首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Individuals with germline mutations in the tumor suppressor gene phosphatase and tensin homolog (PTEN), irrespective of clinical presentation, are diagnosed with PTEN hamartoma tumor syndrome (PHTS). PHTS confers a high risk of breast, thyroid, and other cancers or autism spectrum disorder (ASD) with macrocephaly. It remains unclear why mutations in one gene can lead to seemingly disparate phenotypes. Thus, we sought to identify differences in ASD vs. cancer-associated germline PTEN missense mutations by investigating putative structural effects induced by each mutation. We utilized a theoretical computational approach combining in silico structural analysis and molecular dynamics (MD) to interrogate 17 selected mutations from our patient population: six mutations were observed in patients with ASD (only), six mutations in patients with PHTS-associated cancer (only), four mutations shared across both phenotypes, and one mutation with both ASD and cancer. We demonstrate structural stability changes where all six cancer-associated mutations showed a global decrease in structural stability and increased dynamics across the domain interface with a proclivity to unfold, mediating a closed (inactive) active site. In contrast, five of the six ASD-associated mutations showed localized destabilization that contribute to the partial opening of the active site. Our results lend insight into distinctive structural effects of germline PTEN mutations associated with PTEN-ASD vs. those associated with PTEN-cancer, potentially aiding in identification of the shared and separate molecular features that contribute to autism or cancer, thus, providing a deeper understanding of genotype–phenotype relationships for germline PTEN mutations.  相似文献   

2.
Toll/IL-1R (TIR) domain, that is, the cytoplasmic domain, in toll-like receptors (TLRs) from different species showed high sequence conservation in stretches spread across the surface as well as the core of the domain. To probe the structure–function significance of these residues, especially those coming from the core of TIR domains, we analyzed molecular dynamics trajectories of sequence similarity based models of human TIR domains. This study brought forth that N-terminal of the TIR domain simultaneously interacts with the flanking residues of the BB loop and central β-sheets. At the same time, residues of the central β-strands form favorable contacts with the DD loop and C-terminal, thus forming a two-way circuit between the N- and C-termini. In this work, the array of intradomain interactions is termed as communication network. Importantly, the “hubs” of this communication network were found to be conserved in all human TLRs. Earlier mutagenesis–function correlation work brought forth that certain mutations in the “core” of the TIR domain of TLR4 (e.g. in IFI767–769AAA and L815A) led to almost complete abrogation of signaling and reasoning for this dramatic loss-of-function has remained unclear, since these sites are not surface exposed. Using MD studies, we show here that this communication network gets disrupted in mutants of human TLR4 which were earlier reported to be functionally compromised. Extension of MD studies to heterodimer of TLR1/2 suggested that this evolutionarily conserved communication network senses the interactions formed upon dimerization and relays it to surfaces which are not involved in direct interdomain contacts.  相似文献   

3.
The solution conformation of [D -Pen2,D -Pen5] enkephalin (DPDPE), a highly potent δ-selective opioid agonist, was examined by means of NMR, molecular mechanics and molecular dynamics methods. The structural information in the solvent water was obtained employing one- and two-dimensional methods of 1H and 13C-NMR spectroscopy. Based on the distance geometry technique using the ROE data as input, 400 conformers were obtained and considered in the structure analysis. Alternatively, about 2000 conformers were stochastically generated and related to the NMR data after energy minimization. The structure analysis provides one conformer in agreement with all NMR data, which belongs to the lowest energy conformation group. This structure may serve as a reference conformer for DPDPE analogues synthesized with the aim of activity increase.  相似文献   

4.
    
The amyloid conversion is a massive detrimental modification affecting several proteins upon specific physical or chemical stimuli characterizing a plethora of diseases. In many cases, the amyloidogenic stimuli induce specific structural features to the protein conferring the propensity to misfold and form amyloid deposits. The investigation of mutants, structurally similar to their native isoform but inherently prone to amyloid conversion, may be a viable strategy to elucidate the structural features connected with amyloidogenesis. In this article, we present a computational protocol based on the combination of molecular dynamics (MD) and grid‐based approaches suited for the pairwise comparison of closely related protein structures. This method was applied on the cellular prion protein (PrPC) as a case study and, in particular, addressed to the quali/quantification of the structural features conferred by either E200K mutations and treatment with CaCl2, both able to induce the scrapie conversion of PrP. Several schemes of comparison were developed and applied to this case study, and made up suitable of application to other protein systems. At this purpose an in‐house python codes has been implemented that, together with the parallelization of the GRID force fields program, will spread the applicability of the proposed computational procedure. Proteins 2015; 83:1751–1765. © 2015 Wiley Periodicals, Inc.  相似文献   

5.
Probing the energy landscape of protein folding/unfolding transition states   总被引:2,自引:0,他引:2  
Previous molecular dynamics (MD) simulations of the thermal denaturation of chymotrypsin inhibitor 2 (CI2) have provided atomic-resolution models of the transition state ensemble that is well supported by experimental studies. Here, we use simulations to further investigate the energy landscape around the transition state region. Nine structures within approximately 35 ps and 3 A C(alpha) RMSD of the transition state ensemble identified in a previous 498 K thermal denaturation simulation were quenched under the quasi-native conditions of 335 K and neutral pH. All of the structures underwent hydrophobically driven collapse in response to the drop in temperature. Structures less denatured than the transition state became structurally more native-like, while structures that were more denatured than the transition state tended to show additional loss of native structure. The structures in the immediate region of the transition state fluctuated between becoming more and less native-like. All of the starting structures had the same native-like topology and were quite similar (within 3.5 A C(alpha) RMSD). That the structures all shared native-like topology, yet diverged into either more or less native-like structures depending on which side of the transition state they occupied on the unfolding trajectory, indicates that topology alone does not dictate protein folding. Instead, our results suggest that a detailed interplay of packing interactions and interactions with water determine whether a partially denatured protein will become more native-like under refolding conditions.  相似文献   

6.
7.
Amyotrophic lateral sclerosis 6 (ALS6) is an autosomal recessive disorder caused by heterozygous mutation in the Fused in Sarcoma (FUS) gene. ALS6 is a neurodegenerative disorder, which affects the upper and lower motor neurons in the brain and spinal cord, resulting in fatal paralysis. ALS6 is caused by the genetic mutation in the proline/tyrosine-nuclear localization signals of the Fused in sarcoma Protein (FUS). FUS gene also known as TLS (Translocated in liposarcoma), which encodes a protein called RNA-binding protein-Fus (FUS), has a molecular weight of 75?kDa. In this analysis, we applied computational approach to filter the most deleterious and neurodegenerative disease of ALS6-associated mutation on FUS protein. We found H517Q as most deleterious and disease associated using PolyPhen 2.0, I-Mutant 3.0, SIFT, SNPs&GO, PhD-SNP, Pmut, and Mutpred tools. Molecular dynamics simulation (MDS) approach was conducted to investigate conformational changes in the mutant protein structure with respect to its native conformation. MDS results showed the flexibility loss in mutant (H517Q) FUS protein. Due to mutation, FUS protein became more rigid in nature and might alter the structural and functional behavior of protein and play a major role in inducing ALS6. The results obtained from this investigation would help in the field of pharmacogenomics to develop a potent drug target against FUS-associated neurodegenerative diseases.  相似文献   

8.
Experimental studies (M. Mandal, B. Boese, J.E. Barrick, W.C. Winkler and R.R. Breaker, Riboswitches control fundamental biochemical pathways in bacillus subtilis and other bacteria, Cell 113 (2003), pp. 577–586) demonstrated that, besides recognising guanine with high specificity, guanine riboswitch could also bind guanine analogues, but the alteration of every functionalised position on the guanine heterocycle could cause a substantial loss of binding affinity. To investigate the nature of guanine riboswitch recognising metabolites, molecular docking and molecular dynamics simulation were carried out on diverse guanine analogues. The calculation results reveal that (1) most guanine analogues could bind to guanine riboswitch at the same binding pocket, with identical orientations and dissimilar binding energies, which is related to the positions of the functional groups; (2) the two tautomers of xanthine adopt different binding modes, and the enol-tautomer shows similar binding mode and affinity of hypoxanthine, which agrees well with the experimental results and (3) the riboswitch could form stable complexes with guanine analogues by hydrogen bonding contacts with U51 and C74. Particularly, U51 plays an important role in stabilising the complexes.  相似文献   

9.
A congeneric series of benzamidine-type ligands with a central proline moiety and a terminal cycloalkyl group—linked by a secondary amine, ether, or methylene bridge—was synthesized as trypsin inhibitors. This series of inhibitors was investigated by isothermal titration calorimetry, crystal structure analysis in two crystal forms, and molecular dynamics simulations. Even though all of these congeneric ligands exhibited essentially the same affinity for trypsin, their binding profiles at the structural, dynamic, and thermodynamic levels are very distinct. The ligands display a pronounced enthalpy/entropy compensation that results in a nearly unchanged free energy of binding, even though individual enthalpy and entropy terms change significantly across the series. Crystal structures revealed that the secondary amine-linked analogs scatter over two distinct conformational families of binding modes that occupy either the inside or of the outside the protein's S3/S4 specificity pocket. In contrast, the ether-linked and methylene-linked ligands preferentially occupy the hydrophobic specificity pocket. This also explains why the latter ligands could only be crystallized in the conformationally restricting closed crystal form whereas the derivative with the highest residual mobility in the series escaped our attempts to crystallize it in the closed form; instead, a well-resolved structure could only be achieved in the open form with the ligand in disordered orientation. These distinct binding modes are supported by molecular dynamics simulations and correlate with the shifting enthalpic/entropic signatures of ligand binding. The examples demonstrate that, at the molecular level, binding modes and thermodynamic binding signatures can be very different even for closely related ligands. However, deviating binding profiles provide the opportunity to optimally address a given target.  相似文献   

10.
Abstract

Several approaches to the treatment of solvent effects based on continuum models are reviewed and a new method based on occupied atomic volumes (occupancies) is proposed and tested. The new method describes protein-water interactions in terms of atomic solvation parameters, which represent the solvation free energy per unit of volume. These parameters were determined for six different atoms types, using experimental free energies of solvation. The method was implemented in the GROMOS and PRESTO molecular simulation program suites. Simulations with the solvation term require 20-50% more CPU time than the corresponding vacuum simulations and are approximately 20 times faster than explicit water simulations. The method and parameters were tested by carrying out 200 ps simulations of BPTI in water, in vacuo, and with the solvation term. The performance of the solvation term was assessed by comparing the structures and energies from the solvation simulations with the equivalent quantities derived from several BPTI crystal structures and from the explicit water and vacuum simulations. The model structures were evaluated in terms of exposed total surface, buried and exposed polar surfaces, secondary structure preservation, number of hydrogen bonds, energy contributions, and positional deviations from BPTI crystal structures. Vacuum simulations produced unrealistic structures with respect to all criteria applied. The structures resulting from the simulations with explicit water were closer to the 5PTI crystal structure, although part of the secondary structure dissolved. The simulations with the effective solvation term produce structures that are normal according to all evaluations and in most respects are remarkably similar to the 5PTI crystal structure despite considerable positional fluctuations during the simulations. The segments where the model and crystal structures differ are known to be flexible and the observed difference may be physically realistic. The effective solvation term based on occupancies is not only very efficient in terms of computer time but also results in meaningful structural properties for BPTI. It may therefore be generally useful in molecular dynamics of macromolecules.  相似文献   

11.
The major causative agent for Acquired Immune Deficiency Syndrome (AIDS) is Human Immunodeficiency Virus-1 (HIV-1). HIV-1 is a predominant subtype of HIV which counts on human cellular mechanism virtually in every aspect of its life cycle. Binding of viral envelope glycoprotein-gp120 with human cell surface CD4 receptor triggers the early infection stage of HIV-1. This study focuses on the interaction interface between these two proteins that play a crucial role for viral infectivity. The CD4–gp120 interaction interface has been studied through a comprehensive protein–protein interaction network (PPIN) analysis and highlighted as a useful step towards identifying potential therapeutic drug targets against HIV-1 infection. We prioritized gp41, Nef and Tat proteins of HIV-1 as valuable drug targets at early stage of viral infection. Lack of crystal structure has made it difficult to understand the biological implication of these proteins during disease progression. Here, computational protein modeling techniques and molecular dynamics simulations were performed to generate three-dimensional models of these targets. Besides, molecular docking was initiated to determine the desirability of these target proteins for already available HIV-1 specific drugs which indicates the usefulness of these protein structures to identify an effective drug combination therapy against AIDS.  相似文献   

12.
Protein kinases are critical drug targets against cancer. Since the discovery of Gleevec, a specific inhibitor of Abl kinase, the capability of this drug to distinguish between Abl and other tyrosine kinases, such as Src, has been intensely investigated but the origin of Gleevec’s selectivity to Abl against Src is less studied. Here, we performed molecular dynamics (MD) simulations, dynamical cross-correlation matrices (DCCM), dynamical network analysis, and binding free energy calculations to explore Gleevec’s selectivity based on the crystal structures of Abl, Src, and their common ancestors (ANC-AS) and the two constructed mutation systems (AS→Abl and AS→Src). MD simulations revealed that the conformation of the phosphate-binding loop (P-loop) was altered significantly in the AS→Abl system. DCCM results unraveled that mutations increased anticorrelated motions in the AS→Abl system. Community network analysis suggested that the P-loop established special contacts in the AS→Abl system that are devoid in the AS→Src system. The binding free energy calculations unveiled that the affinity of Gleevec to AS→Abl increased to near the Abl level, whereas its affinity to AS→Src decreased to near the Src level. Analysis of individual residue contributions showed that the differences were located mainly at the P-loop. This study is valuable for understanding the sensitivity of Gleevec to human tyrosine kinases.

Communicated by Ramaswamy H. Sarma  相似文献   


13.
The human prion protein binds Cu2+ ions in the octarepeat domain of the N-terminal tail up to full occupancy at pH 7.4. Recent experiments have shown that the HGGG octarepeat subdomain is responsible for holding the metal bound in a square-planar configuration. By using first principle ab initio molecular dynamics simulations of the Car–Parrinello type, the coordination of copper to the binding sites of the prion protein octarepeat region is investigated. Simulations are carried out for a number of structured binding sites. Results for the complexes Cu(HGGGW)(wat), Cu(HGGG), and [Cu(HGGG)]2 are presented. While the presence of a Trp residue and a water molecule does not seem to affect the nature of the copper coordination, high stability of the bond between copper and the amide nitrogen of deprotonated Gly residues is confirmed in all cases. For the more interesting [Cu(HGGG)]2 complex, a dynamically entangled arrangement of the two domains with exchange of amide nitrogen bonds between the two copper centers emerges, which is consistent with the short Cu–Cu distance observed in experiments at full copper occupancy.  相似文献   

14.
    
We propose a new approach for force field optimizations which aims at reproducing dynamics characteristics using biomolecular MD simulations, in addition to improved prediction of motionally averaged structural properties available from experiment. As the source of experimental data for dynamics fittings, we use 13C NMR spin‐lattice relaxation times T1 of backbone and sidechain carbons, which allow to determine correlation times of both overall molecular and intramolecular motions. For structural fittings, we use motionally averaged experimental values of NMR J couplings. The proline residue and its derivative 4‐hydroxyproline with relatively simple cyclic structure and sidechain dynamics were chosen for the assessment of the new approach in this work. Initially, grid search and simplexed MD simulations identified large number of parameter sets which fit equally well experimental J couplings. Using the Arrhenius‐type relationship between the force constant and the correlation time, the available MD data for a series of parameter sets were analyzed to predict the value of the force constant that best reproduces experimental timescale of the sidechain dynamics. Verification of the new force‐field (termed as AMBER99SB‐ILDNP) against NMR J couplings and correlation times showed consistent and significant improvements compared to the original force field in reproducing both structural and dynamics properties. The results suggest that matching experimental timescales of motions together with motionally averaged characteristics is the valid approach for force field parameter optimization. Such a comprehensive approach is not restricted to cyclic residues and can be extended to other amino acid residues, as well as to the backbone. Proteins 2014; 82:195–215. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
Two-nanosecond molecular dynamics simulations of the crystal lattice of an active complex of pT160-CDK2 kinase/cyclin A/ATP-Mg2+/substrate were performed. The simulations showed that the structures of the wild-type CDK2 complex and the mutant CDK2 complex involving the substitution G16S-CDK2 corresponding to the yeast substitution G20S-CDC28 differ noticeably and the differences between the structural conformations are most pronounced in the regions that play a key role in the kinase functioning. The results of the computer calculations were used to consider the structural elements that may affect the kinase activity, the regulatory phosphorylation, and the binding of protein kinase with cyclins and substrates.  相似文献   

16.
Cytochrome P450cam (P450CIA1) catalyzes the hydroxylation of camphor and several substrate analogues such as norcamphor and 1-methyl-norcamphor. Hydroxylation was found experimentally at the 3, 5, and 6 positions of norcamphor, but only at the 5 and 6 positions of 1-methyl-norcamphor. In the catalytic cycle, the hydroxylation of substrate is coupled to the consumption of NADH. For camphor, the degree of coupling is 100%, but for both norcamphor and 1-methyl-norcamphor, the efficiency is dramatically lowered to 12% and 50%, respectively. Based on an examination of the active site of P450cam, it appeared that mutating position 185 might dramatically alter the product specificity and coupling of hydroxylation of norcamphor by P450cam. Analysis of molecular dynamics trajectories of norcamphor bound to the T185F mutant of cytochrome P450cam predicted that hydroxylation at the 3 position should be abolished and that the coupling should be dramatically increased. This mutant was constructed and the product profile and coupling experimentally determined. The coupling was doubled, and hydroxylation at the 3 position was essentially abolished. Both of these results are in agreement with the prediction.  相似文献   

17.
The binding free energy difference for the Gly-169 → Ala-169 (G169A) mutation in subtilisin BPN′ complexed with a tripeptide substrate analogue is explored using the thermodynamic integration approach. The structure of the mutant enzyme–substrate complex obtained from free energy simulation is in good agreement with experimental X-ray refinement. The near perfect reversibility is obtained in the present work for ensuring the correctness of the free energy calculations. The results of the binding free energy difference are close to similar experimental data. © 1993 Wiley-Liss, Inc.  相似文献   

18.
This work is the first in a series devoted to applying mode coupling diffusion theory to the derivation of local dynamics properties of proteins in solution. The first‐order mode‐coupling approximation, or optimized Rouse–Zimm local dynamics (ORZLD), is applied here to derive the rotational dynamics of the bonds and compare the calculated with the experimental nmr 15N spin–lattice relaxation time behavior of the vnd/NK‐2 homeodomain from Drosophila melanogaster. The starting point for the calculations is the experimental three‐dimensional structure of the homeodomain determined by multidimensional nmr spectroscopy. The results of the computations are compared with experimentally measured 15N spin–lattice relaxation times T1, at 34.5 and 60.8 MHz, to check the first‐order approximation. To estimate the relative importance of internal and overall rotation, both rigid and fluctuating dynamic models are examined, with fluctuations evaluated using molecular dynamics (MD) simulations. The correlation times for the fundamental bond vector time correlation function and for the second‐order bond orientational TCF are obtained as a function of the residue number for vnd/NK‐2. The stability of the corresponding local dynamics pattern for the fluctuating structure as a function of the length of the MD trajectory is presented. Diffusive dynamics, which is essentially free of model parameters even at first order in the mode‐coupling diffusion approach, confirm that local dynamics of proteins can be described in terms of rotational diffusion of a fluctuating quasi‐rigid structure. The comparison with the nmr data shows that the first‐order mode coupling diffusion approximation accounts for the correct order of magnitude of the results and of important qualitative aspects of the data sensitive to conformational changes. Indications are obtained from this study to efficiently extend the theory to higher order in the mode‐coupling expansion. These results demonstrate the promise of the mode‐coupling approach, where the local dynamics of proteins is described in terms of rotational diffusion of a fluctuating quasi‐rigid structure, to analyze nmr spin–lattice relaxation behavior. © 1999 John Wiley & Sons, Inc. Biopoly 49: 235–254, 1999  相似文献   

19.
Mutations in the gene-encoding vesicle lipopolysaccharide-induced tumor necrosis factor (LITAF) protein cause Charcot–Marie–Tooth type 1C (CMT1C) disease, a neurological disorder. The LITAF gene is mapped to chromosome number 16 and can be found at cytogenetic location 16p13 of the chromosome. CMT1C-linked small integral membrane protein of lysosome/late endosome mutants are loss-of-function mutants that act in a dominant negative manner to impair endosomal trafficking, leading to prolonged extracellular signal-regulated kinases 1/2 signaling downstream of ErbB activation. Mutation W116G in the LITAF decreases the stability of the protein and also interrupts the functioning of gene. We have analyzed the single nucleotide polymorphism (SNP) results of 28 nsSNPs obtained from dbSNP. We also carried out multiple molecular dynamics simulations of 200 ns and obtained results of root-mean-square deviation, root-mean-square fluctuation, radius of gyration, solvent-accessible surface area, H-bond, and principal component analysis to check and prove the stability of both the wild type and the mutant. The protein was then checked for its aggregation and the results showed loss of helix. The loss of helix leads to the instability of the protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号