首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work analyzes proteins which contain an immunoglobulin fold, focusing on their hydrophobic core structure. The “fuzzy oil drop” model was used to measure the regularity of hydrophobicity distribution in globular domains belonging to proteins which exhibit the above-mentioned fold. Light-chain IgG domains are found to frequently contain regular hydrophobic cores, unlike the corresponding heavy-chain domains. Enzymes and DNA binding proteins present in the data-set are found to exhibit poor accordance with the hydrophobic core model.  相似文献   

2.
A critical step in the folding pathway of globular proteins is the formation of a tightly packed hydrophobic core. Several mutational studies have addressed the question of whether tight packing interactions are present during the rate-limiting step of folding. In some of these investigations, substituted side chains have been assumed to form native-like interactions in the transition state when the folding rates of mutant proteins correlate with their native-state stabilities. Alternatively, it has been argued that side chains participate in nonspecific hydrophobic collapse when the folding rates of mutant proteins correlate with side-chain hydrophobicity. In a reanalysis of published data, we have found that folding rates often correlate similarly well, or poorly, with both native-state stability and side-chain hydrophobicity, and it is therefore not possible to select an appropriate transition state model based on these one-parameter correlations. We show that this ambiguity can be resolved using a two-parameter model in which side chain burial and the formation of all other native-like interactions can occur asynchronously. Notably, the model agrees well with experimental data, even for positions where the one-parameter correlations are poor. We find that many side chains experience a previously unrecognized type of transition state environment in which specific, native-like interactions are formed, but hydrophobic burial dominates. Implications of these results to the design and analysis of protein folding studies are discussed.  相似文献   

3.
J. Arunachalam  N. Gautham 《Proteins》2008,71(4):2012-2025
Globular proteins fold such that the hydrophobic groups are packed inside forming hydrophobic clusters, and the hydrophilic groups are present on the surface. In this article we analyze clusters of hydrophobic groups of atoms in 781 protein structures selected from the PDB. Our analysis showed that every structure consists of two types of clusters: at least one large cluster that forms the hydrophobic core and probably dictates the protein fold; and numerous smaller clusters, which might be involved in the stabilization of the fold. We also analyzed the preference of the hydrophobic groups in each of the amino acids toward forming hydrophobic clusters. We find that hydrophobic groups from the hydrophilic amino acids also contribute toward cluster formation. Proteins 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

4.
Hydrophobic interactions are believed to play an important role in protein folding and stability. Semi-empirical attempts to estimate these interactions are usually based on a model of solvation, whose contribution to the stability of proteins is assumed to be proportional to the surface area buried upon folding. Here we propose an extension of this idea by defining an environment free energy that characterizes the environment of each atom of the protein, including solvent, polar or nonpolar atoms of the same protein or of another molecule that interacts with the protein. In our model, the difference of this environment free energy between the folded state and the unfolded (extended) state of a protein is shown to be proportional to the area buried by nonpolar atoms upon folding. General properties of this environment free energy are derived from statistical studies on a database of 82 well-refined protein structures. This free energy is shown to be able to discriminate misfolded from correct structural models, to provide an estimate of the stabilization due to oligomerization, and to predict the stability of mutants in which hydrophobic residues have been substituted by site-directed mutagenesis, provided that no large structural modifications occur. © 1994 Wiley-Liss, Inc.  相似文献   

5.
6.
The T4 lysozyme mutant Ser 117-->Phe was isolated fortuitously and found to be more thermostable than wild-type by 1.1-1.4 kcal/mol. In the wild-type structure, the side chain of Ser 117 is in a sterically restricted region near the protein surface and forms a short hydrogen bond with Asn 132. The crystal structure of the S117F mutant shows that the introduced Phe side chain rotates by about 150 degrees about the C alpha-C beta bond relative to wild type and is buried in the hydrophobic core of the protein. Burial of Phe 117 is accommodated by rearrangements of the surrounding side chains of Leu 121, Leu 133, and Phe 153 and by main-chain shifts, which result in a minimal increase in packing density. The benzyl rings of Phe 117 and Phe 153 form a near-optimal edge-face interaction in the mutant structure. This aromatic-aromatic interaction, as well as increased hydrophobic stabilization and elimination of a close contact in the wild-type protein, apparently compensate for the loss of a hydrogen bond and the possible cost of structural rearrangements in the mutant. The structure illustrates the ability of a protein to accommodate a surprisingly large structural change in a manner that actually increases thermal stability. The mutant has activity about 10% that of wild-type, supportive of the prior hypothesis (Grütter, M.G. & Matthews, B.W., 1982, J. Mol. Biol. 154, 525-535) that the peptidoglycan substrate of T4 lysozyme makes extended contacts with the C-terminal domain in the vicinity of Ser 117.  相似文献   

7.
The ability to consistently distinguish real protein structures from computationally generated model decoys is not yet a solved problem. One route to distinguish real protein structures from decoys is to delineate the important physical features that specify a real protein. For example, it has long been appreciated that the hydrophobic cores of proteins contribute significantly to their stability. We used two sources to obtain datasets of decoys to compare with real protein structures: submissions to the biennial Critical Assessment of protein Structure Prediction competition, in which researchers attempt to predict the structure of a protein only knowing its amino acid sequence, and also decoys generated by 3DRobot, which have user‐specified global root‐mean‐squared deviations from experimentally determined structures. Our analysis revealed that both sets of decoys possess cores that do not recapitulate the key features that define real protein cores. In particular, the model structures appear more densely packed (because of energetically unfavorable atomic overlaps), contain too few residues in the core, and have improper distributions of hydrophobic residues throughout the structure. Based on these observations, we developed a feed‐forward neural network, which incorporates key physical features of protein cores, to predict how well a computational model recapitulates the real protein structure without knowledge of the structure of the target sequence. By identifying the important features of protein structure, our method is able to rank decoy structures with similar accuracy to that obtained by state‐of‐the‐art methods that incorporate many additional features. The small number of physical features makes our model interpretable, emphasizing the importance of protein packing and hydrophobicity in protein structure prediction.  相似文献   

8.
Thermostable villin headpiece protein (HP67) consists of the N‐terminal subdomain (residues 10–41) and the autonomously folding C‐terminal subdomain (residues 42–76) which pack against each other to form a structure with a unified hydrophobic core. The X‐ray structures of the isolated C‐terminal subdomain (HP36) and its counterpart in HP67 are very similar for the hydrophobic core residues. However, fine rearrangements of the free energy landscape are expected to occur because of the interactions between the two subdomains. We detect and characterize these changes by comparing the µs‐ms time scale dynamics of the methyl‐bearing side chains in isolated HP36 and in HP67. Specifically, we probe three hydrophobic side chains at the interface of the two subdomains (L42, V50, and L75) as well as at two residues far from the interface (L61 and L69). Solid‐state deuteron NMR techniques are combined with computational modeling for the detailed characterization of motional modes in terms of their kinetic and thermodynamic parameters. The effect of interdomain interactions on side chain dynamics is seen for all residues but L75. Thus, changes in dynamics because of subdomain interactions are not confined to the site of perturbation. One of the main results is a two‐ to threefold increase in the value of the activation energies for the rotameric mode of motions in HP67 compared with HP36. Detailed analysis of configurational entropies and heat capacities complement the kinetic view of the degree of the disorder in the folded state.  相似文献   

9.
信号肽疏水性的提高促进青霉素G酰化酶分泌   总被引:9,自引:0,他引:9  
设计和合成了一段具有连续10仆亮氨酸强疏水核心的信号肽(artificial signal peptide,ASP),由EcoRI-KpnI位点融合到青霉素G酰化酶(penicillin Gacylase,PAC)信号肽(wild typesignal peptide,WTSP)的-4Pro位点,分别构建了PAC表达质粒:pKKpac△SP,pKKpacWTSP,pKKpacASP,pETpac  相似文献   

10.
Torshin IY  Harrison RW 《Proteins》2001,43(4):353-364
Electrostatic interactions are important for protein folding. At low resolution, the electrostatic field of the whole molecule can be described in terms of charge center(s). To study electrostatic effects, the centers of positive and negative charge were calculated for 20 small proteins of known structure, for which hydrogen exchange cores had been determined experimentally. Two observations seem to be important. First, in all 20 proteins studied 30-100% of the residues forming hydrogen exchange core(s) were clustered around the charge centers. Moreover, in each protein more than half of the core sequences are located near the centers of charge. Second, the general architecture of all-alpha proteins from the set seems to be stabilized by interactions of residues surrounding the charge centers. In most of the alpha-beta proteins, either or both of the centers are located near a pair of consecutive strands, and this is even more characteristic for alpha/Beta and all-beta structures. Consecutive strands are very probable sites of early folding events. These two points lead to the conclusion that charge centers, defined solely from the structure of the folded protein may indicate the location of a protein's hydrogen exchange/folding core. In addition, almost all the proteins contain well-conserved continuous hydrophobic sequences of three or more residues located in the vicinity of the charge centers. These hydrophobic sequences may be primary nucleation sites for protein folding. The results suggest the following scheme for the order of events in folding: local hydrophobic nucleation, electrostatic collapse of the core, global hydrophobic collapse, and slow annealing to the native state. This analysis emphasizes the importance of treating electrostatics during protein-folding simulations.  相似文献   

11.
A hydrophobic folding unit cutting algorithm, originally developed for dissecting single-chain proteins, has been applied to a dataset of dissimilar two-chain protein-protein interfaces. Rather than consider each individual chain separately, the two-chain complex has been treated as a single chain. The two-chain parsing results presented in this work show hydrophobicity to be a critical attribute of two-state versus three-state protein-protein complexes. The hydrophobic folding units at the interfaces of two-state complexes suggest that the cooperative nature of the two-chain protein folding is the outcome of the hydrophobic effect, similar to its being the driving force in a single-chain folding. In analogy to the protein-folding process, the two-chain, two-state model complex may correspond to the formation of compact, hydrophobic nuclei. On the other hand, the three-state model complex involves binding of already folded monomers, similar to the association of the hydrophobic folding units within a single chain. The similarity between folding entities in protein cores and in two-state protein-protein interfaces, despite the absence of some chain connectivities in the latter, indicates that chain linkage does not necessarily affect the native conformation. This further substantiates the notion that tertiary, non-local interactions play a critical role in protein folding. These compact, hydrophobic, two-chain folding units, derived from structurally dissimilar protein-protein interfaces, provide a rich set of data useful in investigations of the role played by chain connectivity and by tertiary interactions in studies of binding and of folding. Since they are composed of non-contiguous pieces of protein backbones, they may also aid in defining folding nuclei.  相似文献   

12.
Silverman BD 《Proteins》2003,53(4):880-888
The helical hydrophobic moment is a measure of the amphiphilicity of a segment of protein secondary structure. Such measure yields information of potential relevance for issues relating to cell surface binding and secondary structure function. The present article describes a global analog of the helical hydrophobic moment. The global moment provides a concise measure of the degree and direction of the amphiphilicity or hydrophobic imbalance across the entire protein tertiary structure. Therefore, this measure is a succinct representation of the spatial organization of residue hydrophobicity for each protein. With this measure, a simple comparison of the hydrophobic imbalance or segregation of different protein structures can be made. For example, two structures having the same fold and close in root-mean-square deviation may exhibit very different overall hydrophobic organization. Such difference is classified simply by the global moment. Furthermore, the direction of the global moment may point to regions of functional interest. Certain formal issues in the development of such moment are described, and a number of applications to particular protein structures are discussed.  相似文献   

13.
This study explores the use of multiple sequence alignment (MSA) information and global measures of hydrophobic core formation for improving the Rosetta ab initio protein structure prediction method. The most effective use of the MSA information is achieved by carrying out independent folding simulations for a subset of the homologous sequences in the MSA and then identifying the free energy minima common to all folded sequences via simultaneous clustering of the independent folding runs. Global measures of hydrophobic core formation, using ellipsoidal rather than spherical representations of the hydrophobic core, are found to be useful in removing non-native conformations before cluster analysis. Through this combination of MSA information and global measures of protein core formation, we significantly increase the performance of Rosetta on a challenging test set. Proteins 2001;43:1-11.  相似文献   

14.
A method is described to objectively identify hydrophobic clusters in proteins of known structure. Clusters are found by examining a protein for compact groupings of side chains. Compact clusters contain seven or more residues, have an average of 65% hydrophobic residues, and usually occur in protein interiors. Although smaller clusters contain only side-chain moieties, larger clusters enclose significant portions of the peptide backbone in regular secondary structure. These clusters agree well with hydrophobic regions assigned by more intuitive methods and many larger clusters correlate with protein domains. These results are in striking contrast with the clustering algorithm of J. Heringa and P. Argos (1991, J Mol Biol 220:151-171). That method finds that clusters located on a protein's surface are not especially hydrophobic and average only 3-4 residues in size. Hydrophobic clusters can be correlated with experimental evidence on early folding intermediates. This correlation is optimized when clusters with less than nine hydrophobic residues are removed from the data set. This suggests that hydrophobic clusters are important in the folding process only if they have enough hydrophobic residues.  相似文献   

15.
The interaction which stabilizes the intermediate state of the protein folding and/or unfolding is important for understanding the structure formation mechanism of proteins. The partitioning of a hydrophobic fluorescence probe, pyrene, into the core of a ‘molten globule’ structure of bovine carbonic anhydrase B was measured, revealing a partition coefficient of about 104. The result leads to the conclusion that the compact structure of the molten-globule state is formed by the hydrophobic interaction, as detergent micelles are formed by the same interaction.  相似文献   

16.
Proteins in eukaryotes are composed of structural units, each encoded by discrete exons. The protein module is one such structural unit; it has been defined as the least extended or the most compact contiguous segment in a globular domain. To elucidate roles of modules in protein evolution and folding, we examined roles of hydrogen bonds and hydrophobic cores, as related to the stability of these modules. For this purpose we studied barnase, a bacterial Rnase from Bacillus amylolique-faciens. Barnase is decomposed into at least six modules, M1–M6; the module boundaries are identified at amino acid residues 24, 52, 73, 88, and 98. Hydrogen bonds are localized mainly within each of the modules, with only a few between them, thereby indicating that their locations are designed to primarily stabilize each individual module. To obtain support for this notion, an analysis was made of hypothetical modules defined as segments starting at a center of one module and ending at the center of the following one. We found that the hydrogen bonds did not localize in each hypothetical module and that many formed between the hypothetical modules. The native conformations of modules of barnase may be specified predominantly by interactions within the modules. © 1993 Wiley-Liss, Inc.  相似文献   

17.
18.
Experimentally, the human calcitonin hormone (hCT) can form highly stable amyloid protofibrils. Further, a peptide consisting of hCT residues 15-19, DFNKF, was shown to create highly ordered fibrils, similar to those formed by the entire hormone sequence. However, there are limited experimental data regarding the detailed 3D arrangement of either of these fibrils. We have modeled the DFNKF protofibril, using molecular dynamics simulations. We tested the stabilities of single sheet and of various multi sheet models. Remarkably, our most ordered and stable model consists of a parallel-stranded, single beta-sheet with a relatively insignificant hydrophobic core. We investigate the chemical and physical interactions responsible for the high structural organization of this single beta-sheet amyloid fibril. We observe that the most important chemical interactions contributing to the stability of the DFNKF organization are electrostatic, specifically between the Lys and the C terminus, between the Asp and N terminus, and a hydrogen bond network between the Asn side-chains of adjacent strands. Additionally, we observe hydrophobic and aromatic pi stacking interactions. We further simulated truncated filaments, FNKF and DFNK. Our tetra-peptide mutant simulations assume models similar to the penta-peptide. Experimentally, the FNKF does not create fibrils while DFNK does, albeit short and less ordered than DFNKF. In the simulations, the FNKF system was less stable than the DFNK and DFNKF. DFNK also lost many of its original interactions becoming less organized, however, many contacts were maintained. Thus, our results emphasize the role played by specific amino acid interactions. To further study specific interactions, we have mutated the penta-peptide, simulating DANKF, DFNKA and EFNKF. Here we describe the model, its relationship to experiment and its implications to amyloid organization.  相似文献   

19.
De novo design of the hydrophobic core of ubiquitin.   总被引:2,自引:7,他引:2       下载免费PDF全文
We have previously reported the development and evaluation of a computational program to assist in the design of hydrophobic cores of proteins. In an effort to investigate the role of core packing in protein structure, we have used this program, referred to as Repacking of Cores (ROC), to design several variants of the protein ubiquitin. Nine ubiquitin variants containing from three to eight hydrophobic core mutations were constructed, purified, and characterized in terms of their stability and their ability to adopt a uniquely folded native-like conformation. In general, designed ubiquitin variants are more stable than control variants in which the hydrophobic core was chosen randomly. However, in contrast to previous results with 434 cro, all designs are destabilized relative to the wild-type (WT) protein. This raises the possibility that beta-sheet structures have more stringent packing requirements than alpha-helical proteins. A more striking observation is that all variants, including random controls, adopt fairly well-defined conformations, regardless of their stability. This result supports conclusions from the cro studies that non-core residues contribute significantly to the conformational uniqueness of these proteins while core packing largely affects protein stability and has less impact on the nature or uniqueness of the fold. Concurrent with the above work, we used stability data on the nine ubiquitin variants to evaluate and improve the predictive ability of our core packing algorithm. Additional versions of the program were generated that differ in potential function parameters and sampling of side chain conformers. Reasonable correlations between experimental and predicted stabilities suggest the program will be useful in future studies to design variants with stabilities closer to that of the native protein. Taken together, the present study provides further clarification of the role of specific packing interactions in protein structure and stability, and demonstrates the benefit of using systematic computational methods to predict core packing arrangements for the design of proteins.  相似文献   

20.
We have used (15)N- and (2)H-NMR spin relaxation experiments to study the response of backbone and side-chain dynamics when a leucine or valine is substituted for a completely buried phenylalanine residue in the SH3 domain from the Fyn tyrosine kinase. Several residues show differences in the time scales and temperature dependences of internal motions when data for the three proteins are compared. Changes were also observed in the magnitude of dynamics, with the valine, and to a lesser extent leucine mutant, showing enhanced flexibility compared to the wild-type (WT) protein. The motions of many of the same amide and methyl groups are affected by both mutations, identifying a set of loci where dynamics are sensitive to interactions involving the targeted side chain. These results show that contacts within the hydrophobic core affect many aspects of internal mobility throughout the Fyn SH3 domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号