首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the binding geometry of Co-meso-tetrakis (N-methyl pyridinium-4-yl)porphyrin, Co-meso-tetrakis (N-n-butyl pyridinium-4-yl)porphyrin and their metal-free ligands to poly[d(A-T)(2)] and poly[d(G-C)(2)] by optical spectroscopic methods including absorption, circular and linear dichroism spectroscopy, and fluorescence energy transfer technique. Signs of an induced CD spectrum in the Soret band depend only on the nature of the DNA sequence; all porphyrins exhibit negative CD when bound to poly[d(G-C)(2)] and positive when bound to poly[d(A-T)(2)]. Close analysis of the linear dichroism result reveals that all porphyrins exhibit outside binding when complexed with poly[d(A-T)(2)], regardless of the existence of a central metal and side chain. However, in the case of poly[d(G-C)(2)], we observed intercalative binding mode for two nonmetalloporphyrins and an outside binding mode for metalloporphyrins. The nature of the outside binding modes of the porphyrins, when complexed with poly[d(A-T)(2)] and poly[d(G-C)(2)], are quite different. We also demonstrate that an energy transfer from the excited nucleo-bases to porphyrins can occur for metalloporphyrins.  相似文献   

2.
The binding of polyamines, including spermidine ( 1 ) and spermine ( 2 ), to poly[d(G-C) · d(G-C) ] was probed using spectroscopic studies of anthracene-9-carbonyl-N1-spermine ( 3 ); data from normal absorption, linear dichroism (LD), and circular dichroism (CD) are reported. Ligand LD and CD for transitions located in the DNA region of the spectrum were used. The data show that 3 binds to DNA in a manner characteristic of both its amine and polycyclic aromatic parts. With poly [(dG-dC) · (dG-dC)], binding modes are occupied sequentially and different modes correspond to different structural perturbations of the DNA. The most stable binding mode for 3 with poly[d(G-C) · d(G-C)] has a site size of 6 ± 1 bases, and an equilibrium binding constant of (2.2 ± 1.1) × 107 M?1 with the anthracene moiety intercalated. It dominates the spectra from mixing ratios of approximately 133:1 until 6:1 DNA phosphate: 3 is reached. The analogous data for poly [d(A-T) · d(A-T)] between mixing ratios 36:1 and 7:1 indicates a site size of 8.3 ± 1.1 bases and an equilibrium binding constant of (6.6 ± 3.3) × 105 M?1. Thus, 3 binds preferentially to poly [d(G-C) · d(G-C)] at these concentrations. © 1994 John Wiley & Sons, Inc.  相似文献   

3.
Raman spectra of six synthetic polydeoxyribonucleotide duplexes with different base sequences have been examined in aqueous solutions with different salt or nucleotide concentrations. Detailed conformational differences have been indicated between B and Z forms of poly[d(G-C)] X poly[d(G-C)], between B forms of poly[d(G-C)] X poly[d(G-C)] and poly[d(G-m5C)] X poly[d(G-m5C)], between A and B forms of poly(dG) X poly(dC), between B and "CsF" forms of poly[d(A-T)] X poly[d(A-T)], between B forms of poly[d(A-U)] X poly[d(A-U)] and poly[d(A-T)] X poly[d(A-T)], and between low- and high-salt (CsF) forms of poly(dA) X poly(dT). The Raman spectrum of calf-thymus DNA in aqueous solution was also observed and was compared with the Raman spectra of its fibers in A, B, and C forms.  相似文献   

4.
We report the volumetric and other thermodynamic properties of ethidium bromide (EB), propidium iodide (PI) and daunomycin (DAU) intercalating with poly(dA).poly(dT), poly[d(A-T)].poly[d(A-T)], and poly[d(G-C)].poly[d(G-C)], respectively, as well as minor groove binder Hoechst 33258 binding with poly[d(A-T)].poly[d(A-T)]. The data were obtained using fluorescence titration and hydrostatic pressure measurements. Our thermodynamic data are combined with enthalpies from literature reports to analyze the thermodynamic characteristics of the different interactions. The differences are interpreted based on three processes related to hydration: I. burial of non-polar hydrophobic solvent accessible surface, II. burial of polar surface and formation of solute-solute H-bonds, and III. disruption of "structural" hydration. Sequence dependent conformational changes may also be important when comparing ligand binding to different DNA sequences. We conclude that a combination of different thermodynamic parameters, especially volume change, is essential in order to understand the role of hydration in the energetics of DNA-ligand interactions.  相似文献   

5.
6.
Lee S  Lee YA  Lee HM  Lee JY  Kim DH  Kim SK 《Biophysical journal》2002,83(1):371-381
By utilizing circular and linear dichroism, the binding mode of meso-tetrakis(n-N-methylpyridiniumyl)porphyrin (n = 2, 3, 4) to various DNAs was studied in this work. 2-N-(methylpyridiniumyl)porphyrin(o-TMPyP), in which rotation of the periphery pyridinium ring is prevented, exhibits similar spectral properties when bound to DNA, poly[d(G-C)(2)] and poly[d(A-T)(2)], suggesting a similar binding mode. Close analysis of the spectral properties led us to conclude that o-TMPyP sits in the major groove. However, both 3-N- and 4-N-(methylpyridiniumyl)porphyrin (m- and p-TMPyP), of which the periphery pyridinium ring is free to rotate, intercalate between the basepairs of DNA and poly[d(G-C)(2)]. In the presence of poly[d(A-T)(2)], m-TMPyP exhibits a typical bisignate excitonic CD spectrum in the Soret band, while p-TMPyP shows two positive CD bands. The excitonic CD spectrum of the m-TMPyP-poly[d(A-T)(2)] complex and the positive CD band of the o-TMPyP-poly[d(A-T)(2)] complex were not affected by the presence of the minor groove binding drug, 4',6-diamidino-2-phenylindole (DAPI), indicating that this porphyrin is bound in the major groove. In contrast, two positive CD bands of the p-TMPyP-poly[d(A-T)(2)] complex altered in the presence of DAPI. From the changes in CD spectrum and other spectral properties, a few possible binding modes for p-TMPyP to poly[d(A-T)(2)] are suggested.  相似文献   

7.
A chromatin bound endonuclease (Mr:107,000) has been extracted and partially purified from the siliceous sponge Geodia cydonium. Disc gel electrophoresis showed that only one enzyme was present in the partially purified preparation which was able to degrade DNA and poly(A). The enzyme liberates oligonucleotides on incubation with poly(A), which are further degraded to yield the 5'-mononucleotide, which has a pI of 6.5 and a pH optimum of 7.5-8.0. Cations are not required for enzymic activity and EDTA does not inhibit the enzyme. Only iodosobenzoic acid was found to completely inhibit the enzyme. The enzyme hydrolysed poly(A), poly(U), poly(C), DNA, poly[d(A-T)], poly[d(G-C)], but not poly (dA) or poly(G).  相似文献   

8.
We have tested 21 different basis sets of synthetic DNA circular dichroism spectra and have slected one for use in spectral analyses of natural DNAs. This “standard” set consists of spectra of eight polymers: poly[d(A-A-T)·d(A-T-T)], poly[d(A-G-G)·d(C-C-T)], poly[d(A-T)·d(A-T)], poly[d(G-C)·d(G-C)], poly[d(A-G)·d(C-T)], poly[d(A-C)·d(G-T)], poly[d(A-T-C)·d(G-A-T)], and poly[d(A-G-C)·d(G-C-T)]. This basis set, applied according to the first-neighbor polymer procedure of Gray and Tinoco, allows a more uniformly accurate spectral analysis of six natural complex DNAs and eight (A+T)-rich satellite DNAs for base composition and first-neighbor frequencies than was previously possible. We find that spectra of poly[d(A)·d(T)] and/or poly[d(A-C-T-)·d(A-G-T)] are not generally required for good analysis results but we show in this and the following paper that these spectra are needed for the most accurate analyses of some satellite DNAs.  相似文献   

9.
Jean Sturm 《Biopolymers》1982,21(6):1189-1206
A temperature-jump relaxation study of the interaction of tilorone with different polynucleotides and DNA has been performed. A single relaxation time, attributed to the intercalation step, has been observed in the case of poly[d(A-T)]·poly[d(A-T)], poly[d(A-C)]·poly[d(G-T)], poly[d(G-C)]·poly[d(G-C)], and poly(dG)·poly(dC). No intercalation into poly(dA)·poly(dT) occurs, and the interaction with poly(dG)·poly(dC) is different from what is observed with the other intercalating homopolymers. Refinement of the binding model is suggested from the analysis of the kinetic data. The relaxation curves obtained with DNA are well simulated based on a binding mechanism where DNA is considered a heterogeneous lattice and each type of site behaves as if it were located in the corresponding homopolymer. Poly(dA)·poly(dT) shows a unique behavior: studies of the effects of concentration and temperature indicate that tilorone acts as a probe of a process involving the polynucleotide alone. This process appears to be related to the dynamic structure of the nucleic acid and is detectable only when the bound dye is not intercalated.  相似文献   

10.
G H Shimer  A R Wolfe  T Meehan 《Biochemistry》1988,27(20):7960-7966
We have investigated the equilibrium binding of racemic 7r,8t,9t,10c-tetrahydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene to the double-stranded, synthetic polynucleotides poly[d(A-T)], poly[d(G-C)], and poly[d(G-m5C)] at low binding ratios. Difference absorption spectroscopy shows a 10-nm red shift for binding to poly[d(A-T)] and an 11-nm red shift for binding to either poly[d(G-C)] or poly[d(G-m5C)]. The value of delta epsilon for binding is approximately the same for all three hydrocarbon-polynucleotide complexes. Binding of this neutral polycyclic aromatic hydrocarbon derivative to these polynucleotides is dependent upon ionic strength and temperature. Analysis of complex formation employing polyelectrolyte theory shows a greater release of counterions associated with binding to poly[d(A-T)] than with the other two polynucleotides (0.5 and ca. 0.36, respectively). Thus, sequence-selective binding of this hydrocarbon in DNA would be expected to change depending on salt concentration. The temperature dependence of binding was studied at 100 mM Na+ where the equilibrium binding constants for poly[d(A-T)] and poly[d(G-m5C)] are roughly equivalent and 6-fold greater than the binding affinity for poly[d(G-C)]. The binding to poly[d(A-T)] and poly[d(G-C)] is characterized by a delta H omicron = -7.0 kcal/mol, and the large difference in affinity constants arises from differences in negative entropic contributions. Formation of hydrocarbon-poly[d(G-m5C)] complexes is accompanied by a delta H = -9.1 kcal/mol. However, the affinity for poly[d-(G-m5C)] is the same as that for poly[d(A-T)] due to the much more negative entropy associated with binding to poly[d(G-m5C)].  相似文献   

11.
The binding mode of norfloxacin, a quinolone antibacterial agent, in the synthetic polynucleotides poly[d(G-C)2], poly[d(I-C)2] and poly[d(A-T)2] was studied using polarized light spectroscopy, fluorescence spectroscopy and melting profiles. The absorption, circular and linear dichroism properties of norfloxacin are essentially the same for all the complexes, and the angle of electric transition dipole moment I and II of norfloxacin relative to the DNA helix axis is measured as 68-75 degrees for all complexes. These similarities indicate that the binding mode of norfloxacin is similar for all the polynucleotides. The decrease in the linear dichroism (LD) magnitude at 260 nm upon binding norfloxacin, which is strongest for the norfloxacin-poly[d(G-C)2] complex, and the identical melting temperature of poly[d(A-T)2] and poly[d(I-C)2] in the presence and absence of norfloxacin rule out the possibility of classic intercalation and minor groove binding. However, the characteristics of the fluorescence emission spectra of norfloxacin bound to poly[d(A-T)2] and to poly[d(I-C)2] are similar but are different to that of norfloxacin bound to poly[d(G-C)2]. As the amine group of the guanine base protrudes to the minor groove, this result strongly suggests that norfloxacin binds in the minor groove of B-form DNA in a nonclassic manner.  相似文献   

12.
Pressure-jump study of the kinetics of ethidium bromide binding to DNA   总被引:4,自引:0,他引:4  
Pressure-jump chemical relaxation has been used to investigate the kinetics of ethidium bromide binding to the synthetic double-stranded polymers poly[d(G-C)] and poly[d(A-T)] in 0.1 M NaCl, 10 mM tris(hydroxymethyl)aminomethane hydrochloride, and 1 mM ethylenediaminetetraacetic acid, pH 7.2, at 24 degrees C. The progress of the reaction was followed by monitoring the fluorescence of the intercalated ethidium at wavelengths greater than 610 nm upon excitation at 545 nm. The concentration of DNA was varied from 1 to 45 microM and the ethidium bromide concentration from 0.5 to 25 microM. The data for both polymers were consistent with a single-step bimolecular association of ethidium bromide with a DNA binding site. The necessity of a proper definition of the ethidium bromide binding site is discussed: it is shown that an account of the statistically excluded binding phenomenon must be included in any adequate representation of the kinetic data. For poly[d(A-T)], the bimolecular association rate constant is k1 = 17 X 10(6) M-1 s-1, and the dissociation rate constant is k-1 = 10 s-1; in the case of poly[d(G-C)], k1 = 13 X 10(6) M-1 s-1, and k-1 = 30 s-1. From the analysis of the kinetic amplitudes, the molar volume change, delta V0, of the intercalation was calculated. In the case of poly[d(A-T)], delta V0 = -15 mL/mol, and for poly[d(G-C)], delta V0 = -9 mL/mol; that is, for both polymers, intercalation is favored as the pressure is increased.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Sequence-dependent variation in the conformation of DNA   总被引:50,自引:0,他引:50  
The specificity of action of the enzyme DNAase I on double-stranded DNA polymers of defined sequence has been investigated. The results obtained with the alternating copolymers poly[d(A-T)] · poly[d(A-T)] and poly[d(G-C)] · poly[d(G-C)] support the suggestion of Klug et al. (1979) that regions of double-stranded DNA containing alternating purine-pyrimidine sequences may exist as structural variants of the classical B-form under physiological salt conditions. Digestion of defined oligomers containing alternating dG-dC sequences indicate that these too exist in some “alternating-B” structure in solution under similar conditions. The results obtained with the oligomers also provide a number of insights into the mode of action of DNAase I.In the case of the B-DNA dodecamer d(C-G-C-G-A-A-T-T-C-G-C-G), for which the crystal structure has been solved (Dickerson &; Drew, 1981), there is a very good correlation between the sites of rapid DNAase I cutting and positions of high local helical twist.  相似文献   

14.
Factors influencing the binding of tetracationic porphyrin derivatives to DNA have been comprehensively evaluated by equilibrium dialysis, stopped-flow kinetics, etc., for mesotetrakis (4-N-methylpyridiniumyl)porphyrin [TMpyP (4)]. Technical difficulties have previously precluded a comprehensive study of metalloporphyrins. Since electrostatic interactions with the DNA and metal derivatization of the porphyrins have important consequences, we have investigated in greater detail two isomers of TMpyP (4) (meso-tetrakis(3-N-methylpyridiniumyl)porphyrin, [TMpyP (3)] and meso-tetrakis(2-N-methylpyridiniumyl)porphyrin [TMpyP (2)]) in which the position of the charged centers has been varied. A comprehensive study of the Cu(II) derivatives, e.g., CuTMpyP (4), was possible since the difficulties encountered previously with Ni(II) compounds were not a problem with Cu(II) porphyrins [J. A. Strickland, L. G. Marzilli, M. K. Gay, and W. D. Wilson (1988) Biochemistry 27, 8870-8878]. At 25 degrees C, the apparent equilibrium constants [Kobs] decreased with increasing [Na+] for all porphyrins. The Kobs values were comparable for TMpyP (4) and TMpyP (3) binding to either polyd(G-C).polyd(G-C) [poly[d(G-C)2]] or poly[d(A-T)].poly[d(A-T)] [poly[d(A-T)2]]. For the copper(II) porphyrins, the Kobs values were about fivefold greater. The Kobs value for CuTMpyP (2) binding to poly[d(G-C)2] was too small to measure under typical salt conditions; however, Kobs for binding to poly[d(A-T)2] was about two orders of magnitude smaller than those found for CuTMpyP (4) or CuTMpyP (3). Application of the condensation theory for polyelectrolytes suggests about three charge interactions when CuTMpyP (4), CuTMpyP (3), and TMpyP (3) bind to poly[d(G-C)2] or poly[d(A-T)2], a result comparable to that reported for TMpyP (4). At 20 degrees C and 0.115 M [Na+], incorporation of copper decreased the rates of dissociation from poly[d(A-T)2] by a 100-fold compared to those reported for TMpyP (4) but had little effect on the rates of dissociation from poly[d(G-C)2]. Also, movement of the H3CN+ group from the fourth to the third position of the pyridinium ring enhanced the rates of dissociation from poly[d(A-T)2] but decreased the rates of dissociation from poly[d(G-C)2]. From polyelectrolyte theory, the [Na+] dependence of the dissociation rates from poly[d(G-C)2] is consistent with intercalative binding, while that for poly[d(A-T)2] is consistent with an outside binding model. For calf thymus [CT] DNA at 20 degrees C, a greater decrease in the AT than in the GC imino 1H-nmr signal was observed upon addition of CuTMpyP (2), suggesting selective outside binding to the AT regions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Poly[d(A-T).d(A-T)] and poly[d(G-C).d(G-C)], each dissolved in 0.1 M NaClO4, 5 mM cacodylic acid buffer, pH 6.8, experience inversion of their circular dichroism (CD) spectrum subsequent to the addition of Hg(ClO4)2. Let r identical to [Hg(ClO4)2]added/[DNA-P]. The spectrum of the right-handed form of poly[d(A-T).d(A-T)] turns into that of a seemingly left-handed structure at r greater than or equal to 0.05 while a similar transition is noted with poly[d(G-C).(G-C)] at r greater than or equal to 0.12. The spectral changes are highly cooperative in the long-wavelength region above 250 nm. At r = 1.0, the spectra of the two polymers are more or less mirror images of their CD at r = 0. While most CD bands experience red-shifts upon the addition of Hg(ClO4)2, there are some that are blue-shifted. The CD changes are totally reversible when Hg(II) is removed from the nucleic acids by the addition of a strong complexing agent such as NaCN. This demonstrates that mercury keeps all base pairs in register.  相似文献   

16.
The nature of binding of Ru(phen) 2+ (I), Ru(bipy) 2+ (II), Ru(terpy) 2+ (III) (phen = 1,10-phenanthroline, bipy 3 = 2,2'-bipyridyl, 3 terpy = 2,2'2," - 2 terpyridyl) to DNA, poly[d(G-C)] and poly[d(A-T)] has been compared by absorption, fluorescence, DNA melting and DNA unwinding techniques. I binds intercalatively to DNA in low ionic strength solutions. Topoisomerisation shows that it unwinds DNA by 22 degrees +/- 1 per residue and that it thermally stabilizes poly[d(A-T)] in a manner closely resembling ethidium. Poly[d(A-T)] induces greater spectral changes on I than poly[d(G-C)] and a preference for A-T rich regions is indicated. I binding is very sensitive to Mg2+ concentration. In contrast to I the binding of II and III appears to be mainly electrostatic in nature, and causes no unwinding. There is no evidence for the binding of the neutral Ru(phen)2 (CN)2 or Ru(bipy)2 (CN)2 complexes. DNA is cleaved, upon visible irradiation of aerated solutions, in the presence of either I or II.  相似文献   

17.
When meso-tetrakis(3-N-methylpyridiniumyl)porphyrin (m-TMPyP) formed a complex with poly[d(A-T)(2)], an intense bisignate excitonic CD in the Soret absorption region was observed. The excitonic CD of the m-TMPyP-poly[d(A-T)(2)] complex is unique in that no other combination of the related porphyrin, namely, meso-tetrakis(n-N-methylpyridiniumyl)porphyrin (where n = 2, 4), and polynucleotide including calf thymus DNA, poly[d(G-C)(2)], poly[d(I-C)(2)], and poly(dA).poly(dT), exhibits a comparable CD spectrum. From the [drug]/[DNA] ratio-dependence of the intensity and the shape of the CD spectrum, this porphyrin species is assigned to an extensively aggregated form. The extensively aggregated porphyrin disperses in 1 h after mixing to form moderately stacked porphyrin at a low mixing ratio. The magnitude of linear dichroism of the extensively aggregated porphyrin was small and the sign was negative in the Soret band, which indicated that the molecular plane of porphyrin in the complex is strongly tilted. On the other hand, the molecular plane of porphyrin is almost parallel to the DNA base plane (perpendicular to the DNA helix axis) in the moderately stacked form.  相似文献   

18.
Melting measurements of the mono-base-pair DNA polymers showed that the melting temperature Tm of the B-DNA homopolymer poly (dA ) · poly (dT) is higher than that of the copolymer poly [d(A-T)]. On the other hand, the Tmof the B-DNA homopolymer poly (dG) · poly (dC) is lower than that of the copolymer poly [d (G-C)]. From a structural point of view, the cross-strand base-stacking interaction in a DNA homopolymer is weaker than that in a DNA copolymer with the same base pair. One would then expect that all the DNA homopolymers are less stable than the copolymer with the same base pair. We find that the inversion of the melting order seen in the AT mono-base-pair DNA polymers is caused by the enhanced thermal stability of poly (dA) · poly (dT) from a well-defined spine of hydration attached to its minor groove. In this paper we employ the modified self-consistent phonon theory to calculate base-pair opening probabilities of four B-DNA polymers: poly(dA)-poly(dT), poly(dG) · poly(dC), poly[d(A-T)], and poly[d(G-C)] at temperatures from room temperature through the melting regions. Our calculations show that the spine of hydration can give the inverted melting order of the AT polymers as compared to the GC polymers in fair agreement with experimental measurements. Our calculated hydration spine disruption behavior in poly(dA) · poly(dT) at premelting temperatures is also in agreement with experimentally observed premelting transitions in poly (dA) · poly (dT). The work is in a sense a test of the validity of our models of nonbonded interactions and spine of hydration interactions. We find we have to develop the concept of a strained bond to fit observations in poly (dA) · poly(dT). The strained-bond concept also explains the otherwise anomalous stability of the hydration chain. © 1993 John Wiley & Sons, Inc.  相似文献   

19.
The complexes of Hoechst 33258 with poly[d(A-T)2], poly[d(I-C)2], poly[d(G-C)2], and poly[d(G-m5C)2] were studied using linear dichroism, CD, and fluorescence spectroscopies. The Hoechst-poly[d(I-C)2] complex, in which there is no guanine amino group protruding in the minor groove, exhibits spectroscopic properties that are very similar to those of the Hoechst-poly[d(A-T)2] complex. When bound to both of these polynucleotides, Hoechst exhibits an average orientation angle of near 45° relative to the DNA helix axis for the long-axis polarized low-energy transition, a relatively strong positive induced CD, and a strong increase in fluorescence intensity—leading us to conclude that this molecule also binds in the minor groove of poly[d(I-C)2]. By contrast, when bound to poly[d(G-C)2] and poly[d(G-m5C)2], Hoechst shows a distinctively different behavior. The strongly negative reduced linear dichroism in the ligand absorption region is consistent with a model in which part of the Hoechst chromophore is intercalculated between DNA bases. From the low drug:base ratio onset of excitonic effects in the CD and fluorescence emission spectra, it is inferred that another part of the Hoechst molecule may sit in the major groove of poly[d(G-C)2] and poly[d(G-m5C)2] and preferentially stacks into dimers, though this tendency is strongly reduced for the latter polynucleotide. Based on these results, the importance of the interactions of Hoechst with the exocyclic amino group of guanine and the methyl group of cytosine in determining the binding modes are discussed. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
We have investigated some properties related to interaction with DNA and recognition of AT-rich sequences of netropsin-oxazolopyridocarbazole (Net-OPC) (Mrani et al., 1990), which is a hybrid groove-binder-intercalator. The hybrid molecule Net-OPC binds to poly[d(A-T)] at two different sites with Kapp values close to 7 x 10(6) and 6 x 10(8) M-1 (100 mM NaCl, pH 7.0). Data obtained from melting experiments are in agreement with these values and indicate that Net-OPC displays a higher binding constant to poly[d(A-T)] than does netropsin. On the basis of viscometric and energy transfer data, the binding of Net-OPC to poly[d(A-T)] is suggested to involve both intercalation and external binding of the OPC chromophore. In contrast, on poly[d(G-C)], Net-OPC binds to a single type of site composed of two base pairs in which the OPC chromophore appears to be mainly intercalated. The binding constant of Net-OPC to poly[d(G-C)] was found to be about 350-fold lower than that of the high-affinity binding site in poly[d(A-T)]. As evidenced by footprinting data, Net-OPC selectively recognizes TTAA and CTT sequences and strongly protects the 10-bp AT-rich DNA region 3'-TTAAGAACTT-5' containing the EcoRI site. The binding of Net-OPC to this sequence results in a strong and selective inhibition of the activity of the restriction endonuclease EcoRI on the plasmid pBR322 as substrate. The extent of inhibition of the rate constant of the first strand break catalyzed by the enzyme is about 100-fold higher than the one observed in the presence of netropsin under similar experimental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号