首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Fibrin-enrobed, commercially produced glycogen was treated, without prior glutaraldehyde fixation, to a form of post-fixation with solutions of OsVIIIO4 or with a mixture of either OsVIIIO4 plus K3FeIII(CN)6 or K2OsVIO4 plus K4FeII(CN)6.Only the last mixture gave constrast staining of the glycogen in unstained ultrathin sections. The first mixture rendered the glycogen just barely visible but the glycogen contrast was increased by lead staining. The glycogen treated with the OsVIIIO4 solution was not contrast stained and was just observable after lead staining.Qualitative X-ray microanalysis of the glycogen in the ultrathin sections confirmed the presence of osmium and iron in the glycogen treated with both mixtures. The glycogen treated with OsVIIIO4 alone was difficult to analyse.Quantitative X-ray microanalysis showed that, in the glycogen treated with the OsVIIIO4 mixture plus K3FeIII(CN)6, the mean atomic osmium to iron ratio was 15. In the glycogen treated with K2OsVIO4 plus K4FeII(CN)6 this ratio was 117. However, the mean net osmium intensity in the latter case was 15 times higher than in the former case and for the iron even 40 times higher.The Unit for Analytical Electron Microscopy was established by collaboration between the Erasmus University of Rotterdam (W. C. de Bruijn), the University of Leiden and the Organization for Health Research TNO. The analytical microscope was purchased with funds from the Netherlands Organization for Pure Scientific Research (ZWO).  相似文献   

2.
A series of osmium(VI) nitrido complexes containing pyridine-carboxylato ligands OsVI(N)(L)2X (L = pyridine-2carboxylate (1), 2-quinaldinate (2) and X = Cl (a), Br (1b and 2c) or CH3O (2b)) and [OsVI(N)(L)X3] (L = pyridine-2,6-dicarboxylate (3) and X = Cl (a) or Br (b)) have been synthesised. Complexes 1 and 2 are electrophilic and react readily with various nucleophiles such as phosphine, sulfide and azide. Reaction of OsVI(N)(L)2X (1 and 2) with triphenylphosphine produces the osmium(IV) phosphiniminato complexes OsVI(NPPh3)(L)2X (4 and 5). The kinetics of nitrogen atom transfer from the complexes OsVI(N)(L)2Br (2c) (L = 2-quinaldinate) with triphenylphosphine have been studied in CH3CN at 25.0 °C by stopped-flow spectrophotometric method. The following rate law is obtained: −d[Os(VI)]/dt = k2[Os(VI)][PPh3]. OsVI(N)(L)2Cl (L = 2-quinaldinate) (2a) reacts also with [PPN](N3) to give an osmium(III) dichloro complex, trans-[PPN][OsIII(L)2Cl2] (6). Reaction of OsVI(N)(L)2Cl (L = 2-quinaldinate) (2a) with lithium sulfide produces an osmium(II) thionitrosyl complex OsII(NS)(L)2Cl (7). These complexes have been structurally characterised by X-ray crystallography.  相似文献   

3.
As a consequence of human activity, various toxicants - especially metal ions - enter aquatic ecosystems and many fish are exposed to considerable levels. As the free ion and in some complexes, there is no doubt that copper promotes damage to cellular molecules and structures through radical formation. Therefore, we have investigated the influence of copper uptake by the red blood of the sea bass (Dicentrarchus labrax), and its oxidative action and effects on cells in the presence of complexed and uncomplexed Fe3+ ions.Erythrocytes were exposed to various concentrations of CuSO4, Fe(NO3)3, and K3Fe(CN)6 for up to 5 h, and the effects of copper ions alone and in the combination with iron determined. The results show that inside the cells cupric ion interacts with hemoglobin, causing methemoglobin formation by direct electron transfer from heme Fe2+ to Cu2+. Potassium ferricyanide as a source of complexed iron decreases Met-Hb formation induced by copper ions unlike Fe(NO3)3. We also found that incubation of fish erythrocytes with copper increased hemolysis of cells. But complexed and uncomplexed iron protected the effect of copper. CuSO4 increased the level of lipid peroxidation and a protective effect on complexed iron was observed. Incubation of erythrocytes with copper ions resulted in the loss of a considerable part of thiol content at 10 and 20 μM. This effect was decreased by potassium ferricyanide and Fe(NO3)3 only after 1 and 3 h of incubation. The level of nuclear DNA damage assayed by comet assay showed that 20 μM CuSO4 as well as 20 μM Fe(NO3)3 and 10 mM K3Fe(CN)6 induce single- and double-strand breaks. The lower changes were observed after the exposure of cells to K3Fe(CN)6. The data suggest that complexed iron can act protectively against copper ions in contrast to Fe(NO3)3.  相似文献   

4.
Summary An osmium resistant, thermostable and electron dense precipitate was obtained from cuprous thiocholine iodide (Koelle's precipitate) by a joint interaction with phosphomolybdic acid and OsO4. No diffusion artifact due to the conversion of the primary precipitate to the secondary precipitate was observed, contrary to that seen after (NH4)2S or K3Fe+++ (CN)6 posttreatment of the cuprous thiocholine iodide. In addition, phosphomolybdic acid and OsO4 provided a counterstain effect on the ultrastructural background. By the present modification, Koelle's histochemical method becomes a useful cytochemical method for ultrastructural localization of acetylcholinesterase activity.  相似文献   

5.
Electron staining of the cell surface coat by osmium-low ferrocyanide   总被引:1,自引:0,他引:1  
Summary In aldehyde-fixed liver and renal cortex of rat and mouse several variations of postfixation with osmium tetroxide plus potassium ferrocyanide (FeII) were tried. Depending on the ferrocyanide concentration different staining patterns were observed in TEM.-Osmium-High Ferrocyanide [40 mM (1%) OsO4+36 mM (1.5%) FeII, pH 10.4], stains membranes and glycogen. Cytoplasmic ground substance, mitochondrial matrices and chromatin are partially extracted, cell surface coats remain unstained. Membrane contrast, but extraction too, are higher with solutions containing cacodylate- than phosphate-buffer.-Osmium-Low Ferrocyanide [40 mM (1%) OsO4+2 mM (0.08%) FeII, pH 7.4], stains cell surface coats and basal laminae, but not glycogen, except for special cases. The trilaminar structure of membranes is poorly delineated. Signs of cytoplasmic extraction are not visible. The surface coat staining is stronger and more widespread with solutions containing phosphate- instead of cacodylate-buffer; it is enhanced by section staining with lead citrate. The cell surface coat stain does not traverse tight junctions nor permeate membranes.Supported by the Deutsche Forschungsgemeinschaft (SFB 105)  相似文献   

6.
HbA O2 reacts readily with FeII(CN)5H2O3? to form aquometHb and peroxide via a second order process: rate=k[HbO2][FeII(CN)5H2O3?]. A slight enchancement in the rate of metHb formation due to the H2O2 produced can be prevented by addition of catalase. The reaction is free from complications exhibited by other reductants. The hexacyanide, ferrocyanide, reacts with HbA O2 but at only ca. 0.02% the rate and with formation of cyanometHb. Reductants such as phenols and sulfa drugs may produce radicals that can enter into side reactions. FeII(CN)5H2O3? shows promise as an effective probing reagent for the characterization of H2O2 production from oxygenated heme and other proteins.  相似文献   

7.
Summary The useful detection of acid phosphatase activity with cerium as a capturing agent is confirmed. By introducing a freeze step in combination with a preincubation, reliably localized, lysosomal precipitates are obtained and aspecific ones prevented.Short (t<1 h) postfixation with either OsO4 plus K4Fe (CN)6 or OsO4 plus aminotriazole, added to lysosomal cerium localization a high membrane contrast.The detection of cerium by X-ray microanalysis is improved by a better spectral separation of the osmium (M ) and cerium (L ) peaks.  相似文献   

8.
Chromomycin (Chro) forms a 2:1 drug/metal complex through the chelation with Fe(II), Co(II), or Cu(II) ion. The effects of spermine on the interaction of Fe(II), Co(II), and Cu(II) complexes of dimeric Chro with DNA were studied. Circular dichroism (CD) measurements revealed that spermine strongly competed for the Fe(II) and Cu(II) cations in dimeric Chro-DNA complexes, and disrupted the structures of these complexes. However, the DNA-CoII(Chro)2 complex showed extreme resistance to spermine-mediated competition for the Co(II) cation. According to surface plasmon resonance (SPR) experiments, a 6 mM concentration of spermine completely abolished the DNA-binding activity of FeII(Chro)2 and CuII(Chro)2 and interfered with the associative binding of CoII(Chro)2 complexes to DNA duplexes, but only slightly affected dissociation. In DNA integrity assays, lower concentrations of spermine (1 and 2 mM) promoted DNA strand cleavage by CuII(Chro)2, whereas various concentrations of spermine protected plasmid DNA from damage caused by either CoII(Chro)2 or FeII(Chro)2. Additionally, DNA condensation was observed in the reactions of DNA, spermine, and FeII(Chro)2. Despite the fact that CuII(Chro)2 and FeII(Chro)2 demonstrated lower DNA-binding activity than CoII(Chro)2 in the absence of spermine, while CuII(Chro)2 and FeII(Chro)2 exhibited greater cytoxicity against HepG2 cells than CoII(Chro)2, possibly due to competition of spermine for Fe(II) or Cu(II) in the dimeric Chro complex in the nucleus of the cancer cells. Our results should have significant relevance to future developments in metalloantibiotics for cancer therapy.  相似文献   

9.
The tetranuclear and pentanuclear mixed-valence coordination compounds Na[(NC)5FeII-μ(CN)-PtIV(NH3)4-μ(NC)-FeII(CN)4-μ(CN)-RuIII(NH3)5], or FePtFeRu, and [RuIII(NH3)5-μ(NC)-FeII(CN)4-μ(CN)-PtIV(NH3)4-μ(NC)-FeII(CN)4-μ(CN)-RuIII(NH3)5](OSO2CF3)2, or RuFePtFeRu, were synthesized and characterized by IR and UV-Vis spectroscopy, electron microprobe analysis (EPMA), inductively coupled plasma (ICP), and cyclic voltammetry (CV). Both molecules exhibit FeII → PtIV intervalent charge transfer (IVCT) absorptions in the 400-450 nm range and FeII → RuIII transition(s) between 750 and 950 nm. The energies, intensities, and half-widths of these transitions correspond well with those of model compounds. The cyclic voltammogram of FePtFeRu between 0.00 and 0.90 V versus SCE exhibits two quasi-reversible Fe waves at 0.56 and 0.74 V versus SCE, while that for RuFePtFeRu has only one Fe redox event at 0.72 V versus SCE. When the potential of the working electrode is scanned negative of −0.38 V versus SCE, however, both complexes undergo an ECE (electrochemical-chemical-electrochemical) mechanism whereby the electrochemical reduction of Ru(III) is followed by a double electron transfer to reduce Pt(IV) to Pt(II). Upon reduction to Pt(II), the cyanide bridges break and the complexes dissociate into smaller fragments. Irradiation of the FeII → PtIV IVCT transition in both compounds leads to a photolysis solution that contains dissociated Fe(II)-Ru(III) as one of its products. Irradiation of the FeII → RuIII IVCT transition yields a similar UV-Vis spectrum, suggesting that the same intermediate is common to both photolysis mechanisms. The implications of this research within the larger context of multiple electron transfer are also discussed.  相似文献   

10.
Structural changes between [OsIIL3]2+ and [OsIIIL3]3+ (L: 2,2′-bipyridine; 1,10-phenanthroline) and molecular and electronic structures of the OsIII complexes [OsIII(bpy)3]3+ and [OsIII(phen)3]3+ are discussed in this paper. Mid-infrared spectra in the ν(bpy) and ν(phen) ring stretching region for [OsII(bpy)3](PF6)2, [OsIII(bpy)3](PF6)3, [OsII(phen)3](PF6)2, and [OsIII(phen)3](PF6)3 are compared, as are X-ray crystal structures. Absorption spectra in the UV region for [OsIII(bpy)3](PF6)3 and [OsIII(phen)3](PF6)3 are dominated by very intense absorptions (ε = 40 000-50 000 M−1 cm−1) due to bpy and phen intra-ligand π → π transitions. In the visible region, relatively narrow bands with vibronic progressions of ∼1500 cm−1 appear, and have been assigned to bpy or phen-based, spin-orbit coupling enhanced, 1π → 3π electronic transitions. Also present in the visible region are ligand-to-metal charge transfer bands (LMCT) arising from π(bpy) → t2g(OsIII) or π(phen) → t2g(OsIII) transitions. In the near infrared, two broad absorption features appear for oxidized forms [OsIII(bpy)3](PF6)3 and [OsIII(phen)3](PF6)3 arising from dπ-dπ interconfigurational bands characteristic of dπ5OsIII. They are observed at 4580 and 5090 cm−1 for [OsIII(bpy)3](PF6)3 and at 4400 and 4990 cm−1 for [OsIII(phen)3](PF6)3. The bpy and phen infrared vibrational bands shift to higher energy upon oxidation of Os(II) to Os(III). In the cation structure in [OsIII(bpy)3](PF6)3, the OsIII atom resides at a distorted octahedral site, as judged by ∠N-Os-N, which varies from 78.78(22)° to 96.61(22)°. Os-N bond lengths are also in general longer for [OsIII(bpy)3](PF6)3 compared to [OsII(bpy)3](PF6)2 (0.010 Å), and for [OsIII(phen)3](PF6)3 compared to [OsII(phen)3](PF6)2 (0.014 Å). Structural changes in the ligands between oxidation states are discussed as originating from a combination of dπ(OsII) → π (bpy or phen) backbonding and charge redistribution on the ligands as calculated by natural population analysis.  相似文献   

11.
We present here the syntheses of a mononuclear CuII complex and two polynuclear CuII NiII complexes of the azenyl ligand, 4‐(pyridin‐2‐ylazenyl)resorcinol (HL; 1). The reaction of HL ( 1 ) and copper(II) perchlorate with KCN gave a mononuclear complex [CuL(CN)] ( 4 ). Using 4 , one pentanuclear complex, [{CuL(NC)}4Ni](ClO4)2 ( 5 ) and one trinuclear complex, [{CuL(CN)}2NiL]ClO4 ( 6 ), were prepared and characterized by elemental analyses, magnetic susceptibility, molar conductance, IR, and thermal analysis. Stoichiometric and spectral results of the mononuclear CuII complex indicated that the metal/ligand/CN ratio was 1 : 1 : 1, and the ligand behaved as a tridentate ligand forming neutral metal chelates through the pyridinyl and azenyl N‐, and resorcinol O‐atom. The interaction between the compounds (the ligand 1 , its NiII and CuII complexes without CN, i.e., 2 and 3 , and its complexes with CN, 4 – 6 ) and DNA has also been investigated by agarose gel electrophoresis. The pentanuclear Cu4Ni complex ( 5 ) with H2O2 as a co‐oxidant exhibited the strongest DNA‐cleaving activity.  相似文献   

12.
Ultrafast electron transfer in the dye sensitized solar cell (DSSC) has made it possible to use iron(II) polypyridyl complexes as photosensitizers [J. Am. Chem. Soc. 120 (1998) 843]. Although ruthenium(II) polypyridyl complexes comprise an extensively studied and widely utilized photochemical system, comparatively little is known about the photoproperties of their iron analogues. The syntheses and solution properties of the complexes [FeII(L)2(CN)2] and [FeIIL3] for a series of L, where L is a 2,2′-bipyridine derivative, are presented here. We compare the solvatochromism of [FeII(4,4′-dicarboxylic acid-2,2′-bipyridine)2(CN)2] to [FeII(4,4′-dimethyl-2,2′-bipyridine)2(CN)2] and discuss general trends in the electrochemistry and absorption properties within the series. The solvatochromism of these complexes is discussed in terms of their use in a dye sensitized TiO2 solar cell.  相似文献   

13.
A new tri-cyanometalate building block for heterometallic complexes, [PPh4]2[FeII(Tpms)(CN)3] (2) (PPh4 = tetraphenylphosphonium; Tpms = tris(pyrazolyl) methanesulfonate), has been prepared. Using it as a building block, a one-dimensional chain compound, {[FeII(Tpms)(CN)3][MnII(H2O)2( DMF)2]} · DMF (3), has been synthesized and structurally characterized. The magnetic properties of 3 correspond to a ferromagnetic chain with weak long-range superexchanged magnetic interaction between the high-spin manganese(II) ions.  相似文献   

14.
The octanuclear cyano-bridged cluster [(Tp)8Fe4Ni4(CN)12] · H2O · 24CH3CN (1) (Tp = hydrotris(1-pyrazolyl)borate) showing magnetic properties of single-molecule magnet has been synthesized by reaction of [fac-Fe(Tp)(CN)3] with {(Tp)Ni(NO3)} species formed from an equimolar reaction mixture of Ni(NO3)2 · 6H2O and KTp in MeCN. The X-ray analysis of 1 shows molecular cube structure in which FeIII and NiII ions reside in alternate corners. The average intramolecular Fe?Ni distance is 5.124 Å. Out-of-phase ac susceptibility and reduce magnetization measurements show that 1 is a single molecule magnet with ground spin state S = 6 and spin reversal energy barrier U = 14 K. Magnetic hysteresis loops were also observed by applying fast sweeping field.  相似文献   

15.
Two new heterometallic complexes, [Cu(en)(H2O)]2[Fe(CN)6]·4H2O (1) and [Cu(en)2][KFe(CN)6] (2), have been isolated from the reactions of CuCl2 and en with K3[Fe(CN)6] in different molar ratios. Both complexes have been characterized by X-ray analyses, IR spectra and elemental analyses. Complex 1 is a cyanide bridged bimetallic assembly, its crystal structure consists of a two-dimensional polymeric sheet with two different rings, one a four-membered square ring and another a 12-membered hexagonal ring. The Fe(II) ion of 1 has two terminal, two linear bridging and two 1,1 en-on bridging cyanide groups. In the crystal structure of 2, the neighboring [Fe(CN)6]3− units are bridged by the K+ and the [K[Fe(CN)6]]2− units forming a three-dimensional network structure. The [Cu(en)2]2+ units fill in the holes of the network acting as counter cations and charge compensations. Variable temperature magnetic susceptibility studies of 1 indicate that the complex exhibits ferromagnetic interaction between the Cu(II) ions.  相似文献   

16.
《Inorganica chimica acta》1988,151(2):149-152
The reactions of RuIIOEP(L)2 and RuIITPP(L)2 with carbon monoxide, where OEP and TPP are the dianions of octaethylporphyrin and tetraphenylporphyrin, respectively, are reported for various ligands (L=dimethyl formamide, acetonitrile, aniline and substituted benzonitriles). The first-order rate constants for the loss of XC6H4CN from RuII OEP(XC6H4CN)2 increase with increasing electron-withdrawing ability of X. The best Hammett σ/ϱ correlation is obtained when both σ+ and σvalues are employed. It is concluded that sigma donation from ligand-to-metal is the major mode of bonding in ruthenium-porphyrin-benzonitrile complexes.  相似文献   

17.
18.
Substitution reaction of fac-[FeII(CN)2(CO)3I] with triphenylphosphine (PPh3) produced mono phosphine substituted complex cis-cis-[FeII(CN)2(CO)2(PPh3)I]. Crystal structure of the product showed that carbonyl positioned trans- to iodide was replaced by PPh3. The substitution reaction was monitored by quantitative infrared spectroscopic method, and the rate law for the substitution reaction was determined to be rate = k[[FeII(CN)2(CO)2(PPh3)I]][PPh3]. Transition state enthalpy and entropy changes were obtained from Eyring equation k = (kBT/h)exp(−ΔH/RT + ΔS/R) with ΔH = 119(4) kJ mol−1 and ΔS = 102(10) J mol−1 K−1. Positive transition state entropy change suggests that the substitution reaction went through a dissociative pathway.  相似文献   

19.
Metal-oxygen bonding complexes (M = MgII, MnII, NiII, MoVI, WVI, PdII, SbIII, BiIII, FeIII, TiIV, KI, BaII, ZrIV and HfIV) with a hinokitiol (Hhino; 2-hydroxy-4-isopropylcyclohepta-2,4,6-trienone or β-thujaplicin) ligand, which has two unequivalent oxygen donor atoms, were synthesized and characterized by elemental analysis, TG/DTA, FT-IR and solution (1H and 13C) NMR spectroscopy. Single-crystal X-ray structure analysis revealed various molecular structures for the complexes, which were classified into several families of family, i.e. type A [MII(hino)2(L)]2 (M = MgII, MnII, NiII; L = EtOH or MeOH), with a dimeric structure consisting of one bridging hino anion, one chelating hino anion and one alcohol or water molecule, type B, with the octahedral, cis-dioxo, bis-chelate complexes cis-[MVIO2(hino)2] (M = MoVI, WVI), type C, with square planar complex [MII(hino)2] (M = PdII), type D, with tris-chelate, 7-coordinate complexes with one inert electron pair [MIII(hino)3] (M = SbIII, BiIII), type D′, with the bis-chelate, pseudo-6-coordinate complexes with one inert electron pair [MIII(hino)2X] (M = SbIII, X = Br), type E, with tris-chelate, 6-coordinate complexes with Δ and Λ isomers [MIII(hino)3] (M = FeIII), type E′ of bis-chelate, 6-coordinate complex [MIV(hino)2X2] (M = TiIV, X = Cl), type F, with water-soluble alkali metal salts [MI(hino)] (M = KI), and type H, with tetrakis-chelate, 8-coordinate complexes [MIV(hino)4](M = ZrIV, HfIV). These structural features were compared with those of metal complexes with a related ligand, tropolone (Htrop). The antimicrobial activities of these complexes, evaluated in terms of minimum inhibitory concentration (MIC; μg mL−1) in two systems, were compared to elucidate the relationship between structure and antimicrobial activity.  相似文献   

20.
《Inorganica chimica acta》1988,149(1):139-145
The stoichiometry and kinetics of the reaction between [Cu(dien)(OH)]+ and [Fe(CN)6]3− in aqueous alkaline medium are described. The rate equation − (d[Fe(III)]/dt = {k1[OH]2[[Cu(dien)(OH)]+] + k2[OH] × [[Cu(dien)(OH)]+]2}([Fe(III)]/[Fe(II)]) (Fe(III) = [Fe(CN)6]3−; Fe(II) = [Fe(CN)6]4−, the 4:4:1 OH/Fe(III)/[Cu(dien)(OH)]+ stoichiometric ratio and the nature of the ultimate products identified in the reaction solution suggest the fast formation of a doubly deprotonated Cu(III)-diamido complex which slowly undergoes an internal redox process where the ligand is oxidised to the Schiff base H2NCH2CH2NCHCHNH.The [[Cu(dien)(OH)]+]2 term in the rate equation is explained with the formation of a transient μ-hydroxo mixed-valence Cu dimer. A two-electron internal reduction of the Cu(III) complex yielding a Cu(I) intermediate is suggested to account for the presence of monovalent copper in a precipitate which forms at relatively high reactant concentrations and in the absence of dioxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号