundt, and T. C. Mettenleiter, J. Virol. 75:8927-8936, 2001) as well as wild-type intracytoplasmic and extracellular virions were decorated by the anti-UL36 antiserum, whereas perinuclear primary enveloped virions were not. We postulate that the physical interaction of the UL36 protein, which presumably constitutes the innermost layer of the tegument (Z. Zhou, D. Chen, J. Jakana, F. J. Rixon, and W. Chiu, J. Virol. 73:3210-3218, 1999), with the UL37 protein is an important early step in tegumentation during virion morphogenesis in the cytoplasm.  相似文献   

6.
The pseudorabies virus (PrV) homolog of the tegument protein encoded by the UL48 gene of herpes simplex virus type 1 (HSV-1) was identified by using a monospecific rabbit antiserum against a bacterial fusion protein. UL48-related polypeptides of 53, 55, and 57 kDa were detected in Western blots of infected cells and purified virions. Immunofluorescence studies demonstrated that the PrV UL48 protein is predominantly localized in the cytoplasm but is also found in the nuclei of infected cells. Moreover, it is a constituent of extracellular virus particles but is absent from primary enveloped perinuclear virions. In noncomplementing cells, a UL48-negative PrV mutant (PrV-DeltaUL48) exhibited delayed growth and significantly reduced plaque sizes and virus titers, deficiencies which were corrected in UL48-expressing cells. RNA analyses indicated that, like its HSV-1 homolog, the PrV UL48 protein is involved in regulation of immediate-early gene expression. However, the most salient effect of the UL48 gene deletion was a severe defect in virion morphogenesis. Late after infection, electron microscopy of cells infected with PrV-DeltaUL48 revealed retention of newly formed nucleocapsids in the cytoplasm, whereas enveloped intracytoplasmic or extracellular complete virions were only rarely observed. In contrast, capsidless particles were produced and released in great amounts. Remarkably, the intracytoplasmic capsids were labeled with antibodies against the UL36 and UL37 tegument proteins, whereas the capsidless particles were labeled with antisera directed against the UL46, UL47, and UL49 tegument proteins. These findings suggested that the UL48 protein is involved in linking capsid and future envelope-associated tegument proteins during virion formation. Thus, like its HSV-1 homolog, the UL48 protein of PrV functions in at least two different steps of the viral life cycle. The drastic inhibition of virion formation in the absence of the PrV UL48 protein indicates that it plays an important role in virion morphogenesis prior to secondary envelopment of intracytoplasmic nucleocapsids. However, the UL48 gene of PrV is not absolutely essential, and concomitant deletion of the adjacent tegument protein gene UL49 also did not abolish virus replication in cell culture.  相似文献   

7.
Proteins encoded by the UL46 and UL47 genes of herpes simplex virus type 1 (HSV-1) constitute major components of the viral tegument. However, their functions have so far not been elucidated in detail. By use of monospecific antisera directed against bacterially expressed glutathione-S-transferase fusion proteins, the homologous UL46 and UL47 proteins of the alphaherpesvirus pseudorabies virus (PrV) were identified in virus-infected cells and in virions. The PrV UL46 gene product of 693 amino acids (aa) exhibits an apparent molecular mass of 95 kDa, whereas the UL47 product of 750 aa was identified as a 97-kDa protein. Both are present in purified virions, correlating with their role as tegument proteins. Immunofluorescence analysis by confocal laser scan microscopy showed that late in infection the UL46 product is detectable in the cytoplasm, whereas the UL47 product was observed to be diffuse in the cytoplasm and speckled in the nucleus. Virus mutants lacking either the UL46 or the UL47 gene or both were isolated on noncomplementing cells, demonstrating that these genes either singly or in combination are not required for productive viral replication. However, plaque sizes were decreased. Interestingly, in one-step growth analysis, UL47 deletion mutants exhibited an approximately 10-fold decrease in final titers, whereas the UL46 deletion mutant was not affected. This finding correlated with ultrastructural observations which showed unimpaired virion morphogenesis in the absence of the UL46 protein, whereas in the absence of the UL47 protein intracytoplasmic aggregates of partially tegumented capsids were observed. In summary, we identified the PrV UL46 and UL47 proteins and show that the UL47 protein plays an important role in virion assembly in the cytoplasm.  相似文献   

8.
Homologs of the UL25 gene product of herpes simplex virus (HSV) have been identified in all three subfamilies of the Herpesviridae. However, their exact function during viral replication is not yet known. Whereas earlier studies indicated that the UL25 protein of HSV-1 is not required for cleavage of newly replicated viral DNA but is necessary for stable encapsidation (A. R. McNab, P. Desai, S. Person, L. Roof, D. R. Thompson, W. W. Newcomb, J. C. Brown, and F. L. Homa, J. Virol. 72:1060-1070, 1998), viral DNA packaging has recently been demonstrated to occur in the absence of UL25, although at significantly decreased levels compared to wild-type HSV-1 (N. Stow, J. Virol. 75:10755-10765 2001). To clarify the functional role of UL25 we analyzed the homologous protein of the alphaherpesvirus pseudorabies virus (PrV). PrV UL25 was found to be essential for viral replication, as a mutant virus lacking the UL25 protein required UL25-expressing cells for productive propagation. In the absence of the UL25 protein, newly replicated PrV DNA was cleaved and DNA-containing C-type capsids were detected in infected cell nuclei. However, although capsids were frequently found in close association with the inner nuclear membrane, nuclear egress was not observed. Consequently, no capsids were found in the cytoplasm, resulting in an inhibition of virion morphogenesis. In contrast, the formation of capsidless enveloped tegument structures (L particles) in the cytoplasm was readily observed. Thus, our data demonstrate that the PrV UL25 protein is not essential for cleavage and encapsidation of viral genomes, although both processes occur more efficiently in the presence of the protein. However, the presence of the PrV UL25 protein is a prerequisite for nuclear egress. By immunoelectron microscopy, we detected UL25-specific label on DNA-containing C capsids but not on other intranuclear immature or defective capsid forms. Thus, the PrV UL25 protein may represent the hitherto missing trigger that allows primary envelopment preferably of DNA-filled C capsids.  相似文献   

9.
A 2.6-kbp fragment of the pseudorabies virus (PrV) genome was sequenced and shown to contain the homologues of the highly conserved herpesvirus genes UL31 and UL32. By use of a monospecific antiserum, the UL31 gene product was identified as a nuclear protein with an apparent molecular mass of 29 kDa. For functional analysis, UL31 was deleted by mutagenesis in Escherichia coli of an infectious full-length clone of the PrV genome. The resulting virus mutants were deficient in plaque formation, and titers were reduced more than 100-fold from those of wild-type PrV. Ultrastructural analyses demonstrated that capsid maturation and DNA packaging were not affected. However, neither budding at the inner nuclear membrane nor cytoplasmic or extracellular virus particles were observed. These replication defects were similar to those of a UL34 deletion mutant (B. G. Klupp, H. Granzow, and T. C. Mettenleiter, J. Virol. 74:10063-10073, 2000) and could be completely repaired in a cell line which constitutively expresses the UL31 protein. Yeast two-hybrid studies revealed that a UL31 fusion protein specifically interacts with plasmids of a PrV genome library expressing the N-terminal part of UL34. Vice versa, UL34 selected UL31-encoding plasmids from the library. Immunofluorescence studies and immune electron microscopy demonstrated that in cells infected with wild-type PrV, both proteins accumulate at the nuclear membrane, whereas in the absence of UL34 the UL31 protein is dispersed throughout the nucleus. Like the UL34 protein, the UL31 gene product is a component of enveloped virus particles within the perinuclear space and absent from mature virions. Our findings suggest that physical interaction between these two virus proteins might be a prerequisite for primary envelopment of PrV at the inner nuclear membrane and that this envelope is removed by fusion with the outer nuclear membrane.  相似文献   

10.
Herpesvirus envelope glycoproteins play important roles in the interaction between virions and target cells. In the alphaherpesvirus pseudorabies virus (PrV), seven glycoproteins that all constitute homologs of glycoproteins found in herpes simplex virus type 1 (HSV-1) have been characterized, including a homolog of HSV-1 glycoprotein H (gH). Since HSV-1 gH is found associated with another essential glycoprotein, gL, we analyzed whether PrV also encodes a gL homolog. DNA sequence analysis of a corresponding part of the UL region adjacent to the internal inverted repeat in PrV strains Kaplan and Becker revealed the presence of two open reading frames (ORF). Deduced proteins exhibited homology to uracil-DNA glycosylase encoded by HSV-1 ORF UL2 (54% identity) and gL encoded by HSV-1 ORF UL1 (24% identity), respectively. To identify the PrV UL1 protein, rabbit antisera were prepared against two synthetic oligopeptides that were predicted by computer analysis to encompass antigenic epitopes. Sera against both peptides reacted in Western blots of purified virions with a 20-kDa protein. The specificity of the reaction was demonstrated by peptide competition. Since the PrV UL1 sequence did not reveal the presence of a consensus N-linked glycosylation site, concanavalin A affinity chromatography and enzymatic deglycosylation of virion glycoproteins were used to ascertain that the PrV UL1 product is O glycosylated. Therefore, we designated this protein PrV gL. Analysis of mutant PrV virions lacking gH showed that concomitantly with the absence of gH, gL was also missing in purified virions. In summary, we identified and characterized a novel structural PrV glycoprotein, gL, which represents the eighth PrV glycoprotein described. In addition, we show that virion location of PrV gL is dependent on the presence of PrV gH.  相似文献   

11.
Herpes simplex virus 1 fuses with the plasma membrane of a host cell, and the incoming capsids are efficiently and rapidly transported across the cytosol to the nuclear pore complexes, where the viral DNA genomes are released into the nucleoplasm. Using biochemical assays, immunofluorescence, and immunoelectron microscopy in the presence and absence of microtubule depolymerizing agents, it was shown that the cytosolic capsid transport in Vero cells was mediated by microtubules. Antibody labeling revealed the attachment of dynein, a minus end–directed, microtubule-dependent motor, to the viral capsids. We propose that the incoming capsids bind to microtubules and use dynein to propel them from the cell periphery to the nucleus.  相似文献   

12.
Homologues of the UL7 gene of herpes simplex virus type 1 are conserved in alpha-, beta-, and gammaherpesviruses. However, little is known about their functions. Using a monospecific rabbit antiserum raised against a bacterial fusion protein, we identified the UL7 gene product of the neurotropic alphaherpesvirus pseudorabies virus (PrV). In Western blot analyses of infected cells and purified PrV particles the serum specifically detected a 29-kDa protein, which matches the calculated mass of the 266-amino-acid translation product of PrV UL7. For functional analysis, UL7 was deleted by mutagenesis of an infectious full-length clone of the PrV genome in Escherichia coli. The obtained recombinant PrV-DeltaUL7F was replication competent in rabbit kidney cells, but maximum virus titers were decreased nearly 10-fold and plaque diameters were reduced by ca. 60% compared to wild-type PrV. Electron microscopy of infected cells revealed that in the absence of UL7, formation and nuclear egress of nucleocapsids were not affected, whereas secondary envelopment of cytoplasmic nucleocapsids appeared to be delayed and release of mature virions was less efficient. The observed replication defects were corrected by repair of the viral UL7 gene or by propagation of PrV-DeltaUL7F in UL7-expressing cells. PrV-DeltaUL7F was moderately attenuated in mice. Compared to wild-type virus, mean survival times were prolonged from 2 to 3 days after intranasal infection. However, neuroinvasion and transneuronal spread of PrV were not abolished in the absence of UL7. Thus, UL7 encodes a virion protein of PrV, which plays a role during virion maturation and egress both in vitro and in vivo.  相似文献   

13.
Recent studies have suggested that the herpes simplex type 1 (HSV-1) UL25 gene product, a minor capsid protein, is required for encapsidation but not cleavage of replicated viral DNA. This study set out to investigate the potential interactions of UL25 protein with other virus proteins and determine what properties it has for playing a role in DNA encapsidation. The UL25 protein is found in 42 +/- 17 copies per B capsid and is present in both pentons and hexons. We introduced green fluorescent protein (GFP) as a fluorescent tag into the N terminus of UL25 protein to identify its location in HSV-1-infected cells and demonstrated the relocation of UL25 protein from the cytoplasm into the nucleus at the late stage of HSV-1 infection. To clarify the cause of this relocation, we analyzed the interactions of UL25 protein with other virus proteins. The UL25 protein associates with VP5 and VP19C of virus capsids, especially of the penton structures, and the association with VP19C causes its relocation into the nucleus. Gel mobility shift analysis shows that UL25 protein has the potential to bind DNA. Moreover, the amino-terminal one-third of the UL25 protein is particularly important in DNA binding and forms a homo-oligomer. In conclusion, the UL25 gene product forms a tight connection with the capsid being linked with VP5 and VP19C, and it may play a role in anchoring the genomic DNA.  相似文献   

14.
Cell-associated spread of pseudorabies virus (PrV) plays an important role in the pathogenesis of the disease. Besides the already known direct cell-to-cell spread of the virus in monolayers, adhesion and subsequent fusion of suspended PrV infected cells to monolayers of uninfected cells are thought to occur. To study the adhesion of PrV-infected cells, an in vitro model was developed in SK-6 cells. Specific adhesion of PrV-infected cells to an uninfected monolayer started 5 h after infection of the cells and reached a maximum 6 h later. A correlation was found between the surface expression of PrV glycoproteins on the infected cells and the adhesion of these cells. PrV hyperimmune serum completely inhibited binding of the infected cells. To investigate which PrV envelope glycoproteins were responsible for the cell adhesion, the infected cells were incubated with antisera against glycoproteins gII, gIII, and gp50. Antiserum against either gII or gIII inhibited cell adhesion, and antisera against gII and gIII together had a cooperative effect. Antiserum against gp50 had no effect on binding when used alone but enhanced the inhibition induced by gII and gIII antisera. Heparin and neomycin inhibited adhesion, showing that the receptor for adhesion was a heparinlike substance. SK-6 cells infected with a gIII deletion mutant of PrV exhibited a much lower adhesion. This binding was heparin and neomycin independent and was not blocked by anti-gII serum. Nevertheless, it was completely inhibited with PrV hyperimmune serum and with anti-gp50 serum. This finding demonstrates that the ligand for adhesion of gIII(-)-infected cells is glycoprotein gp50. These results strongly suggest that the mechanism for adhesion of a PrV-infected cell to an uninfected monolayer is similar to the mechanism of adsorption and penetration of a PrV virion to a host cell.  相似文献   

15.
Sequence analysis within BamHI fragment 3 of the pseudorabies virus (PrV) genome revealed an open reading frame homologous to the UL10 gene of herpes simplex virus. A rabbit antiserum directed against a synthetic oligopeptide representing the carboxy-terminal 18 amino acids of the predicted UL10 product recognized a major 45-kDa protein in lysates of purified Pr virions. In addition, a second protein of 90 kDa which could represent a dimeric form was observed. Enzymatic deglycosylation showed that the PrV UL10 protein is N glycosylated. Therefore, it was designated PrV gM according to its homolog in herpes simplex virus. A PrV mutant lacking ca. 60% of UL10 coding sequences was able to productively replicate on noncomplementing cells, demonstrating that PrV gM is not required for viral replication in cell culture. However, infectivity of the mutant virus was reduced and penetration was delayed, indicating a modulatory role of PrV gM in the initiation of infection.  相似文献   

16.
Homologs of the small tegument protein encoded by the UL11 gene of herpes simplex virus type 1 are conserved throughout all herpesvirus subfamilies. However, their function during viral replication has not yet been conclusively shown. Using a monospecific antiserum and an appropriate viral deletion and rescue mutant, we identified and functionally characterized the UL11 protein of the alphaherpesvirus pseudorabies virus (PrV). PrV UL11 encodes a protein with an apparent molecular mass of 10 to 13 kDa that is primarily detected at cytoplasmic membranes during viral replication. In the absence of the UL11 protein, viral titers were decreased approximately 10-fold and plaque sizes were reduced by 60% compared to wild-type virus. Intranuclear capsid maturation and nuclear egress resulting in translocation of DNA-containing capsids into the cytoplasm were not detectably affected. However, in the absence of the UL11 protein, intracytoplasmic membranes were distorted. Moreover, in PrV-DeltaUL11-infected cells, capsids accumulated in the cytoplasm and were often found associated with tegument in aggregated structures such as had previously been demonstrated in cells infected with a PrV triple-mutant virus lacking glycoproteins E, I, and M (A. R. Brack, J. M. Dijkstra, H. Granzow, B. G. Klupp, and T. C. Mettenleiter, J. Virol. 73:5364-5372, 1999). Thus, the PrV UL11 protein, like glycoproteins E, I, and M, appears to be involved in secondary envelopment.  相似文献   

17.
The UL3.5 gene is positionally conserved but highly variable in size and sequence in different members of the Alphaherpesvirinae and is absent from herpes simplex virus genomes. We have shown previously that the pseudorabies virus (PrV) UL3.5 gene encodes a nonstructural protein which is required for secondary envelopment of intracytoplasmic virus particles in the trans-Golgi region. In the absence of UL3.5 protein, naked nucleocapsids accumulate in the cytoplasm, release of infectious virions is drastically reduced, and plaque formation in cell culture is inhibited (W. Fuchs, B. G. Klupp, H. Granzow, H.-J. Rziha, and T. C. Mettenleiter, J. Virol. 70:3517-3527, 1996). To assay functional complementation by a heterologous herpesviral UL3.5 protein, the UL3.5 gene of bovine herpesvirus 1 (BHV-1) was inserted at two different sites within the genome of UL3.5-negative PrV. In cells infected with the PrV recombinants the BHV-1 UL3.5 gene product was identified as a 17-kDa protein which was identical in size to the UL3.5 protein detected in BHV-1-infected cells. Expression of BHV-1 UL3.5 compensated for the lack of PrV UL3.5, resulting in a ca. 1,000-fold increase in virus titer and restoration of plaque formation in cell culture. Also, the intracellular block in viral egress was resolved by the BHV-1 UL3.5 gene. We conclude that the UL3.5 proteins of PrV and BHV-1 are functionally related and are involved in a common step in the egress of alphaherpesviruses.  相似文献   

18.
Proteins located in the tegument layer of herpesvirus particles play important roles in the replicative cycle at both early and late times after infection. As major constituents of the virion, they execute important functions in particular during formation of progeny virions. These functions have mostly been elucidated by construction and analysis of mutant viruses deleted in single or multiple tegument protein-encoding genes (reviewed in the work of T. C. Mettenleiter, Virus Res. 106:167-180, 2004). However, since tegument proteins have been shown to be involved in numerous protein-protein interactions, the impact of single protein deletions on the composition of the virus particle is unknown, but they could impair correct interpretation of the results. To analyze how the absence of single virion constituents influences virion composition, we established a procedure to assay relative amounts of virion structural proteins in deletion mutants of the alphaherpesvirus Pseudorabies virus (PrV) in comparison to wild-type particles. The assay is based on the mass spectrometric quantitation of virion protein-derived peptides carrying stable isotope mass tags. After deletion of the US3, UL47, UL49, or glycoprotein E gene, relative amounts of a capsid protein (UL38), a capsid-associated protein (UL25), several tegument proteins (UL36 and UL47, if present), and glycoprotein H were unaffected, whereas the content of other tegument proteins (UL46, UL48, and UL49, if present) varied significantly. In the case of the UL48 gene product, a specific increase in incorporation of a smaller isoform was observed after deletion of the UL47 or UL49 gene, whereas a larger isoform remained unaffected. The cellular protein actin was enriched in virions of mutants deficient in any of the tegument proteins UL47, UL49, or US3. By two-dimensional gel electrophoresis multiple isoforms of host cell-derived heat shock protein 70 and annexins A1 and A2 were also identified as structural components of PrV virions.  相似文献   

19.
Identification and characterization of pseudorabies virus dUTPase.   总被引:8,自引:5,他引:3       下载免费PDF全文
Sequence analysis within the long segment of the pseudorabies virus (PrV) genome identified an open reading frame of 804 bp whose deduced protein product of 268 amino acids exhibited homology to dUTPases of other herpesviruses. The gene was designated UL50 because of its colinearity with the homologous gene of herpes simplex virus type 1. An antiserum raised against a bacterially expressed fragment of PrV UL50 specifically detected a 33-kDa protein in lysates of infected cells, which is in agreement with the predicted molecular mass of the PrV UL50 protein. A UL50-negative PrV mutant (PrV UL50-) was constructed by the insertion of a beta-galactosidase expression cassette into the UL50 coding sequence. A corresponding rescuant (PrV UL50resc) was also isolated. The interruption of the UL50 gene led to the disappearance of the 33-kDa protein, whereas restoration of UL50 gene expression restored detection of the 33-kDa protein. Enzyme activity assays confirmed that UL50 of PrV codes for a dUTPase which copurifies with nuclei of infected cells. PrV UL50- replicated with an only slightly reduced efficiency in epithelial cells in culture compared with that of its parental wild-type virus strain. Our results thus demonstrate that UL50 of PrV encodes a protein of 33 kDa with dUTPase activity which copurifies with nuclei of infected cells and is dispensable for replication in cultured epithelial cells.  相似文献   

20.
Envelope glycoprotein M (gM) and the complex formed by glycoproteins E (gE) and I (gI) are involved in the secondary envelopment of pseudorabies virus (PrV) particles in the cytoplasm of infected cells. In the absence of the gE-gI complex and gM, envelopment is blocked and capsids surrounded by tegument proteins accumulate in the cytoplasm (A. R. Brack, J. Dijkstra, H. Granzow, B. G. Klupp, and T. C. Mettenleiter, J. Virol. 73:5364-5372, 1999). Here we demonstrate by yeast two-hybrid analyses that the cytoplasmic domains of gE and gM specifically interact with the C-terminal part of the UL49 gene product of PrV, which represents a major tegument protein and which is homologous to VP22 of herpes simplex virus type 1. However, deletion of the UL49 gene from PrV had only minor effects on viral replication, and ultrastructural analyses of infected cells confirmed that virus maturation and egress, including secondary envelopment in the cytoplasm, were not detectably affected by the absence of UL49. Moreover, the UL49 gene product was shown to be dispensable for virion localization of gE and gM, and mutants lacking either gE or gM incorporated the UL49 protein efficiently into virus particles. In contrast, a PrV mutant with deletions of gE-gI and gM failed to incorporate the UL49 protein despite apparently unaltered intracytoplasmic UL49 expression. In summary, we describe specific interactions between herpesvirus envelope and tegument proteins which may play a role in secondary envelopment during herpesvirus virion maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号