首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Affibody molecules generated by combinatorial protein engineering to bind the human epidermal growth factor receptor 2 (HER2) have in earlier studies proven to be promising tracers for HER2-mediated molecular imaging of cancer. Amino acid extensions either at the N- or C-terminus of these Z(HER2) affibody molecules, have been successfully employed for site-specific radiolabeling of the tracer candidates. Hexahistidyls or other tags, which would be convenient for recovery purposes, should be avoided since they could negatively influence the tumor targeting efficacy and biodistribution properties of the tracer. Using a new ?-lactamase-based protein fragment complementation assay (PCA), an affibody molecule was isolated which bound a Z(HER2) affibody molecule with sub-micromolar affinity, but not unrelated affibody molecules. This suggests that the interacting area include the HER2-binding surface of Z(HER2). This novel anti-idiotypic affibody molecule Z(E01) was produced in Escherichia coli, purified, and chemically coupled to a chromatography resin in order to generate an affibody-based affinity column, suitable for recovery of different variants of Z(HER2) affibody molecules, having a common binding surface for HER2. Eight such Z(HER2) affibody molecules, designed for future radioimaging investigations, having different C-terminal peptide extensions aimed for radioisotope ((??m)Tc)-chelation, were successfully produced and recovered in a single step to high purity using the anti-idiotypic affibody ligand for the affinity purification. These results clearly suggest a potential for the development of anti-idiotypic affibody-based resins for efficient recovery of related variants of a target protein that might have altered biochemical properties, thus avoiding the cumbersome design of specific recovery schemes for each variant of a target protein.  相似文献   

2.
Affibody molecules are a new class of small phage-display selected proteins using a scaffold domain of the bacterial receptor protein A. They can be selected for specific binding to a large variety of protein targets. An affibody molecule binding with high affinity to a tumor antigen HER2 was recently developed for radionuclide diagnostics and therapy in vivo. The use of the positron-emitting nuclide (76)Br (T(1/2) = 16.2 h) could improve the sensitivity of detection of HER2-expressing tumors. A site-specific radiobromination of a cysteine-containing variant of the anti-HER2 affibody, (Z(HER2:4))(2)-Cys, using ((4-hydroxyphenyl)ethyl)maleimide (HPEM), was evaluated in this study. It was found that HPEM can be radiobrominated with an efficiency of 83 +/- 0.4% and thereafter coupled to freshly reduced affibody with a yield of 65.3 +/- 3.9%. A "one-pot" labeling enabled the radiochemical purity of the conjugate to exceed 97%. The label was stable against challenge with large excess of nonlabeled bromide and in a high molar strength solution. In vitro cell tests demonstrated that radiobrominated affibody binds specifically to the HER2-expressing cell-line, SK-OV-3. Biodistribution studies in nude mice bearing SK-OV-3 xenografts have shown tumor accumulation of 4.8 +/- 2.2% IA/g and good tumor-to-normal tissue ratios.  相似文献   

3.
HER2-specific affibody molecules in different formats have previously been shown to be useful tumor targeting agents for radionuclide-based imaging and therapy applications, but their biological effect on tumor cells is not well known. In this study, two dimeric ((ZHER2:4)2 and (ZHER2:342)2) and one monomeric (ZHER2:342) HER2-specific affibody molecules are investigated with respect to biological activity. Both (ZHER2:4)2 and (ZHER2:342)2 were found to decrease the growth rate of SKBR-3 cells to the same extent as the antibody trastuzumab. When the substances were removed, the cells treated with the dimeric affibody molecules continued to be growth suppressed while the cells treated with trastuzumab immediately resumed normal proliferation. The effects of ZHER2:342 were minor on both proliferation and cell signaling. The dimeric (ZHER2:4)2 and (ZHER2:342)2 both reduced growth of SKBR-3 cells and may prove therapeutically useful either by themselves or as carriers of radionuclides or other cytotoxic agents.  相似文献   

4.
D Kim  Y Yan  CA Valencia  R Liu 《PloS one》2012,7(8):e43077
Multivalency of targeting ligands provides significantly increased binding strength towards their molecular targets. Here, we report the development of a novel heptameric targeting system, with general applications, constructed by fusing a target-binding domain with the heptamerization domain of the Archaeal RNA binding protein Sm1 through a flexible hinge peptide. The previously reported affibody molecules against EGFR and HER2, Z(EGFR) and Z(HER2), were used as target binding moieties. The fusion molecules were highly expressed in E. coli as soluble proteins and efficiently self-assembled into multimeric targeting ligands with the heptamer as the predominant form. We demonstrated that the heptameric molecules were resistant to protease-mediated digestion or heat- and SDS-induced denaturation. Surface plasmon resonance (SPR) analysis showed that both heptameric Z(EGFR) and Z(HER2) ligands have a significantly enhanced binding strength to their target receptors with a nearly 100 to 1000 fold increase relative to the monomeric ligands. Cellular binding assays showed that heptameric ligands maintained their target-binding specificities similar to the monomeric forms towards their respective receptor. The non-toxic property of each heptameric ligand was demonstrated by the cell proliferation assay. In general,, the heptamerization strategy we describe here could be applied to the facile and efficient engineering of other protein domain- or short peptide-based affinity molecules to acquire significantly improved target-binding strengths with potential applications in the targeted delivery of various imaging or therapeutic agents..  相似文献   

5.
Detection of HER2-overexpression in tumors and metastases is important for the selection of patients who will benefit from trastuzumab treatment. Earlier investigations showed successful imaging of HER2-positive tumors in patients using indium- or gallium-labeled Affibody molecules. The goal of this study was to evaluate the use of (99m)Tc-labeled Affibody molecules for the detection of HER2 expression. The Affibody molecule Z(HER2:342) with the chelator sequences mercaptoacetyl-Gly-Glu-Gly (maGEG) and mercaptoacetyl-Glu-Glu-Glu (maEEE) was synthesized by peptide synthesis and labeled with technetium-99m. Binding specificity, cellular retention, and in vitro stability were investigated. The biodistribution of (99m)Tc-maGEG-Z(HER2:342) and (99m)Tc-maEEE-Z(HER2:342) was compared with (99m)Tc-maGGG-Z(HER2:342) in normal mice, and the tumor targeting properties of (99m)Tc-maEEE-Z(HER2:342) were determined in SKOV-3 xenografted nude mice. The results showed that the Affibody molecules were efficiently labeled with technetium-99m. The labeled conjugates were highly stable in vitro with preserved HER2-binding capacity. The use of glutamic acid in the chelator sequences for (99m)Tc-labeling of Z(HER2:342) reduced the hepatobiliary excretion 3-fold with a single Gly-to-Glu substitution and 10-fold with three Gly-to-Glu substitutions. (99m)Tc-maEEE-Z(HER2:342) showed a receptor-specific tumor uptake of 7.9 +/- 1.0 %IA/g and a tumor-to-blood ratio of 38 at 4 h pi. Gamma-camera imaging with (99m)Tc-maEEE-Z(HER2:342) could detect HER2-expressing tumors in xenografts already at 1 h pi. It was concluded that peptide synthesis for the coupling of chelator sequences to Affibody molecules for (99m)Tc labeling is an efficient way to modify the in vivo kinetics. Increased hydrophilicity, combined with improved stability of the mercaptoacetyl-triglutamyl chelator, resulted in favorable biodistribution, making (99m)Tc-maEEE-Z(HER2:342) a promising tracer for clinical imaging of HER2 overexpression in tumors.  相似文献   

6.
We have previously shown that the HER2-specific affibody molecule (ZHER2∶342)2 inhibits proliferation of SKBR-3 cells. Here, we continue to investigate its biological effects in vitro by studying receptor dimerization and clonogenic survival following irradiation. We found that (ZHER2∶342)2 sensitizes the HER2-overexpressing cell line SKBR-3 to ionizing radiation. The survival after exposure to (ZHER2∶342)2 and 8 Gy (S8Gy 0.006) was decreased by a factor four compared to the untreated (S8Gy 0.023). The low HER2-expressing cell line MCF-7 was more radiosensitive than SKBR-3 but did not respond to (ZHER2∶342)2. Treatment by (ZHER2∶342)2 strongly increased the levels of dimerized and phosphorylated HER2 even after 5 minutes of stimulation. The monomeric ZHER2∶342 does not seem to be able to induce receptor phosphorylation and dimerization or sensitize cells to irradiation.  相似文献   

7.
Affibody molecules are a class of affinity proteins. Their small size (7 kDa) in combination with the high (subnanomolar) affinity for a number of cancer-associated molecular targets makes them suitable for molecular imaging. Earlier studies demonstrated that the selection of radionuclide and chelator may substantially influence the tumor-targeting properties of affibody molecules. Moreover, the placement of chelators for labeling of affibody molecules with (99m)Tc at different positions in affibody molecules influenced both blood clearance rate and uptake in healthy tissues. This introduces an opportunity to improve the contrast of affibody-mediated imaging. In this comparative study, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) was conjugated to the synthetic affibody molecule Z(HER2:S1) at three different positions: DOTA-A1-Z(HER2:S1) (N-terminus), DOTA-K58-Z(HER2:S1) (C-terminus), and DOTA-K50-Z(HER2:S1) (middle of helix 3). The affinity for HER2 differed slightly among the variants and the K(D) values were determined to be 133 pM, 107 pM and 94 pM for DOTA-A1-Z(HER2:S1), DOTA-K50-Z(HER2:S1), and DOTA-K58-Z(HER2:S1), respectively. Z(HER2:S1)-K50-DOTA showed a slightly lower melting point (57 °C) compared to DOTA-A1-Z(HER2:S1) (64 °C) and DOTA-K58-Z(HER2:S1) (62 °C), but all variants showed good refolding properties after heat treatment. All conjugates were successfully labeled with (111)In resulting in a radiochemical yield of 99% with preserved binding capacity. In vitro specificity studies using SKOV-3 and LS174T cell lines showed that the binding of the radiolabeled compounds was HER2 receptor-mediated, which also was verified in vivo using BALB/C nu/nu mice with LS174T and Ramos lymphoma xenografts. The three conjugates all showed specific uptake in LS174T xenografts in nude mice, where DOTA-A1-Z(HER2:S1)and DOTA-K58-Z(HER2:S1) showed the highest uptake. Overall, DOTA-K58-Z(HER2:S1) provided the highest tumor-to-blood ratio, which is important for a high-contrast imaging. In conclusion, the positioning of the DOTA chelator influences the cellular processing and the biodistribution pattern of radiolabeled affibody molecules, creating preconditions for imaging optimization.  相似文献   

8.
Human epidermal growth factor receptor 2 (HER2), a member of the ErbB family of receptor tyrosine kinases, has defined roles in neoplastic transformation and tumor progression. Overexpression of HER2 is an adverse prognostic factor in several human neoplasms and, particularly in breast cancer, correlates strongly with a decrease in overall patient survival. HER2 stimulates breast tumorigenesis by forming protein-protein interactions with a diverse array of intracellular signaling molecules, and evidence suggests that manipulation of these associations holds therapeutic potential. To modulate specific HER2 interactions, the region(s) of HER2 to which each target binds must be accurately identified. Calmodulin (CaM), a ubiquitously expressed Ca2+ binding protein, interacts with multiple intracellular targets. Interestingly, CaM binds the juxtamembrane region of the epidermal growth factor receptor, a HER2 homolog. Here, we show that CaM interacts, in a Ca2+-regulated manner, with two distinct sites on the N-terminal portion of the HER2 intracellular domain. Deletion of residues 676-689 and 714-732 from HER2 prevented CaM-HER2 binding. Inhibition of CaM function or deletion of the CaM binding sites from HER2 significantly decreased both HER2 phosphorylation and HER2-stimulated cell growth. Collectively, these data suggest that inhibition of CaM-HER2 interaction may represent a rational therapeutic strategy for the treatment of patients with breast cancer. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   

9.
A novel HER2-targeted carrier was developed using bionanocapsules (BNCs). Bionanocapsules (BNCs) are 100-nm hollow nanoparticles composed of the l-protein of hepatitis B virus surface antigen. An affibody of HER2 was genetically displayed on the BNC surface (ZHER2-BNC). For the investigation of binding affinity, ZHER2-BNC was incubated with the cancer cell lines SK-BR-3 (HER2 positive), and MDA-MB-231 (HER2 negative). For analysis of HER2 targeting specificity, ZHER2-BNC or ZWT-BNC (without affibody) was incubated with both SK-BR-3 and MDA-MB-231 cells by time lapse and concentration. For the delivery of encapsulated molecules (calcein), fluorescence of ZHER2-BNC mixed with liposomes was also compared with that of ZWT-BNC and nude liposomes by incubation with SK-BR-3 cells. As a result, ZHER2-BNC-liposome complex demonstrated the delivery to HER2-expressing cells (SK-BR-3) with a high degree of specificity. This indicates that genetically engineered BNCs are promising carrier for cancer treatment.  相似文献   

10.
Affibody molecules have received significant attention in the fields of molecular imaging and drug development. However, Affibody scaffolds display an extremely high renal uptake, especially when modified with chelators and then labeled with radiometals. This unfavorable property may impact their use as radiotherapeutic agents in general and as imaging probes for the detection of tumors adjacent to kidneys in particular. Herein, we present a simple and generalizable strategy for reducing the renal uptake of Affibody molecules while maintaining their tumor uptake. Human serum albumin (HSA) was consecutively modified by 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid mono-N-hydroxysuccinimide ester (DOTA-NHS ester) and the bifunctional cross-linker sulfosuccinimidyl 4-[N-maleimidomethyl]cyclohexane-1-carboxylate (Sulfo-SMCC). The HER2 Affibody analogue, Ac-Cys-Z(HER2:342), was covalently conjugated with HSA, and the resulting bioconjugate DOTA-HSA-Z(HER2:342) was further radiolabeled with ??Cu and 111In and evaluated in vitro and in vivo. Radiolabeled DOTA-HSA-Z(HER2:342) conjugates displayed a significant and specific cell uptake into SKOV3 cell cultures. Positron emission tomography (PET) investigations using ??Cu-DOTA-HSA-Z(HER2:342) were performed in SKOV3 tumor-bearing nude mice. High tumor uptake values (>14% ID/g at 24 and 48 h) and high liver accumulations but low kidney accumulations were observed. Biodistribution studies and single-photon emission computed tomography (SPECT) investigations using 111In-DOTA-HSA-Z(HER2:342) validated these results. At 24 h post injection, the biodistribution data revealed high tumor (16.26% ID/g) and liver (14.11% ID/g) uptake but relatively low kidney uptake (6.06% ID/g). Blocking studies with coinjected, nonlabeled Ac-Cys-Z(HER2:342) confirmed the in vivo specificity of HER2. Radiolabeled DOTA-HSA-Z(HER2:342) Affibody conjugates are promising SPECT and PET-type probes for the imaging of HER2 positive cancer. More importantly, DOTA-HSA-Z(HER2:342) is suitable for labeling with therapeutic radionuclides (e.g., ??Y or 1??Lu) for treatment studies. The approach of using HSA to optimize the pharmacokinetics and biodistribution profile of Affibodies may be extended to the design of many other targeting molecules.  相似文献   

11.
HER3 (also known as c-Erb-b3) is a type I receptor tyrosine kinase similar in sequence to the epidermal growth factor (EGF) receptor. The extracellular segment of this transmembrane receptor contains four domains. Domains I and II are similar in sequence to domains III and IV, respectively, and domains II and IV are cysteine-rich. We show that the EGF-like domain of heregulin (hrg) binds to domains I and II of HER3, in contrast to the EGF receptor, for which prior studies have shown that a construct consisting of domains III and portions of domain IV binds EGF. Next, we identified a putative hrg binding site by limited proteolysis of the recombinant extracellular domains of HER3 (HER3-ECD(I-IV)) in both the presence and absence of hrg. In the absence of hrg, HER3-ECD(I-IV) is cleaved after position Tyr(50), near the beginning of domain I. Binding of hrg to HER3-ECD(I-IV) fully protects position Tyr(50) from proteolysis. To confirm that domain I contains a hrg binding site, we expressed domains I and II (HER3-ECD(I-II)) and find that it binds hrg with 68 nm affinity. These data suggest that domains I and II of HER3-ECD(I-IV) act as a functional unit in folding and binding of hrg. Thus, our biochemical findings reinforce the structural hypothesis of others that HER3-ECD(I-IV) is similar to the insulin-like growth factor-1 receptor (IGF-1R), as follows: 1) The protected cleavage site in HER3-ECD(I-IV) corresponds to a binding footprint in domain I of IGF-1R; 2) HER3-ECD(I-II) binds hrg with a 68 nm dissociation constant, supporting the hypothesis that domain I is involved in ligand binding; and 3) the large accessible surface area (1749 A) of domain L1 of IGF-1R that is buried by domain S1, as well as the presence of conserved contacts in this interface of type 1 RTKs, suggests that domains L1 and S1 of IGF-1R function as a unit as observed for HER3-ECD(I-II). Our results are consistent with the proposal that HER3 has a structure similar to IGF-1R and binds ligand at a site in corresponding domains.  相似文献   

12.
Thermosensitive liposomes are attractive vehicles for the delivery and release of drugs to tumors. To improvethe targeting efficacy for breast cancer treatment, an 8.3-kDa HER2-specific Affibody molecule (Z(HER2:342)-Cys) was conjugated to the surface of liposomes. The effects of this modification on physical characteristics and stability of the resulting nanoparticles denoted as "Affisomes" were investigated. Thermosensitive small unilamellar vesicle (SUV) liposomes of (80-100 nm) a diameter consisting of dipalmitoyl phosphatidylcholine (DPPC, Tm 41 degrees C) as the matrix lipid and a maleimide-conjugated pegylated phospholipid (DSPE-MaL-PEG2000) were prepared by probe sonication. Fluorescent probes were incorporated into liposomes for biophysical and/or biochemical analysis and/or triggered-release assays. Affibody was conjugated to these liposomes via its C-terminal cysteine by incubation in the presence of a reducing agent (e.g., tributylphosphine) for 16-20 hours under an argon atmosphere. Lipid-conjugated affibody molecule was visible as an 11.3-kDa band on a 4-12% Bis/Tris gel under reducing conditions. Affibody conjugation yields were approximately 70% at a protein-lipid ratio of 20 microg/mg, with an average number of 200 affibody molecules per Affisome. Affibody conjugation to thermosensitive liposomes did not have any significant effect on the hydrodynamic size distribution of the liposomes. Thermosensitivity of Affisomes was determined by monitoring the release of entrapped calcein (a water-soluble fluorescent probe, lambdaex/em 490/515 nm) as a function of temperature. Calcein was released from Affisomes (thermosensitive liposomes with affibody-Targeted SUV) as well as nontargeted SUV (thermosensitive liposomes without affibody) in a temperature-dependent manner, with optimal leakage (90-100%) at 41 degrees C. In contrast, liposomes prepared from Egg phosphatidyl choline (Egg PC, Tm approximately 0 degrees C) under similar conditions released only 5-10% calcein at 41 degrees C. Affisomes, when stored at room temperature, retained > 90% entrapped calcein up to 7 days. Moreover, incubation of liposomes in phosphate-buffered saline, supplemented with 10% heat-inactivated serum (fetal bovine serum) did not result in a destabilization of liposomes. Therefore, Affisomes present promising, novel drug-delivery candidates for breast cancer targeting.  相似文献   

13.
Cellular effects of HER3-specific affibody molecules   总被引:1,自引:0,他引:1  
Recent studies have led to the recognition of the epidermal growth factor receptor HER3 as a key player in cancer, and consequently this receptor has gained increased interest as a target for cancer therapy. We have previously generated several Affibody molecules with subnanomolar affinity for the HER3 receptor. Here, we investigate the effects of two of these HER3-specific Affibody molecules, Z05416 and Z05417, on different HER3-overexpressing cancer cell lines. Using flow cytometry and confocal microscopy, the Affibody molecules were shown to bind to HER3 on three different cell lines. Furthermore, the receptor binding of the natural ligand heregulin (HRG) was blocked by addition of Affibody molecules. In addition, both molecules suppressed HRG-induced HER3 and HER2 phosphorylation in MCF-7 cells, as well as HER3 phosphorylation in constantly HER2-activated SKBR-3 cells. Importantly, Western blot analysis also revealed that HRG-induced downstream signalling through the Ras-MAPK pathway as well as the PI3K-Akt pathway was blocked by the Affibody molecules. Finally, in an in vitro proliferation assay, the two Affibody molecules demonstrated complete inhibition of HRG-induced cancer cell growth. Taken together, our findings demonstrate that Z05416 and Z05417 exert an anti-proliferative effect on two breast cancer cell lines by inhibiting HRG-induced phosphorylation of HER3, suggesting that the Affibody molecules are promising candidates for future HER3-targeted cancer therapy.  相似文献   

14.
K Elenius  S Paul  G Allison  J Sun    M Klagsbrun 《The EMBO journal》1997,16(6):1268-1278
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a potent mitogen and chemotactic factor for fibroblasts, smooth muscle cells and keratinocytes. It is demonstrated that HB-EGF is not only a ligand for HER1, as previously reported, but for HER4 as well. HB-EGF binds to NIH 3T3 cells overexpressing either HER1 or HER4 alone, but not HER2 or HER3 alone. Binding to HER4 is independent of HER1. The ability of HB-EGF to bind to two different receptors is in contrast to EGF which binds to HER1, but not to HER4, and heregulin-beta1 which binds to HER4, but not to HER1. Besides binding, HB-EGF activates HER4. For example (i) it induces tyrosine phosphorylation of HER4 in cells overexpressing this receptor and of endogenous HER4 in MDA-MB-453 cells and astrocytes; (ii) it induces association of phosphatidylinositol 3-kinase (PI3-K) activity with HER4; and (iii) it is a potent chemotactic factor for cells overexpressing HER4. Chemotaxis is inhibited by wortmannin, a PI3-K inhibitor, suggesting a possible role for PI3-K in mediating HB-EGF-stimulated chemotaxis. On the other hand, HB-EGF is not a mitogen for cells expressing HER4, in contrast to its ability to stimulate both chemotaxis and proliferation in cells expressing HER1. It was concluded that HER4 is a newly described receptor for HB-EGF and that HB-EGF can activate two EGF receptor subtypes, HER1 and HER4, but with different biological responses.  相似文献   

15.
Yang SC  Chang SS  Chen CY 《PloS one》2011,6(12):e28793
The relationship between abnormal HER2 expression and cancer is important in cancer therapeutics. Formation and spread of cancer cells may be restricted by inhibiting HER2. We conducted ligand-based and structure-based studies to assess the potency of natural compounds as potential HER2 inhibitors. Multiple linear regression (MLR) and support vector machine (SVM) models were constructed to predict biological activities of natural compounds, and molecular dynamics (MD) was used to assess their stability with HER2 under a dynamic environment. Predicted bioactivities of the natural compounds ranged from 6.014-9.077 using MLR (r(2) = 0.7954) and 5.122-6.950 using SVM (r(2) = 0.8620). Both models were in agreement and suggest bioactivity based on candidate structure. Conformation changes caused by MD favored the formation of stabilizing H-bonds. All candidates had higher stability than Lapinatib, which may be due to the number and spatial distribution of additional H-bonds and hydrophobic interactions. Amino acids Lys724 and Lys736 are critical for binding in HER2, and Thr798, Cys805, and Asp808 are also important for increased stability. Candidates may block the entrance to the ATP binding site located within the inner regions and prevent downstream activation of HER2. Our multidirectional approach indicates that the natural compounds have good ligand efficacy in addition to stable binding affinities to HER2, and should be potent candidates of HER2 inhibitors. With regard to drug design, designing HER2 inhibitors with carboxyl or carbonyl groups available for H-bond formation with Lys724 and Lys736, and benzene groups for hydrophobic contact with Cys805 may improve protein-ligand stability.  相似文献   

16.
We present a mathematical model to study the effects of HER2 over-expression on cell proliferation in breast cancer. The model illustrates the proliferative behavior of cells as a function of HER2 and EGFR receptors numbers, and the growth factor EGF. This mathematical model comprises kinetic equations describing the cell surface binding of EGF growth factor to EGFR and HER2 receptors, coupled to a model for the dependence of cell proliferation rate on growth factor receptors binding. The simulation results from this model predict: (1) a growth advantage associated with excess HER2 receptors; (2) that HER2-over-expression is an insufficient parameter to predict the proliferation response of cancer cells to epidermal growth factors; and (3) the EGFR receptor expression level in HER2-over-expressing cells plays a key role in mediating the proliferation response to receptor-ligand signaling. This mathematical model also elucidates the interaction and roles of other model parameters in determining cell proliferation rate of HER2-over-expressing cells.  相似文献   

17.
Affibody molecules are a new class of small (7 kDa) scaffold affinity proteins, which demonstrate promising properties as agents for in vivo radionuclide targeting. The Affibody scaffold is cysteine-free and therefore independent of disulfide bonds. Thus, a single thiol group can be engineered into the protein by introduction of one cysteine. Coupling of thiol-reactive bifunctional chelators can enable site-specific labeling of recombinantly produced Affibody molecules. In this study, the use of 1,4,7,10-tetraazacyclododecane-1,4,7-tris-acetic acid-10-maleimidoethylacetamide (MMA-DOTA) for 111 In-labeling of anti-HER2 Affibody molecules His 6-Z HER2:342-Cys and Z HER2:2395-Cys has been evaluated. The introduction of a cysteine residue did not affect the affinity of the proteins, which was 29 pM for His 6-Z HER2:342-Cys and 27 pM for Z HER2:2395-Cys, comparable with 22 pM for the parental Z HER2:342. MMA-DOTA was conjugated to DTT-reduced Affibody molecules with a coupling efficiency of 93% using a 1:1 molar ratio of chelator to protein. The conjugates were labeled with 111 In to a specific radioactivity of up to 7 GBq/mmol, with preserved binding for the target HER2. In vivo, the non-His-tagged variant 111 In-[MMA-DOTA-Cys61]-Z HER2:2395-Cys demonstrated appreciably lower liver uptake than its His-tag-containing counterpart. In mice bearing HER2-expressing LS174T xenografts, 111 In-[MMA-DOTA-Cys61]-Z HER2:2395-Cys showed specific and rapid tumor localization, and rapid clearance from blood and nonspecific compartments, leading to a tumor-to-blood-ratio of 18 +/- 8 already 1 h p.i. Four hours p.i., the tumor-to-blood ratio was 138 +/- 8. Xenografts were clearly visualized already 1 h p.i.  相似文献   

18.
Affibody molecules are a new class of small targeting proteins based on a common three-helix bundle structure. Affibody molecules binding a desired target may be selected using phage-display technology. An Affibody molecule Z HER2:342 binding with subnanomolar affinity to the tumor antigen HER2 has recently been developed for radionuclide imaging in vivo. Introduction of a single cysteine into the cysteine-free Affibody scaffold provides a unique thiol group for site-specific labeling of recombinant Affibody molecules. The recently developed maleimido-CHX-A' DTPA was site-specifically conjugated at the C-terminal cysteine of Z HER2:2395-C, a variant of Z HER2:342, providing a homogeneous conjugate with a dissociation constant of 56 pM. The yield of labeling with (111)In was >99% after 10 min at room temperature. In vitro cell tests demonstrated specific binding of (111)In-CHX-A' DTPA-Z 2395-C to HER2-expressing cell-line SKOV-3 and good cellular retention of radioactivity. In normal mice, the conjugate demonstrated rapid clearance from all nonspecific organs except kidney. In mice bearing SKOV-3 xenografts, the tumor uptake of (111)In-CHX-A' DTPA-Z 2395-C was 17.3 +/- 4.8% IA/g and the tumor-to-blood ratio 86 +/- 46 (4 h postinjection). HER2-expressing xenografts were clearly visualized 1 h postinjection. In conclusion, coupling of maleimido-CHX-A' DTPA to cysteine-containing Affibody molecules provides a well-defined uniform conjugate, which can be rapidly labeled at room temperature and provides high-contrast imaging of molecular targets in vivo.  相似文献   

19.
Human epidermal growth factor receptor 2 (HER2) is a member of the human epidermal growth factor receptor kinases (other members include EGFR or HER1, HER3, and HER4) that are involved in signaling cascades for cell growth and differentiation. It is well established that HER2-mediated heterodimerization has important implications in cancer. Deregulation of signaling pathways and overexpression of HER2 is known to occur in cancer cells, indicating a role of HER2 in tumorigenesis. Therefore, blocking HER2-mediated signaling has potential therapeutic value. We have designed several peptidomimetics to inhibit HER2-mediated signaling for cell growth. One of the compounds (HERP5, Arg-beta Naph-Phe) exhibited antiproliferative activity with IC(50) values in the micromolar-to-nanomolar range in breast cancer cell lines. Binding of fluorescently labeled HERP5 to HER2 protein was evaluated by fluorescence assay, microscopy, and circular dichroism spectroscopy. Results indicated that HERP5 binds to the extracellular region of the HER2 protein. Structure of the peptidomimetic HERP5 was studied by NMR and molecular dynamics simulations. Based on these results a model was proposed for HER2-EGFR dimerization and possible blocking by HERP5 peptidomimetic using a protein-protein docking method.  相似文献   

20.
Herceptin is a monoclonal antibody against HER2, which is a member of the epidermal growth factor receptor (ErbB) family and is overexpressed in many cancers. In this work, we have applied single-molecule force spectroscopy to study the effect of Herceptin on HER2 modulated ligand–receptor interaction for ErbB signaling in living cells. Heregulin β1 (HRG), the specific ligand of HER3, was used for HER2 activation as HER3 is the preferable dimerization partner of HER2 and HER3/HER2 is the most representative heterodimer found in cancer. Our results demonstrated a more stable binding of HRG to the cells co-expressing HER3 and HER2 than those expressing HER3 alone. Moreover, the binding force of Herceptin and HER2 is as strong as that of HRG and HER3/HER2. With the addition of Herceptin, the binding strength of HRG to the cells co-expressing HER3 and HER2 decreased. The presence of Herceptin changed the dynamic force spectrum of HRG-HER3/HER2 to that similar to HRG-HER3. Therefore, the enhancement in HRG-HER3 binding after recruiting HER2 was inhibited by Herceptin. The method offers a new approach to study the molecular mechanism of Herceptin anti-cancer effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号