首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Positional correlation analysis for the complete genome of Saccharomyces cerevisiae is performed with the aim to reveal possible chromatin-related sequence features. A strong periodicity with the period 10.4 bases is detected in the distance histograms for the dinucleotides AA and TT, with the characteristic decay distance of approximately 50 base pairs. The oscillations are observed as well in the distributions of other dinucleotides. However, the respective amplitudes are small, consistent with secondary effects, due to dominant periodicity of AA and TT. The observations are in accord with earlier data on the chromatin sequence periodicities and nucleosome DNA sequence patterns. The autocorrelations of AA and TT dinucleotides in yeast include also a counter-phase component. A tentative DNA sequence pattern for the yeast nucleosomes is suggested and verified by comparison of its autocorrelation plots with the respective natural autocorrelations. The nucleosome mapping guided by the pattern is in accord with experimental data on the linker length distribution in yeast.  相似文献   

2.
Abstract

By measuring prevailing distances between YY, YR, RR, and RY dinucleotides in the large database of the nucleosome DNA fragments from C. elegans, the consensus sequence structure of the nucleosome DNA repeat of C. elegans was reconstructed: (YYYYYRRRRR)n. An actual period was estimated to be 10.4 bases. The pattern is fully consistent with the nucleosome DNA patterns of other eukaryotes, as established earlier, and, thus, the YYYYYRRRRR repeat can be considered as consensus nucleosome DNA sequence repeat across eukaryotic species. Similar distance analysis for [A, T] dinucleotides suggested the related pattern (TTTYTARAAA)n where the TT and AA dinucleotides display rather out of phase behavior, contrary to the “AA or TT” in-phase periodicity, considered in some publications. A weak 5-base periodicity in the distribution of TA dinucleotides was detected.  相似文献   

3.
By measuring prevailing distances between YY, YR, RR, and RY dinucleotides in the large database of the nucleosome DNA fragments from C. elegans, the consensus sequence structure of the nucleosome DNA repeat of C. elegans was reconstructed: (YYYYYRRRRR)n. An actual period was estimated to be 10.4 bases. The pattern is fully consistent with the nucleosome DNA patterns of other eukaryotes, as established earlier, and, thus, the YYYYYRRRRR repeat can be considered as consensus nucleosome DNA sequence repeat across eukaryotic species. Similar distance analysis for [A, T] dinucleotides suggested the related pattern (TTTYTARAAA)n where the TT and AA dinucleotides display rather out of phase behavior, contrary to the "AA or TT" in-phase periodicity, considered in some publications. A weak 5-base periodicity in the distribution of TA dinucleotides was detected.  相似文献   

4.
Abstract

Extensive DNA sequence analysis of three eukaryotes, S. cerevisiae, C. elegans, and D. melanogaster, reveals two different AA/TT periodical patterns associated with the nucleosome positioning. The first pattern is the counter-phase oscillation of AA and TT dinucleotides, which has been frequently considered as the nucleosome DNA pattern. This represents the sequence rule I for chromatin structure. The second pattern is the in-phase oscillation of the AA and TT dinucleotides with the same nucleosome DNA period, 10.4 bases. This pattern apparently corresponds to curved DNA, that also participates in the nucleosome formation, and represents the sequence rule II for chromatin. The positional correlations of AA and TT dinucleotides also indicate that the nucleosomes are separated by specific linker sizes (preferably 8, 18,…bases), dictated by the steric exclusion rules. Thus, the sequence positions of the neighboring nucleosomes are correlated, and this represents the sequence rule III.  相似文献   

5.
Positional distributions of various dinucleotides in experimentally derived human nucleosome DNA sequences are analyzed. Nucleosome positioning in this species is found to depend largely on GG and CC dinucleotides periodically distributed along the nucleosome DNA sequence, with the period of 10.4 bases. The GG and CC dinucleotides oscillate counterphase, i.e., their respective preferred positions are shifted about a half-period from one another, as it was observed earlier for AA and TT dinucleotides. Other purine-purine and pyrimidine-pyrimidine dinucleotides (RR and YY) display the same periodical and counterphase pattern. The dominance of oscillating GG and CC dinucleotides in human nucleosomes and the contribution of AG(CT), GA(TC), and AA(TT) suggest a general nucleosome DNA sequence pattern - counterphase oscillation of RR and YY dinucleotides. AA and TT dinucleotides, commonly accepted as major players, are only weak contributors in the case of human nucleosomes.  相似文献   

6.
Extensive DNA sequence analysis of three eukaryotes, S. cerevisiae, C. elegans, and D. melanogaster, reveals two different AA/TT periodical patterns associated with the nucleosome positioning. The first pattern is the counter-phase oscillation of AA and TT dinucleotides, which has been frequently considered as the nucleosome DNA pattern. This represents the sequence rule I for chromatin structure. The second pattern is the in-phase oscillation of the AA and TT dinucleotides with the same nucleosome DNA period, 10.4 bases. This pattern apparently corresponds to curved DNA, that also participates in the nucleosome formation, and represents the sequence rule II for chromatin. The positional correlations of AA and TT dinucleotides also indicate that the nucleosomes are separated by specific linker sizes (preferably 8, 18, ... bases), dictated by the steric exclusion rules. Thus, the sequence positions of the neighboring nucleosomes are correlated, and this represents the sequence rule III.  相似文献   

7.
For the computational sequence-directed mapping of the nucleosomes, the knowledge of the nucleosome positioning motifs – 10–11 base long sequences – and respective matrices of bendability, is not sufficient, since there is no justified way to fuse these motifs in one continuous nucleosome DNA sequence. Discovery of the strong nucleosome (SN) DNA sequences, with visible sequence periodicity allows derivation of the full-length nucleosome DNA bendability pattern as matrix or consensus sequence. The SN sequences of three species (A. thaliana, C. elegans, and H. sapiens) are aligned (512 sequences for each species), and long (115 dinucleotides) matrices of bendability derived for the species. The matrices have strong common property – alternation of runs of purine–purine (RR) and pyrimidine–pyrimidine (YY) dinucleotides, with average period 10.4 bases. On this basis the universal [R,Y] consensus of the nucleosome DNA sequence is derived, with exactly defined positions of respective penta- and hexamers RRRRR, RRRRRR, YYYYY, and YYYYYY.  相似文献   

8.
Liu H  Wu J  Xie J  Yang X  Lu Z  Sun X 《Biophysical journal》2008,94(12):4597-4604
By analyzing dinucleotide position-frequency data of yeast nucleosome-bound DNA sequences, dinucleotide periodicities of core DNA sequences were investigated. Within frequency domains, weakly bound dinucleotides (AA, AT, and the combinations AA-TT-TA and AA-TT-TA-AT) present doublet peaks in a periodicity range of 10-11 bp, and strongly bound dinucleotides present a single peak. A time-frequency analysis, based on wavelet transformation, indicated that weakly bound dinucleotides of core DNA sequences were spaced smaller (∼10.3 bp) at the two ends, with larger (∼11.1 bp) spacing in the middle section. The finding was supported by DNA curvature and was prevalent in all core DNA sequences. Therefore, three approaches were developed to predict nucleosome positions. After analyzing a 2200-bp DNA sequence, results indicated that the predictions were feasible; areas near protein-DNA binding sites resulted in periodicity profiles with irregular signals. The effects of five dinucleotide patterns were evaluated, indicating that the AA-TT pattern exhibited better performance. A chromosome-scale prediction demonstrated that periodicity profiles perform better than previously described, with up to 59% accuracy. Based on predictions, nucleosome distributions near the beginning and end of open reading frames were analyzed. Results indicated that the majority of open reading frames’ start and end sites were occupied by nucleosomes.  相似文献   

9.
Abstract

A nucleosome DNA sequence probe is designed that combines recently derived RR/YY counter-phase and AA/TT in-phase periodical patterns. A simple nucleosome mapping procedure is introduced for prediction of the nucleosome positions in the sequence of interest, to serve as a guide for experimental studies of the chromatin structure.  相似文献   

10.
It is generally accepted that the organization of eukaryotic DNA into chromatin is strongly governed by a code inherent in the genomic DNA sequence. This code, as well as other codes, is superposed on the triplets coding for amino acids. The history of the chromatin code started three decades ago with the discovery of the periodic appearance of certain dinucleotides, with AA/TT and RR/YY giving the strongest signals, all with a period of 10.4 bases. Every base-pair stack in the DNA duplex has specific deformation properties, thus favoring DNA bending in a specific direction. The appearance of the corresponding dinucleotide at the distance 10.4 xn bases will facilitate DNA bending in that direction, which corresponds to the minimum energy of DNA folding in the nucleosome. We have analyzed the periodic appearances of all 16 dinucleotides in the genomes of thirteen different eukaryotic organisms. Our data show that a large variety of dinucleotides (if not all) are, apparently, contributing to the nucleosome positioning code. The choice of the periodical dinucleotides differs considerably from one organism to another. Among other 10.4 base periodicities, a strong and very regular 10.4 base signal was observed for CG dinucleotides in the genome of the honey bee A. mellifera. Also, the dinucleotide CG appears as the only periodical component in the human genome. This observation seems especially relevant since CpG methylation is well known to modulate chromatin packing and regularity. Thus, the selection of the dinucleotides contributing to the chromatin code is species specific, and may differ from region to region, depending on the sequence context.  相似文献   

11.
Abstract

An original signal extraction procedure is applied to database of 146 base nucleosome core DNA sequences from C. elegans (S. M. Johnson et al. Genome Research 16, 1505–1516, 2006). The positional preferences of various dinucleotides within the 10.4 base nucleosome DNA repeat are calculated, resulting in derivation of the nucleosome DNA bendability matrix of 16x10 elements. A simplified one-line presentation of the matrix (“consensus” repeat) is…A(TTTCCGGAAA)T…. All 6 chromosomes of C. elegans conform to the bendability pattern. The strongest affinity to their respective positions is displayed by dinucleotides AT and CG, separated within the repeat by 5 bases. The derived pattern makes a basis for sequence-directed mapping of nucleosome positions in the genome of C. elegans. As the first complete matrix of bendability available the pattern may serve for iterative calculations of the species-specific matrices of bendability applicable to other genomic sequences.  相似文献   

12.
Multiple alignment of 118 nucleosomal DNA sequences by maximizing simultaneously match of AA dinucleotides and match of TT dinucleotides results in a pattern of the dinucleotide distributions which is characteristic of the nucleosomal DNA sequences. The AA dinucleotides are found to be distributed symmetrically relative to the TT dinucleotide distribution, around the middle point of the nucleosomal DNA sequence. The distances between major peaks of the distributions are multiples of about 10.4 bases. The peaks of the TT distribution are shifted by 6 bases downstream from the peaks of the AA distribution.  相似文献   

13.
Dinucleosome formation is the first step in the organization of the higher order chromatin structure. With the ultimate aim of elucidating the dinucleosome structure, we constructed a library of human dinucleosome DNA. The library consists of PCR-amplifiable DNA fragments obtained by treatment of nuclei of erythroid K562 cells with micrococcal nuclease followed by extraction of DNA and adaptor ligation to the blunt-ended DNA fragments. The library was then cloned using a plasmid vector and the sequences of the clones were determined. The dominating clones containing the Alu elements were removed. A total of 1002 clones, which comprised a dinucleosome database, contained 84 and 918 clones from the clones before and after removing Alu elements, respectively. Approximately 70% of the clones were between 300 and 400 bp in size and they were distributed to various locations of all chromosomes except the Y chromosome. The clones containing A(2)N(8)A(2)N(8)A(2) or T(2)N(8)T(2)N(8)T(2) sequences were classified into three types, Type I (N shape), Type II (V shape) and Type III (M shape) according to DNA curvature plots. The locations of experimentally determined curved DNA segments matched well with the calculated ones though the clones of Types I and III showed additional curved DNA segments as revealed by the curvature plots. The distributions of complementary dinucleotides in the nucleosome DNA, at the ends of the dinucleosome DNA clones, allowed us to predict the positions of the nucleosome dyad axis, and estimate the size of the nucleosome core DNA, 125nt. The distributions of AA and TT dinucleotides, as well as other RR and YY dinucleotides, showed a periodicity with an average period of 10.4 bases, close to the values observed before. Mapping of nucleosome positions in the dinucleosome database based on the observed periodicity revealed that the nucleosomes were separated by a linker of 7.5+ approximately 10 x n nt. This indicates that the nucleosome-nucleosome orientations are, typically, halfway between parallel and antiparallel. Also an important finding is that the distributions of AA/TT and other RR/YY dinucleotides, apparently, reflect both DNA curvature and DNA bendability, cooperatively contributing to the nucleosome formation.  相似文献   

14.
Wang JP  Widom J 《Nucleic acids research》2005,33(21):6743-6755
DNA sequences that are present in nucleosomes have a preferential approximately 10 bp periodicity of certain dinucleotide signals, but the overall sequence similarity of the nucleosomal DNA is weak, and traditional multiple sequence alignment tools fail to yield meaningful alignments. We develop a mixture model that characterizes the known dinucleotide periodicity probabilistically to improve the alignment of nucleosomal DNAs. We assume that a periodic dinucleotide signal of any type emits according to a probability distribution around a series of 'hot spots' that are equally spaced along nucleosomal DNA with 10 bp period, but with a 1 bp phase shift across the middle of the nucleosome. We model the three statistically most significant dinucleotide signals, AA/TT, GC and TA, simultaneously, while allowing phase shifts between the signals. The alignment is obtained by maximizing the likelihood of both Watson and Crick strands simultaneously. The resulting alignment of 177 chicken nucleosomal DNA sequences revealed that all 10 distinct dinucleotides are periodic, however, with only two distinct phases and varying intensity. By Fourier analysis, we show that our new alignment has enhanced periodicity and sequence identity compared with center alignment. The significance of the nucleosomal DNA sequence alignment is evaluated by comparing it with that obtained using the same model on non-nucleosomal sequences.  相似文献   

15.
Fire A  Alcazar R  Tan F 《Genetics》2006,173(3):1259-1273
We describe a surprising long-range periodicity that underlies a substantial fraction of C. elegans genomic sequence. Extended segments (up to several hundred nucleotides) of the C. elegans genome show a strong bias toward occurrence of AA/TT dinucleotides along one face of the helix while little or no such constraint is evident on the opposite helical face. Segments with this characteristic periodicity are highly overrepresented in intron sequences and are associated with a large fraction of genes with known germline expression in C. elegans. In addition to altering the path and flexibility of DNA in vitro, sequences of this character have been shown by others to constrain DNA::nucleosome interactions, potentially producing a structure that could resist the assembly of highly ordered (phased) nucleosome arrays that have been proposed as a precursor to heterochromatin. We propose a number of ways that the periodic occurrence of An/Tn clusters could reflect evolution and function of genes that express in the germ cell lineage of C. elegans.  相似文献   

16.
Abstract

The computational prediction of nucleosome positioning from DNA sequence now allows for in silico investigation of the molecular evolution of biophysical properties of the DNA molecule responsible for primary chromatin organization in the genome. To discern what signal components driving nucleosome positioning in the yeast genome are potentially targeted by natural selection, we compare the performance of various models predictive of nucleosome positioning within the context of a simple statistical test, the repositioned mutation test. We demonstrate that while nucleosome occupancy is driven largely by translational exclusion in response to AT content, there is also a strong signature of evolutionary conservation of regular patterns within nucleosomal DNA sequence related to the structural organization of the nucleosome core (e.g., 10-bp dinucleotide periodicity). We also use computer simulations to investigate hypothetical coding and regulatory constraints on the ability of sequence properties affecting nucleosome formation to adaptively evolve. Our results demonstrate that natural selection may act independently on different DNA sequence properties responsible for local chromatin organization. Furthermore, at least with respect to the deformation energy of the DNA molecule in the nucleosome, the presence of the genetic code has greatly restricted the ability of sequences to evolve the dynamic nucleosome organization typically observed in promoter regions.  相似文献   

17.
Evidence is provided that the nucleotide triplet con-sensus non-T(A/T)G (abbreviated to VWG) influences nucleosome positioning and nucleosome alignment into regular arrays. This triplet consensus has been recently found to exhibit a fairly strong 10 bp periodicity in human DNA, implicating it in anisotropic DNA bendability. It is demonstrated that the experimentally determined preferences for nucleosome positioning in native SV40 chromatin can, to a large extent, be pre-dicted simply by counting the occurrences of the period-10 VWG consensus. Nucleosomes tend to form in regions of the SV40 genome that contain high counts of period-10 VWG and/or avoid regions with low counts. In contrast, periodic occurrences of the dinucleotides AA/TT, implicated in the rotational positioning of DNA in nucleosomes, did not correlate with the preferred nucleosome locations in SV40 chromatin. Periodic occurrences of AA did correlate with preferred nucleosome locations in a region of SV40 DNA where VWG occurrences are low. Regular oscillations in period-10 VWG counts with a dinucleosome period were found in vertebrate DNA regions that aligned nucleosomes into regular arrays in vitro in the presence of linker histone. Escherichia coli and plasmid DNA, which fail to align nucleosomes in vitro, lacked these regular VWG oscillations.  相似文献   

18.

Background

Period 10 dinucleotides are structurally and functionally validated factors that influence the ability of DNA to form nucleosomes, histone core octamers. Robust identification of periodic signals in DNA sequences is therefore required to understand nucleosome organisation in genomes. While various techniques for identifying periodic components in genomic sequences have been proposed or adopted, the requirements for such techniques have not been considered in detail and confirmatory testing for a priori specified periods has not been developed.

Results

We compared the estimation accuracy and suitability for confirmatory testing of autocorrelation, discrete Fourier transform (DFT), integer period discrete Fourier transform (IPDFT) and a previously proposed Hybrid measure. A number of different statistical significance procedures were evaluated but a blockwise bootstrap proved superior. When applied to synthetic data whose period-10 signal had been eroded, or for which the signal was approximately period-10, the Hybrid technique exhibited superior properties during exploratory period estimation. In contrast, confirmatory testing using the blockwise bootstrap procedure identified IPDFT as having the greatest statistical power. These properties were validated on yeast sequences defined from a ChIP-chip study where the Hybrid metric confirmed the expected dominance of period-10 in nucleosome associated DNA but IPDFT identified more significant occurrences of period-10. Application to the whole genomes of yeast and mouse identified ~ 21% and ~ 19% respectively of these genomes as spanned by period-10 nucleosome positioning sequences (NPS).

Conclusions

For estimating the dominant period, we find the Hybrid period estimation method empirically to be the most effective for both eroded and approximate periodicity. The blockwise bootstrap was found to be effective as a significance measure, performing particularly well in the problem of period detection in the presence of eroded periodicity. The autocorrelation method was identified as poorly suited for use with the blockwise bootstrap. Application of our methods to the genomes of two model organisms revealed a striking proportion of the yeast and mouse genomes are spanned by NPS. Despite their markedly different sizes, roughly equivalent proportions (19-21%) of the genomes lie within period-10 spans of the NPS dinucleotides {AA, TT, TA}. The biological significance of these regions remains to be demonstrated. To facilitate this, the genomic coordinates are available as Additional files 1, 2, and 3 in a format suitable for visualisation as tracks on popular genome browsers.

Reviewers

This article was reviewed by Prof Tomas Radivoyevitch, Dr Vsevolod Makeev (nominated by Dr Mikhail Gelfand), and Dr Rob D Knight.  相似文献   

19.
20.
Several bioinformatics studies have identified an unexpected but remarkably prevalent ~10 bp periodicity of AA/TT dinucleotides (hyperperiodicity) in certain regions of the Caenorhabditis elegans genome. Although the relevant C.elegans DNA segments share certain sequence characteristics with bent DNAs from other sources (e.g. trypanosome mitochondria), the nematode sequences exhibit a much more extensive and defined hyperperiodicity. Given the presence of hyperperiodic structures in a number of critical C.elegans genes, the physical characteristics of hyperperiodic DNA are of considerable interest. In this work, we demonstrate that several hyperperiodic DNA segments from C.elegans exhibit structural anomalies using high-resolution atomic force microscopy (AFM) and gel electrophoresis. Our quantitative analysis of AFM images reveals that hyperperiodic DNA adopts a significantly smaller mean square end-to-end distance, hence a more compact coil structure, compared with non-periodic DNA of similar length. While molecules remain capable of adopting both bent and straight (rod-like) configurations, indicating that their flexibility is still retained, examination of the local curvatures along the DNA contour length reveals that the decreased mean square end-to-end distance can be attributed to the presence of long-scale intrinsic bending in hyperperiodic DNA. Such bending is not detected in non-periodic DNA. Similar studies of shorter, nucleosome-length DNAs that survived micrococcal nuclease digestion show that sequence hyperperiodicity in short segments can likewise induce strong intrinsic bending. It appears, therefore, that regions of the C.elegans genome display a significant correlation between DNA sequence and unusual mechanical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号