首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Wang G  Vasquez KM 《Mutation research》2006,598(1-2):103-119
Repetitive DNA sequences are abundant in eukaryotic genomes, and many of these sequences have the potential to adopt non-B DNA conformations. Genes harboring non-B DNA structure-forming sequences increase the risk of genetic instability and thus are associated with human diseases. In this review, we discuss putative mechanisms responsible for genetic instability events occurring at these non-B DNA structures, with a focus on hairpins, left-handed Z-DNA, and intramolecular triplexes or H-DNA. Slippage and misalignment are the most common events leading to DNA structure-induced mutagenesis. However, a number of other mechanisms of genetic instability have been proposed based on the finding that these structures not only induce expansions and deletions, but can also induce DNA strand breaks and rearrangements. The available data implicate a variety of proteins, such as mismatch repair proteins, nucleotide excision repair proteins, topoisomerases, and structure specific-nucleases in the processing of these mutagenic DNA structures. The potential mechanisms of genetic instability induced by these structures and their contribution to human diseases are discussed.  相似文献   

2.
3.
The Fanconi anemia (FA) pathway proteins are thought to be involved in the repair of irregular DNA structures including those encountered by the moving replication fork. However, the nature of the DNA structures that recruit and activate the FA proteins is not known. Because FA proteins function within an extended network of proteins, some of which are still unknown, we recently established cell-free assays in Xenopus laevis egg extracts to deconstruct the FA pathway in a fully replication-competent context. Here we show that the central FA pathway protein, xFANCD2, is monoubiquitinated (xFANCD2-L) rapidly in the presence of linear and branched double-stranded DNA (dsDNA) structures but not single-stranded or Y-shaped DNA. xFANCD2-L associates with dsDNA structures in an FA core complex-dependent manner but independently of xATRIP, the regulatory subunit of xATR. Formation of xFANCD2-L is also triggered in response to circular dsDNA, suggesting that dsDNA ends are not required to trigger monoubiquitination of FANCD2. The induction of xFANCD2-L in response to circular dsDNA is replication and checkpoint independent. Our results provide new evidence that the FA pathway discriminates among DNA structures and demonstrate that triggering the FA pathway can be uncoupled from DNA replication and ATRIP-dependent activation.  相似文献   

4.
Precision genetic engineering based on stable chromosomal insertion of exogenous DNA in the genomes of large mammals is immensely important for the development of improved biomedical models, pharmaceutical research and an accelerated breeding progress. Precision genetic engineering requires (i) a known locus of genomic integration, (ii) a defined status of foreign DNA, (iii) that transgene expression is unaffected by neighbouring chromosomal sequences, (iv) endogenous genes are not mutated and (v) no unwanted DNA sequences are present. Recently, advanced molecular techniques exploiting exogenous enzymes have opened the possibilities for more sophisticated genetic engineering. Here, we critically review current developments of enzyme-catalysed approaches for targeted transgenesis in large mammals.  相似文献   

5.
The cytidine deaminase AID and elongator-complex proteins contribute to the extensive removal of DNA methylation in mammalian primordial germ cells and in the paternal pronucleus of the zygote.  相似文献   

6.
Xiao Y  Zhang HL  Bai LY  Wang XM  Li WG  Yang LG 《遗传》2011,33(4):298-306
DNA甲基化是一种相对稳定且可遗传的表观遗传标记,在植物和动物细胞中均发现有DNA主动去甲基化现象,其机制在植物中已基本得到阐释,但在哺乳动物中尚未鉴定出一种有效的DNA去甲基化酶,并且DNA主动去甲基化途径也存在争议。文章综合分析了近期的文献资料,阐述了哺乳动物中发生DNA主动去甲基化的时空特异性,并从细胞和组织特异性角度介绍DNA主动去甲基化的可能通路和机制,即5-甲基胞嘧啶的氧化作用、5-甲基胞嘧啶脱氨基以及DNA修复等,旨在为破译表观遗传重编程过程提供理论依据。  相似文献   

7.
Owl pellets as a source of DNA for genetic studies of small mammals   总被引:1,自引:0,他引:1  
Owl pellets contain a good skeletal record of the small mammals consumed, and correspond to the undigested portions of prey which are regurgitated. These pellets are easy to find at the roosting site of owls. As it has been demonstrated that amplifiable DNA can be isolated from ancient bone remains, the possibility of using owl pellets as a source of DNA for small mammal genetics studies via the polymerase chain reaction has been investigated. The main uncertainties when isolating DNA from such a material are firstly the possibility that the extracted DNA would be too degraded during the digestion in the stomach of the owl, and secondly that extensive cross-contaminations could occur among the different prey consumed. The results obtained clearly demonstrate that cross-contamination does not occur, and that mitochondrial and nuclear DNA can be amplified using skulls of small mammals found in owl pellets as a source of DNA. The relative efficiency of two methods of DNA extraction is estimated and discussed. Thus, owl pellets represent a non-invasive sampling technique which provides a valuable source of DNA for studying population genetics of small mammals.  相似文献   

8.
9.
Transposable elements controlling genetic instabilities in mammals   总被引:2,自引:0,他引:2  
It is proposed that the instabilities in gene action of some alleles at certain loci in the mouse (e.g., a, c, H-2 Mi, p, pe, T, Va, W), which do not seem to conform to traditional hypotheses of gene action, are better interpretable in the light of modern studies of transposable DNA elements (insertion sequences and transposons of prokaryotic organisms; controlling elements of maize; transposable controlling elements of Drosophila). Some phenotypic evidence in the mouse in support of this hypothesis is presented for the a, Mi, p, and W loci, which affect pigmentation.  相似文献   

10.
Determination of mitochondrial genetic diversity in mammals   总被引:3,自引:0,他引:3       下载免费PDF全文
Mitochondrial DNA (mtDNA) is one of the most popular population genetic markers. Its relevance as an indicator of population size and history has recently been questioned by several large-scale studies in animals reporting evidence for recurrent adaptive evolution, at least in invertebrates. Here we focus on mammals, a more restricted taxonomic group for which the issue of mtDNA near neutrality is crucial. By analyzing the distribution of mtDNA diversity across species and relating it to allozyme diversity, life-history traits, and taxonomy, we show that (i) mtDNA in mammals does not reject the nearly neutral model; (ii) mtDNA diversity, however, is unrelated to any of the 14 life-history and ecological variables that we analyzed, including body mass, geographic range, and The World Conservation Union (IUCN) categorization; (iii) mtDNA diversity is highly variable between mammalian orders and families; (iv) this taxonomic effect is most likely explained by variations of mutation rate between lineages. These results are indicative of a strong stochasticity of effective population size in mammalian species. They suggest that, even in the absence of selection, mtDNA genetic diversity is essentially unpredictable, knowing species biology, and probably uncorrelated to species abundance.  相似文献   

11.
12.
DNA methylation and demethylation in mammals   总被引:1,自引:0,他引:1  
Cell type-specific DNA methylation patterns are established during mammalian development and maintained in adult somatic cells. Understanding how these patterns of 5-methylcytosine are established and maintained requires the elucidation of mechanisms for both DNA methylation and demethylation. The enzymes involved in the de novo methylation of DNA and the maintenance of the resulting methylation patterns have been fairly well characterized. However, important remaining challenges are to understand how DNA methylation systems function in vivo and in the context of chromatin. In addition, the enzymes and mechanisms for demethylation remain to be elucidated. There is still no consensus as to how active enzymatic demethylation is achieved in mammalian cells, but recent studies implicate base excision repair for genome-wide DNA demethylation in germ cells and early embryos.  相似文献   

13.
Telomere length is controlled by a homeostatic mechanism that involves telomerase, telomere-associated proteins, and conventional replication machinery. Specifically, the coordinated actions of the lagging strand synthesis and telomerase have been argued. Although DNA polymerase alpha, an enzyme important for the lagging strand synthesis, has been indicated to function in telomere metabolism in yeasts and ciliates, it has not been characterized in higher eukaryotes. Here, we investigated the impact of compromised polymerase alpha activity on telomeres, using tsFT20 mouse mutant cells harboring a temperature-sensitive polymerase alpha mutant allele. When polymerase alpha was temperature-inducibly inactivated, we observed sequential events that included an initial extension of the G-tail followed by a marked increase in the overall telomere length occurring in telomerase-independent and -dependent manners, respectively. These alterations of telomeric DNA were accompanied by alterations of telomeric chromatin structures as revealed by quantitative chromatin immunoprecipitation and immunofluorescence analyses of TRF1 and POT1. Unexpectedly, polymerase alpha inhibition resulted in a significantly high incidence of Robertsonian chromosome fusions without noticeable increases in other types of chromosomal aberrations. These results indicate that although DNA polymerase alpha is essential for genome-wide DNA replication, hypomorphic activity leads to a rather specific spectrum of chromosomal abnormality.  相似文献   

14.
15.
There is a striking link between increasing age and the incidence of cancer in humans. One of the hallmarks of cancer, genomic instability, has been observed in all types of organisms. In the yeast Saccharomyces cerevisiae, it was recently discovered that during the replicative lifespan, aging cells switch to a state of high genomic instability that persists until they die. In considering these and other recent results, we suggest that accumulation of oxidatively damaged protein in aging cells results in the loss of function of gene products critical for maintaining genome integrity. Determining the identity of these proteins and how they become damaged represents a new challenge for understanding the relationship between age and genetic instability.  相似文献   

16.
Long DNA palindromes pose a threat to genome stability. This instability is primarily mediated by slippage on the lagging strand of the replication fork between short directly repeated sequences close to the ends of the palindrome. The role of the palindrome is likely to be the juxtaposition of the directly repeated sequences by intrastrand base-pairing. This intra-strand base-pairing, if present on both strands, results in a cruciform structure. In bacteria, cruciform structures have proved difficult to detect in vivo, suggesting that if they form, they are either not replicated or are destroyed. SbcCD, a recently discovered exonuclease of Escherichia coli, is responsible for preventing the replication of long palindromes. These observations lead to the proposal that cells may have evolved a post-replicative mechanism for the elimination and/or repair of large DNA secondary structures.  相似文献   

17.
Bavoux C  Hoffmann JS  Cazaux C 《Biochimie》2005,87(7):637-646
A major tolerance mechanism that functions to replicate damaged genomic DNA across lesions that have escaped elimination by repair mechanism is translesion DNA synthesis (TLS). DNA polymerase kappa (Pol kappa), a specialised low-fidelity DNA polymerase which is able to perform DNA synthesis across several damaged bases, is one of the enzymes involved in the process. The mutagenic nature of Pol kappa implies that its expression must be tightly regulated to prevent the formation of excessive genetic disorders along undamaged parts of the genome. Indeed, Pol kappa overexpression, which is notably observed in lung cancer, results not only in increased spontaneous mutagenesis, but also in pleiotropic alterations such as DNA breaks, genetic exchanges and aneuploidy. This review will discuss both aspects of DNA polymerase kappa, which can be considered as a genomic supervisor participating in genome maintenance and when misregulated as a genetic instability enhancer as well.  相似文献   

18.
19.
Genetic factors may play an important role in species extinction but their actual effect remains poorly understood, particularly because of a strong and potentially masking effect expected from ecological traits. We investigated the role of genetics in mammal extinction taking both ecological and genetic factors into account. As a proxy for the role of genetics we used the ratio of the rates of nonsynonymous (amino acid changing) to synonymous (leaving the amino acid unchanged) nucleotide substitutions, Ka / Ks. Because most nonsynonymous substitutions are likely to be slightly deleterious and thus selected against, this ratio is a measure of the inefficiency of selection: if large (but less than 1), it implies a low efficiency of selection against nonsynonymous mutations. As a result, nonsynonymous mutations may accumulate and thus contribute to extinction. As a proxy for the role of ecology we used body mass W, with which most extinction‐related ecological traits strongly correlate. As a measure of extinction risk we used species’ affiliation with the five levels of extinction threat according to the IUCN Red List of Threatened Species. We calculated Ka / Ks for mitochondrial protein‐coding genes of 211 mammalian species, each of which was characterized by body mass and the level of threat. Using logistic regression analysis, we then constructed a set of logistic regression models of extinction risk on ln(Ka / Ks) and lnW. We found that Ka / Ks and body mass are responsible for a 38% and a 62% increase in extinction risk, respectively. Given that the standard error of these values is 13%, the contribution of genetic factors to extinction risk in mammals is estimated to be one‐quarter to one‐half of the total of ecological and genetic effects. We conclude that the effect of genetics on extinction is significant, though it is almost certainly smaller than the effect of ecological traits. Synthesis Mutation provides the material for evolution. However, most mutations that play a role in evolution are slightly deleterious and thus may contribute to extinction. We assess the role of mitochondrial DNA mutations in mammalian extinction risk and find it to be one‐quarter to one‐half of the total of mutation and body mass effects, where body mass represents an integral measure of extinction‐related ecological traits. Genetic factors may be all the more important, because ecological traits associated with large body mass would both promote and protect from extinction, while mutation accumulation caused by low effective population size seems to have no counterbalance.  相似文献   

20.
The significance of non-coding DNA is a longstanding riddle in the study of molecular evolution. Using a comparative genomics approach, Dermitzakis and colleagues have recently shown that at least some non-coding sequence, frequently ignored as meaningless noise, might bear the signature of natural selection. If functional, it could mark a turning point in the way we think about the evolution of the genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号