首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Covalent and strong coordination binding to DNA of a large number of antitumour drugs and other compounds leads to interstrand cross-link formation. To investigate cross-link influence on double helix stability, two methods are developed for the calculation of melting curves. The first method is based on Poland's approach. It requires computer time proportional to u-N, where u is the average distance (in base pairs) between neighboring crosslinks, and N is the number of base pairs in the DNA chain. The method is more suitable when u is not large, and small loops formed by interstrand cross-links in melted regions strongly affect DNA melting. The computer time for the second method, based on the Fixman-Freire approach, does not depend on the number of cross-links and is proportional to I N (I is the number of exponential functions used for a decomposition of the loop entropy factor). It is more appropriate when N and u are large, and therefore particular values of the entropy factors of small loops do not influence DNA melting behavior.  相似文献   

2.
3.
4.
In this article, we investigate the principal structural features of the DNA double helix and their effects on its elastic mechanical properties. We develop, in the pursuit of this purpose, a helical continuum model consisting of a soft helical core and two stiff ribbons wrapping around it. The proposed model can reproduce the negative twist-stretch coupling of the helix successfully as well as its global stretching, bending, and torsional rigidities measured experimentally. Our parametric study of the model using the finite element method further reveals that the stiffness of phosphate backbones is a crucial factor for the counterintuitive overwinding behavior of the duplex and its extraordinarily high torsional rigidity, the major-minor grooves augment the twist-stretch coupling, and the change of the helicity might be responsible for the transition from a negative to a positive twist-stretching coupling when a tensile force is applied to the duplex.  相似文献   

5.
DNA‐based chiral selectors are constructed to discriminate ofloxacin enantiomers through metal‐ion anchoring on a special DNA double helix that contains successive GC pairs. The effects of metal ions involving Mg2+, Ni2+, Cu2+, Ag+, and Pt2+ were studied on the regulation of DNA chiral discrimination towards ofloxacin enantiomers. It is shown that DNA‐Cu(II) complexes exhibit the highest enantioselectivities at the [Cu2+]/base ratio of 0.1. The enantiomeric excess can reach 59% in R‐enantiomer after being adsorbed by the RET‐Cu(II) complex. Stereoselective recognition of ofloxacin enantiomers on the double helix is tunable via external stimulus, providing a programmable desorption process to regenerate DNA. This DNA‐based chiral selector exhibits excellent reusability without apparent loss of enantioselectivity after three cycles of adsorption and desorption. Chirality 26:249–254, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

6.
Abstract

A theoretical method is developed for calculation of melting curves of covalent complexes of DNA with antitumor drugs. The method takes into account all the types of chemical modifications of the double helix caused by platinum compounds and DNA alkylating agents: 1) monofunctional adducts bound to one nucleotide; 2) intrastrand cross-links which appear due to bidentate binding of a drug molecule to two nucleotides that are included into the same DNA strand; 3) interstrand cross-links caused by bidentate binding of a molecule to two nucleotides of different strands. The developed calculation method takes into account the following double helix alterations at sites of chemical modifications: 1) a change in stability of chemically modified base pairs and neighboring ones, that is caused by all the types of chemical modifications; 2) a change in the energy of boundaries between helical and melted regions at sites of chemical modification (local alteration of the factor of cooperativity of DNA melting), that is caused by all the types of chemical modifications, too; 3) a change in the loop entropy factor of melted regions that include interstrand cross-links; 4) the prohibition of divergence of DNA strands in completely melted DNA molecules, which is caused by interstrand cross-links only. General equations are derived, and three calculation methods are proposed to calculate DNA melting curves and the parameters that characterize the helix-coil transition.  相似文献   

7.
Abstract

A simple osmometer with nuclear filters (polymer films with pores of a preset diameter) were used to measure the osmotic pressure of Col El plasmid DNA solutions in the concentration range of 1–4 mg/ml DNA. Linear and open circular DNA forms proved to have the same osmotic pressure within the experimental accuracy. The results of the measurements were used for calculating the second virial coefficient A 2 of the solution of DNA segments and the effective chain diameter d eff in the ionic strength range of 10?2-0.1 M, As the ionic strength is lowered from 0.1 to 10?2 M the effective diameter of DNA increases from 80 to 220 A. The results are in rather good agreement with theory and with other experimental data.  相似文献   

8.
DNA双螺旋模型的建立——基因的物质本性   总被引:2,自引:1,他引:2  
高翼之 《遗传》2002,24(6):691-694
1953年,沃森和克里克阐明了他们关于DNA双螺旋结构的假说。沃森-克里克模型标志着分子生物学的诞生。沃森和克里克为遗传学乃至整个生命科学作出了非凡贡献。 The Double Helix Model of DNA Structure——The Physical Nature of the Gene GAO Yi-zhi Southeast University,School of Medicine,Nanjing 210009,China Abstract:In 1953,Watson and Crick set forth their hypothesis for the double-helical nature of DNA.The Watson-Crick model had an immediate effect on the emerging discipline of molecular biology.It was a remarkable feat and highly significant in the history of genetics and biology. Key words:The Watson-Crick model;history of genetics  相似文献   

9.
Abstract

Addition of Na2CO3 to almost salt-free DNA solution (5·10?5M EDTA, pH=5.7, Tm=26.5 °C) elevates both pH and the DNA melting temperature (Tm) if Na2CO3 concentration is less than 0.004M. For 0.004M Na2CO3, Tm=58 °C is maximal and pH=10.56. Further increase in concentration gives rise to a monotonous decrease in Tm to 37 °C for 1M N2CO3 (pH=10.57). Increase in pH is also not monotonous. The highest pH=10.87 is reached at 0.04M Na2CO3 (Tm=48.3 °C). To reveal the cause of this DNA destabilization, which happens in a narrow pH interval (10.56÷10.87) and a wide Na2CO3 concentration interval (0.004÷1M), a procedure has been developed for determining the separate influences on Tm of Na+, pH, and anions formed by Na2CO3 (HCO3 ? and CO3 2-). Comparison of influence of anions formed by Na2CO3 on DNA stability with Cl? (anion inert to DNA stability), ClO4 ? (strong DNA destabilizing “chaotropic” anion) and OH? has been carried out. It has been shown that only Na+ and pH influence Tm in Na2CO3 solution at concentrations lower than 0.001M. However, the Tm decrease with concentration for [Na2CO3]≥0.004M is only partly caused by high pH≈10.7. Na2CO3 anions also exert a strong destabilizing influence at these concentrations. For 0.1M Na2CO3 (pH=10.84, [Na+]=0.2M, Tm=42.7 °C), the anion destabilizing effect is higher 20 °C. For NaClO4 (ClO4 ? is a strong “chaotropic” anion), an equal anion effect occurs at much higher concentrations ~3M. This means that Na2CO3 gives rise to a much stronger anion effect than other salts. The effect is pH dependent. It decreases fivefold at neutral pH after addition of HCl to 0.1M Na2CO3 as well as after addition of NaOH for pH>11.2.  相似文献   

10.
李载平 《生命的化学》2004,24(4):363-363
炎热的7月底,传来了英国科学家、分子生物学的先驱Francis Crick去世的不幸?肖息,这位以DNA双螺旋模型的揭示,荣获1962年诺贝尔生理学或医学奖的科学家,在与疾病斗争了几年之后,于7月28日在美国圣地亚哥一家医院离开了我们,终结了他光辉的一生,但是他对科学的贡献,作为人类科学  相似文献   

11.
Abstract

Melting behavior and stability of double helix of octadeoxyribonucleotides, (dA)8·(dT)8, have been studied by a UV measurement and a calculation of nearest-neighbor model. The helix of (dA)8·(dT)8 exhibited the thermodynamic parameters similar to those of B-form DNA.  相似文献   

12.
错位双链核糖核酸的热原反应   总被引:1,自引:1,他引:0  
由于错位dsRNA的毒副作用得到降低,因此是一类很有潜力的抗病毒、抗肿瘤物质。研究中利用家兔实验评价了PolyI:C和PolyI:C12U引起的热原反应。在10mgml、1mgml、005mgml剂量水平PolyI:C12U均未产生发热和其他毒副作用,而PolyI:C实验组均有发热现象,甚至有家兔死亡。  相似文献   

13.
Abstract

Complexes formed between Actinomycin D (ActD) and the tetranucleotides d(AGCT)2 and d(CGCG)2 were studied in detail by one and two-dimensional 1H and 31P NMR. The 31P two dimensional chemical exchange experiment, at room temperature on saturated complexes (1:1), showed unambiguously that the asymmetrical phenoxazone ring binds to the unique GC site under the two possible orientations in the d(AGCT)2 tetranucleotide but adopts a single orientation in the d(CGCG)2 tetranucleotide. For the d(CGCG)2: Act D saturated complex, complete assignments of all protons and phosphorus signals of the two-nucleotide strands, as well as of the two cyclic pentapeptide chains has allowed us to study in details the conformational features of the complex from NOE and coupling constants analysis. The tetranucleotide remains in a right-handed duplex, but the sugar puckers are modified for residues at the intercalation site. A uniform C2′ endo pucker is observed for residues on the strand facing the quinoid side of the phenoxazone ring while a C2′ endo-C3′ endo equilibrium about 60% of C2′ endo is proposed for the two residues on the strand facing the benzenoid side of the phenoxazone ring. In contrast to previous studies on ActD-DNA interactions, we have been able to measure the 3J phosphorus-proton coupling constants at the intercalation site but also adjacent to it, showing that 31P chemical shifts are not simply related to the backbone conformation. Molecular mechanics calculations, using empirical distances deduced from NOE effects as restrained distances during minimizations, led to a model differing mainly from those previously published by orientation of the N methyl groups of both N-Methyl-Valines.  相似文献   

14.
Abstract

We have calculated the variance of equilibrium distribution of a circular wormlike polymer chain over the writhing number, ?(Wr)2?, as a function of the number of Kuhn statistical segments, n, For large n these data splice well with our earlier results obtained for a circular freely jointed polymer chain. Assuming that ?(ΔLk)2? = ?(ΔTw)2? + ?(Wr)2? we have compared our results with experimental data on the chain length dependence of the ?(ΔLk) 2? value recently obtained by Horowitz and Wang for small DNA rings. This comparison has shown an excellent agreement between theory and experiment and yielded a reliable estimate of the torsional and bending rigidity parameters. Namely, the torsional rigidity constant is C = 3.0·10?19 erg cm, and the bending rigidity as expressed in terms of the DNA persistence length is a = 500 A. The obtained value of C agrees well with earlier estimates by Shore and Baldwin as well as by Horowitz and Wang whereas the a value is in accord with the data of Hagerman. We have found the data of Shore and Baldwin on the chain length dependence of the ?(ΔLk) 2? value to be entirely inconsistent with our theoretical results.  相似文献   

15.
Abstract

New conjugates containing two parallel or antiparallel carboxamide minor groove binders (MGB) attached to the same terminal phosphate of one oligonucleotide strand were synthesized. The conjugates interact with their target DNA stronger than the individual components. Effect of conjugated MGB on DNA duplex and triplex stability and their sequence specificity was demonstrated on the short oligonucleotide duplexes and on the triplex formed by model 16-mer oligonucleotide with HIV polypurine tract.  相似文献   

16.
Biological organisms exist over a broad temperature range of −15°C to +120°C, where many molecular processes involving DNA depend on the nanoscale properties of the double helix. Here, we present results of extensive molecular dynamics simulations of DNA oligomers at different temperatures. We show that internal basepair conformations are strongly temperature-dependent, particularly in the stretch and opening degrees of freedom whose harmonic fluctuations can be considered the initial steps of the DNA melting pathway. The basepair step elasticity contains a weaker, but detectable, entropic contribution in the roll, tilt, and rise degrees of freedom. To extend the validity of our results to the temperature interval beyond the standard melting transition relevant to extremophiles, we estimate the effects of superhelical stress on the stability of the basepair steps, as computed from the Benham model. We predict that although the average twist decreases with temperature in vitro, the stabilizing external torque in vivo results in an increase of ∼1°/bp (or a superhelical density of Δσ ?  + 0.03) in the interval 0–100°C. In the final step, we show that the experimentally observed apparent bending persistence length of torsionally unconstrained DNA can be calculated from a hybrid model that accounts for the softening of the double helix and the presence of transient denaturation bubbles. Although the latter dominate the behavior close to the melting transition, the inclusion of helix softening is important around standard physiological temperatures.  相似文献   

17.
Biological organisms exist over a broad temperature range of −15°C to +120°C, where many molecular processes involving DNA depend on the nanoscale properties of the double helix. Here, we present results of extensive molecular dynamics simulations of DNA oligomers at different temperatures. We show that internal basepair conformations are strongly temperature-dependent, particularly in the stretch and opening degrees of freedom whose harmonic fluctuations can be considered the initial steps of the DNA melting pathway. The basepair step elasticity contains a weaker, but detectable, entropic contribution in the roll, tilt, and rise degrees of freedom. To extend the validity of our results to the temperature interval beyond the standard melting transition relevant to extremophiles, we estimate the effects of superhelical stress on the stability of the basepair steps, as computed from the Benham model. We predict that although the average twist decreases with temperature in vitro, the stabilizing external torque in vivo results in an increase of ∼1°/bp (or a superhelical density of Δσ?+0.03Δσ?+0.03) in the interval 0–100°C. In the final step, we show that the experimentally observed apparent bending persistence length of torsionally unconstrained DNA can be calculated from a hybrid model that accounts for the softening of the double helix and the presence of transient denaturation bubbles. Although the latter dominate the behavior close to the melting transition, the inclusion of helix softening is important around standard physiological temperatures.  相似文献   

18.
Abstract

It is now very well recognized that the DNA double helix is conformationally pluralistic and that this flexibility is derived from internal motions due to backbone torsions. But what is less apparent is that such internal motions can occur in a correlated fashion and express themselves in a wide variety of structural motifs and phenomena. For example, flexibility inherent in the DNA molecule can lead to a family of Z-DNA, LZ1 and LZ2 being the two extremes and correlated internal motion can cause LZ1?LZ2 transition. More interestingly, such motions manifest themselves as breathing modes on the DNA lattice resulting in the sequence specific intercalation sites. Following a detailed stereochemical analyses we observed that the intercalation site for ethidium is located at the dCpdG sequence of the intercalated LZ1 helix (LZ1*) while that for actinomycin D is located at the dGpdC sequence of the intercalated LZ2 helix (LZ2*). From the stereochemistry of the drug binding we make experimentally testable predictions which are in fact supported by a few recent experimental studies. These studies also show that a left-handed intercalated B-DNA model is a viable intermediate in the Z to B transition which can hold the drug with binding energy comparable to that of the intercalated right-handed B-DNA.  相似文献   

19.
Melting and premelting phenomenon in DNA by laser Raman scattering.   总被引:14,自引:0,他引:14  
Raman spectra of DNA from calf thymus DNA have been taken over a wide range of temperatures (25°–95°) in both D2O and H2O. A study of the temperature dependence of the Raman spectra shows that the temperature profiles of the intensities and frequencies of the various bands fall into four different categories: (1) base bands that show a reversible increase in intensity prior to the melting region, i.e., a definite premelting phenomenon; (2) base bands that show little or no temperature dependence; (3) deoxyribose-phosphate backbone vibrations that show no temperature dependence up to the melting region, at which point large decreases in intensity occur; and (4) slow frequency changes in certain in-plane vibrations of guanine and adenine due to deuteration of the C-8 hydrogen of these purines in D2O. Certain Raman bands arising from each of the four bases, adenine, thymine, guanine, and cytosine have been found to undergo a gradual increase in intensity prior to the melting region at which point large, abrupt increases in intensity occur. The carbonyl stretching band of thymine, involved in the interbase hydrogen bonding actually undergoes both a gradual shift to a lower frequency as well as an increase in intensity. These changes provide evidence that some change in the geometry of the bases relative to each other begins to occur around 50°C, well below the melting region of 70°–85°C. From the spectra taken at various temperatures, the DNA appears to remain in the B conformation until the melting point is reached, at which time the DNA progresses into a disordered random-coil form. No A-form conformation is found either in the premelting or the melting region.  相似文献   

20.
Abstract

A trans-diamminedichloroplatinum(II) (trans-DDP) intrastrand adduct within the sequence d(TCTG*TG*TC)·d(GACACAGA) (where G* represents a platinated guanine) is modeled on the basis of qualitative experimental data concerning global unwinding and curvature as well as information on base pairing. Modeling is performed using the internal coordinate JUMNA program, specific to nucleic acids, and modified to include the possibility of covalently bound ligands. Calibration of the energy functions representing the Pt-N7 bond with guanine is described. The platinum atom and the platinum-nitrogen bonds are parameterized for use in the Hückel Del Re method to calculate monopoles at each atom. These monopoles are consistent with the Flex force field included in Jumna. By developing an appropriate minimization protocol we are able to generate stable, distorted three-dimensional structures compatible with the experimental data and including an unusually high global unwinding. No a priori geometric assumptions are made in generating these structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号