首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermo-stability and unfolding behaviors of a small hyperthermophilic protein Sso7d as well as its single-point mutation F31A are studied by molecular dynamics simulation at temperatures of 300 K, 371 K and 500 K. Simulations at 300 K show that the F31A mutant displays a much larger flexibility than the wild type, which implies that the mutation obviously decreases the protein's stability. In the simulations at 371 K, although larger fluctuations were observed, both of these two maintain their stable conformations. High temperature simulations at 500 K suggest that the unfolding of these two proteins evolves along different pathways. For the wild-type protein, the C-terminal alpha-helix is melted at the early unfolding stage, whereas it is destroyed much later in the unfolding process of the F31A mutant. The results also show that the mutant unfolds much faster than its parent protein. The deeply buried aromatic cluster in the F31A mutant dissociates quickly relative to the wild-type protein at high temperature. Besides, it is found that the triple-stranded antiparallel β-sheet in the wild-type protein plays an important role in maintaining the stability of the entire structure.  相似文献   

2.
Abstract

The role of salt bridges in chromatin protein Sso7d, from S. solfataricus has previously been shown to be crucial for its unusual high thermal stability. Experimental studies have shown that single site mutation of Sso7d (F31A) leads to a substantial decrease in the thermal stability of this protein due to distortion of the hydrophobic core. In the present study, we have performed a total of 0.2 μs long molecular dynamics (MD) simulations on F31A at room temperature, and at 360 K, close to the melting temperature of the wild type (WT) protein to investigate the role of hydrophobic core on protein stability. Sso7d-WT was shown to be stable at both 300 and 360 K; however, F31A undergoes denaturation at 360 K, consistent with experimental results. The structural and energetic properties obtained using the analysis of MD trajectories indicate that the single mutation results in high flexibility of the protein, and loosening of intramolecular interactions. Correlation between the dynamics of the salt bridges with the structural transitions and the unfolding pathway indicate the importance of both salt bridges and hydrophobic in effecting thermal stability of proteins in general.  相似文献   

3.
Abstract The role of salt bridges in chromatin protein Sso7d, from S. solfataricus has previously been shown to be crucial for its unusual high thermal stability. Experimental studies have shown that single site mutation of Sso7d (F31A) leads to a substantial decrease in the thermal stability of this protein due to distortion of the hydrophobic core. In the present study, we have performed a total of 0.2 μs long molecular dynamics (MD) simulations on F31A at room temperature, and at 360 K, close to the melting temperature of the wild type (WT) protein to investigate the role of hydrophobic core on protein stability. Sso7d-WT was shown to be stable at both 300 and 360 K; however, F31A undergoes denaturation at 360 K, consistent with experimental results. The structural and energetic properties obtained using the analysis of MD trajectories indicate that the single mutation results in high flexibility of the protein, and loosening of intramolecular interactions. Correlation between the dynamics of the salt bridges with the structural transitions and the unfolding pathway indicate the importance of both salt bridges and hydrophobic in effecting thermal stability of proteins in general.  相似文献   

4.
The role of salt bridges in chromatin protein Sso7d, from S. solfataricus has previously been shown to be crucial for its unusual high thermal stability. Experimental studies have shown that single site mutation of Sso7d (F31A) leads to a substantial decrease in the thermal stability of this protein due to distortion of the hydrophobic core. In the present study, we have performed a total of 0.2 s long molecular dynamics (MD) simulations on F31A at room temperature, and at 360 K, close to the melting temperature of the wild type (WT) protein to investigate the role of hydrophobic core on protein stability. Sso7d-WT was shown to be stable at both 300 and 360 K; however, F31A undergoes denaturation at 360 K, consistent with experimental results. The structural and energetic properties obtained using the analysis of MD trajectories indicate that the single mutation results in high flexibility of the protein, and loosening of intramolecular interactions. Correlation between the dynamics of the salt bridges with the structural transitions and the unfolding pathway indicate the importance of both salt bridges and hydrophobic in effecting thermal stability of proteins in general.  相似文献   

5.
The N-domain of troponin C (residues 1-90) regulates muscle contraction through conformational changes induced by Ca2+ binding. A mutant form of the isolated domain of avian troponin C (F29W) has been used in previous studies to observe conformational changes that occur upon Ca2+ binding, and pressure and temperature changes. Here we set out to determine whether the point mutation itself has any effects on the protein structure and its stability to pressure and temperature in the absence of Ca2+. Molecular dynamics simulations of the wild-type and mutant protein structures suggested that both structures are identical except in the main chain and the loop I region near the mutation site. Also, the simulations proposed that an additional cavity had been created in the core of the mutant protein. To determine whether such a cavity would affect the behavior of the protein when subjected to high pressures and temperatures, we performed 1H-NMR experiments at 300, 400, and 500 MHz on the wild-type and F29W mutant forms of the chicken N-domain troponin C in the absence of Ca2+. We found that the mutant protein at 5 kbar pressures had a destabilized beta-sheet between the Ca2+-binding loops, an altered environment near Phe-26, and reduced local motions of Phe-26 and Phe-75 in the core of the protein, probably due to a higher compressibility of the mutant. Under the same pressure conditions, the wild-type domain exhibited little change. Furthermore, the hydrophobic core of the mutant protein denatured at temperatures above 47 degrees C, while the wild-type was resistant to denaturation up to 56 degrees C. This suggests that the partially exposed surface mutation (F29W) significantly destabilizes the N-domain of troponin C by altering the packing and dynamics of the hydrophobic core.  相似文献   

6.
This study reports the characterization of the recombinant 7-kDa protein P2 from Sulfolobus solfataricus and the mutants F31A and F31Y with respect to temperature and pressure stability. As observed in the NMR, FTIR, and CD spectra, wild-type protein and mutants showed substantially similar structures under ambient conditions. However, midpoint transition temperatures of the denaturation process were 361, 334, and 347 K for wild type, F31A, and F31Y mutants, respectively: thus, alanine substitution of phenylalanine destabilized the protein by as much as 27 K. Midpoint transition pressures for wild type and F31Y mutant could not be accurately determined because they lay either beyond (wild type) or close to (F31Y) 14 kbar, a pressure at which water undergoes a phase transition. However, a midpoint transition pressure of 4 kbar could be determined for the F31A mutant, implying a shift in transition of at least 10 kbar. The pressure-induced denaturation was fully reversible; in contrast, thermal denaturation of wild type and mutants was only partially reversible. To our knowledge, both the pressure resistance of protein P2 and the dramatic pressure and temperature destabilization of the F31A mutant are unprecedented. These properties may be largely accounted for by the role of an aromatic cluster where Phe31 is found at the core, because interactions among aromatics are believed to be almost pressure insensitive; furthermore, the alanine substitution of phenylalanine should create a cavity with increased compressibility and flexibility, which also involves an impaired pressure and temperature resistance. Proteins 29:381–390, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

7.
Chatani E  Nonomura K  Hayashi R  Balny C  Lange R 《Biochemistry》2002,41(14):4567-4574
To clarify the structural role of Phe46 inside the hydrophobic core of bovine pancreatic ribonuclease A (RNase A), thermal and pressure unfolding of wild-type RNase A and three mutant forms (F46V, F46E, and F46K) were analyzed by fourth-derivative UV absorbance spectroscopy. All the mutants, as well as the wild type, exhibited a two-state transition during both thermal and pressure unfolding, and both T(m) and P(m) decreased markedly when Phe46 was replaced with valine, glutamic acid, or lysine. The strongest effect was on the F46K mutant and the weakest on F46V. Both unfolding processes produced identical blue shifts in the fourth-derivative spectra, indicating that the tyrosine residues are similarly exposed in the temperature- and pressure-induced unfolded states. A comparison of Gibbs free energies determined from the pressure and temperature unfoldings, however, gave DeltaG(p)/DeltaG(t) ratios (r) of 1.7 for the wild type and 0.92 +/- 0.03 for the mutants. Furthermore, the DeltaV value for each mutant was larger than that for the wild type. CD spectra and activity measurements showed no obvious major structural differences in the folded state, indicating that the structures of the Phe46 mutants and wild type differ in the unfolded state. We propose a model in which Phe46 stabilizes the hydrophobic core at the boundary between two structural domains. Mutation of Phe46 decreases protein stability by weakening the unfolding cooperativity between these domains. This essential function of Phe46 in RNase A stability indicates that it belongs to a chain-folding initiation site.  相似文献   

8.
Design of proteins with desired thermal properties is important for scientific and biotechnological applications. Here we developed a theoretical approach to predict the effect of mutations on protein stability from non-equilibrium unfolding simulations. We establish a relative measure based on apparent simulated melting temperatures that is independent of simulation length and, under certain assumptions, proportional to equilibrium stability, and we justify this theoretical development with extensive simulations and experimental data. Using our new method based on all-atom Monte-Carlo unfolding simulations, we carried out a saturating mutagenesis of Dihydrofolate Reductase (DHFR), a key target of antibiotics and chemotherapeutic drugs. The method predicted more than 500 stabilizing mutations, several of which were selected for detailed computational and experimental analysis. We find a highly significant correlation of r = 0.65–0.68 between predicted and experimentally determined melting temperatures and unfolding denaturant concentrations for WT DHFR and 42 mutants. The correlation between energy of the native state and experimental denaturation temperature was much weaker, indicating the important role of entropy in protein stability. The most stabilizing point mutation was D27F, which is located in the active site of the protein, rendering it inactive. However for the rest of mutations outside of the active site we observed a weak yet statistically significant positive correlation between thermal stability and catalytic activity indicating the lack of a stability-activity tradeoff for DHFR. By combining stabilizing mutations predicted by our method, we created a highly stable catalytically active E. coli DHFR mutant with measured denaturation temperature 7.2°C higher than WT. Prediction results for DHFR and several other proteins indicate that computational approaches based on unfolding simulations are useful as a general technique to discover stabilizing mutations.  相似文献   

9.
Folding reaction of goat alpha-lactalbumin has been studied by stopped-flow circular dichroism and molecular dynamics simulations. The effects of four single mutations and a double mutation on the stability of the protein under a native condition were studied. The mutations were introduced into residues located at a hydrophobic core in the alpha-domain of the molecule. Here we show that an amino acid substitution (T29I) increases the native-state stability of goat alpha-lactalbumin against the guanidine hydrochloride-induced unfolding by 3.5 kcal/mol. Kinetic refolding and unfolding of wild-type and mutant goat alpha-lactalbumin measured by stopped-flow circular dichroism showed that the local structure around the Thr29 side chain was not constructed in the transition state of the folding reaction. To characterize the local structural change around the Thr29 side chain to an atomic level of resolution, we performed high-temperature (at 400 K and 600 K) molecular dynamics simulations and studied the structural change at an initial stage of unfolding observed in the simulation trajectories. The Thr29 portion of the molecule experienced structural disruption accompanied with the loss of inter-residue contacts and with the water molecule penetration in the 400-K simulation as well as in four of the six 600-K simulations. Disruption of the N-terminal portion was also observed and was consistent with the results of kinetic refolding/unfolding experiments shown in our previous report.  相似文献   

10.
Sso7d is a 62-residue protein from the hyperthemophilic archaeon Sulfolobus solfataricus with a denaturation temperature close to 100 degrees C around neutral pH. An engineered form of Sso7d truncated at leucine 54 (L54Delta) is significantly less stable, with a denaturation temperature of 53 degrees C. Molecular dynamics (MD) studies of Sso7d and its truncated form at two different temperatures have been performed. The results of the MD simulations at 300 K indicate that: (1) the flexibility of Sso7d chain at 300 K agrees with that detected from X-ray and NMR structural studies; (2) L54Delta remains stable in the native folded conformation and possesses an overall dynamic behavior similar to that of the parent protein. MD simulations performed at 500 K, 10 ns long, indicate that, while Sso7d is in-silico resistant to high temperature, the truncated variant partially unfolds, revealing the early phases of the thermal unfolding pathway of the protein. Analysis of the trajectories of L54Delta suggests that the unzipping of the N-terminal and C-terminal beta-strands should be the first event of the unfolding pathway, and points out the regions more resistant to thermal unfolding. These findings allow one to understand the role played by specific interactions connecting the two ends of the chain for the high thermal stability of Sso7d, and support recent hypotheses on its folding mechanism emerged from site-directed mutagenesis studies.  相似文献   

11.
Molecular dynamics simulations in solution are performed for a rubredoxin from the hyperthermophilic archaeon Pyrococcus furiosus (RdPf) and one from the mesophilic organism Desulfovibrio vulgaris (RdDv). The two proteins are simulated at four temperatures: 300 K, 373 K, 473 K (two sets), and 500 K; the various simulations extended from 200 ps to 1,020 ps. At room temperature, the two proteins are stable, remain close to the crystal structure, and exhibit similar dynamic behavior; the RMS residue fluctuations are slightly smaller in the hyperthermophilic protein. An analysis of the average energy contributions in the two proteins is made; the results suggest that the intraprotein energy stabilizes RdPf relative to RdDv. At 373 K, the mesophilic protein unfolds rapidly (it begins to unfold at 300 ps), whereas the hyperthermophilic does not unfold over the simulation of 600 ps. This is in accord with the expected stability of the two proteins. At 473 K, where both proteins are expected to be unstable, unfolding behavior is observed within 200 ps and the mesophilic protein unfolds faster than the hyperthermophilic one. At 500 K, both proteins unfold; the hyperthermophilic protein does so faster than the mesophilic protein. The unfolding behavior for the two proteins is found to be very similar. Although the exact order of events differs from one trajectory to another, both proteins unfold first by opening of the loop region to expose the hydrophobic core. This is followed by unzipping of the beta-sheet. The results obtained in the simulation are discussed in terms of the factors involved in flexibility and thermostability.  相似文献   

12.
Genetic mutations in a vital muscle protein dystrophin trigger X-linked dilated cardiomyopathy (XLDCM). However, disease mechanisms at the fundamental protein level are not understood. Such molecular knowledge is essential for developing therapies for XLDCM. Our main objective is to understand the effect of disease-causing mutations on the structure and function of dystrophin. This study is on a missense mutation K18N. The K18N mutation occurs in the N-terminal actin binding domain (N-ABD). We created and expressed the wild-type (WT) N-ABD and its K18N mutant, and purified to homogeneity. Reversible folding experiments demonstrated that both mutant and WT did not aggregate upon refolding. Mutation did not affect the protein''s overall secondary structure, as indicated by no changes in circular dichroism of the protein. However, the mutant is thermodynamically less stable than the WT (denaturant melts), and unfolds faster than the WT (stopped-flow kinetics). Despite having global secondary structure similar to that of the WT, mutant showed significant local structural changes at many amino acids when compared with the WT (heteronuclear NMR experiments). These structural changes indicate that the effect of mutation is propagated over long distances in the protein structure. Contrary to these structural and stability changes, the mutant had no significant effect on the actin-binding function as evident from co-sedimentation and depolymerization assays. These results summarize that the K18N mutation decreases thermodynamic stability, accelerates unfolding, perturbs protein structure, but does not affect the function. Therefore, K18N is a stability defect rather than a functional defect. Decrease in stability and increase in unfolding decrease the net population of dystrophin molecules available for function, which might trigger XLDCM. Consistently, XLDCM patients have decreased levels of dystrophin in cardiac muscle.  相似文献   

13.
We have studied the stability of the histone-like, DNA-binding protein HU from the hyperthermophilic eubacterium Thermotoga maritima and its E34D mutant by differential scanning microcalorimetry and CD under acidic conditions at various concentrations within the range of 2-225 micro m of monomer. The thermal unfolding of both proteins is highly reversible and clearly follows a two-state dissociation/unfolding model from the folded, dimeric state to the unfolded, monomeric one. The unfolding enthalpy is very low even when taking into account that the two disordered DNA-binding arms probably do not contribute to the cooperative unfolding, whereas the quite small value for the unfolding heat capacity change (3.7 kJ.K(-1).mol(-1)) stabilizes the protein within a broad temperature range, as shown by the stability curves (Gibbs energy functions vs. temperature), even though the Gibbs energy of unfolding is not very high either. The protein is stable at pH 4.00 and 3.75, but becomes considerably less so at pH 3.50 and below, to the point that a simple decrease in concentration will lead to unfolding of both the wild-type and the mutant protein at pH 3.50 and low temperatures. This indicates that various acid residues lose their charges leaving uncompensated positively charged clusters. The wild-type protein is more stable than its E34D mutant, particularly at pH 4.00 and 3.75 although less so at 3.50 (1.8, 1.6 and 0.6 kJ.mol(-1) at 25 degrees C for DeltaDeltaG at pH 4.00, 3.75 and 3.50, respectively), which seems to be related to the effect of a salt bridge between E34 and K13.  相似文献   

14.
Core-packing mutants of proteins often approach molten globule states, and hence may have attributes of folding intermediates. We have studied a core-packing mutant of thioredoxin, L78K, in which a leucine residue is substituted by lysine, using 15N heteronuclear two- and three-dimensional NMR. Chemical shift differences between the mutant and wild-type main-chain resonances reveal that structural changes caused by the mutation are localized within 12 A of the altered side chain. The majority of resonances are unchanged, as are many 1H-1H NOEs indicative of the main-chain fold, suggesting that the structure of L78K is largely similar to wild type. Hydrogen exchange studies reveal that residues comprising the central beta-sheet of both mutant and wild-type proteins constitute a local unfolding unit, but with the unfolding/folding equilibrium approximately 12 times larger in L78K. The dynamics of main-chain NH bonds in L78K were studied by 15N spin relaxation and compared with a previous study of wild type. Order parameters for angular motion of NH bonds in the mutant are on average lower than in wild type, suggesting greater spatial freedom on a rapid time scale, but may also be related to different rotational correlation times in the two proteins. There is also evidence of greater conformational exchange in the mutant. Differences between mutant and wild type in hydrogen exchange and main-chain dynamics are not confined to the vicinity of the mutation. We infer that mispacking of the protein core in one location affects local dynamics and stability throughout.  相似文献   

15.
Molecular dynamics simulations of protein folding and unfolding are often carried out at temperatures (400-600 K) that are much higher than physiological or room temperature to speed up the (un)folding process. Use of such high temperatures changes both the protein and solvent properties considerably, compared to physiological or room temperature. Water models designed for use in conjunction with biomolecules, such as the simple point charge (SPC) model, have generally been calibrated at room temperature and pressure. To determine the distortive effect of high simulation temperatures on the behavior of such "room temperature" water models, the structural, dynamic, and thermodynamic properties of the much-used SPC water model are investigated in the temperature range from 300 to 500 K. Both constant pressure and constant volume conditions, as used in protein simulations, were analyzed. We found that all properties analyzed change markedly with increasing temperature, but no phase transition in this temperature range was observed.  相似文献   

16.
Certain mutations within the protective antigen (PA) moiety of anthrax toxin endow the protein with a dominant-negative (DN) phenotype, converting it into a potent antitoxin. Proteolytically activated PA oligomerizes to form ring-shaped heptameric complexes that insert into the membrane of an acidic intracellular compartment and promote translocation of bound edema factor and/or lethal factor to the cytosol. DN forms of PA co-oligomerize with the wild-type protein and block the translocation process. We prepared and characterized 4 DN forms: a single, a double, a triple, and a quadruple mutant. The mutants were made by site-directed mutation of the cloned form of PA in Escherichia coli and tested by various assays conducted on CHO cells or in solution. All 4 mutant PAs were competent for heptamerization and ligand binding but were defective in the pH-dependent functions: pore formation, ability to convert to the SDS-resistant heptamer, and ability to translocate bound ligand. The single mutant (F427K) showed less attenuation than the others in the pH-dependent functions and lower DN activity in a CHO cell assay. The quadruple (K397D + D425K + F427A + 2beta2-2beta3) deletion showed the most potent DN activity at low concentrations but also gave indications of low stability in a urea-mediated unfolding assay. The double mutant (K397D + D425K) and the triple (K397D + D425K + F427A) showed strong DN activity and slight reduction in stability relative to the wild-type protein. The properties of the double and the triple mutants make these forms worthy of testing in vivo as a new type of antitoxic agent for treatment of anthrax.  相似文献   

17.
Molecular dynamics simulations were employed to study how protein solution structure and dynamics are affected by adaptation to high temperature. Simulations were carried out on a para-nitrobenzyl esterase (484 residues) and two thermostable variants that were generated by laboratory evolution. Although these variants display much higher melting temperatures than wild-type (up to 18 degrees C higher) they are both >97% identical in sequence to the wild-type. In simulations at 300 K the thermostable variants remain closer to their crystal structures than wild-type. However, they also display increased fluctuations about their time-averaged structures. Additionally, both variants show a small but significant increase in radius of gyration relative to wild-type. The vibrational density of states was calculated for each of the esterases. While the density of states profiles are similar overall, both thermostable mutants show increased populations of the very lowest frequency modes (<10 cm(-1)), with the more stable mutant showing the larger increase. This indicates that the thermally stable variants experience increased concerted motions relative to wild-type. Taken together, these data suggest that adaptation for high temperature stability has resulted in a restriction of large deviations from the native state and a corresponding increase in smaller scale fluctuations about the native state. These fluctuations contribute to entropy and hence to the stability of the native state. The largest changes in localized dynamics occur in surface loops, while other regions, particularly the active site residues, remain essentially unchanged. Several mutations, most notably L313F and H322Y in variant 8G8, are in the region showing the largest increase in fluctuations, suggesting that these mutations confer more flexibility to the loops. As a validation of our simulations, the fluctuations of Trp102 were examined in detail, and compared with Trp102 phosphorescence lifetimes that were previously measured. Consistent with expectations from the theory of phosphorescence, an inverse correlation between out-of-plane fluctuations on the picosecond time scale and phosphorescence lifetime was observed.  相似文献   

18.
Two mutants of the zinc finger peptide Xfin-31 (Ac-YKCGLCERSFVEKSALSRHQRVHKN-CONH2) containing alterations to the conserved hydrophobic core have been constructed and their zinc-bound structures investigated by 1H NMR techniques. In the first (Xfin-31B) a double mutation R8F/F10G places the conserved core aromatic residue at position 8 rather than position 10. In the second (Xfin-31C), Phe-10 is replaced by Leu. A qualitative analysis of 1H chemical shifts, NOE connectivities and coupling constants indicates that the global folds of both mutants are similar to that of the wild-type protein. However, amide exchange rates suggest that the F10L mutant is much less stable than either the wild-type or the R8F/F10G mutant.  相似文献   

19.
Cànaves JM  Leon DA  Taylor SS 《Biochemistry》2000,39(49):15022-15031
The regulatory (R) subunit of cAMP-dependent protein kinase (cAPK) is a multidomain protein with two tandem cAMP-binding domains, A and B. The importance of cAMP binding on the stability of the R subunit was probed by intrinsic fluorescence and circular dichroism (CD) in the presence and absence of urea. Several mutants were characterized. The site-specific mutants R(R209K) and R(R333K) had defects in cAMP-binding sites A and B, respectively. R(M329W) had an additional tryptophan in domain B. Delta(260-379)R lacked Trp260 and domain B. The most destabilizing mutation was R209K. Both CD and fluorescence experiments carried out in the presence of urea showed a decrease in cooperativity of the unfolding, which also occurred at lower urea concentrations. Unlike native R, R(R209K) was not stabilized by excess cAMP. Additionally, CD revealed significant alterations in the secondary structure of the R209K mutant. Therefore, Arg209 is important not only as a contact site for cAMP binding but also for the intrinsic structural stability of the full-length protein. Introducing the comparable mutation into domain B, R333K, had a smaller effect on the integrity and stability of domain A. Unfolding was still cooperative; the protein was stabilized by excess cAMP, but the unfolding curve was biphasic. The R(M329W) mutant behaved functionally like the native protein. The Delta(260-379)R deletion mutant was not significantly different from wild-type RIalpha in its stability. Consequently, domain B and the interaction between Trp260 and cAMP bound to site A are not critical requirements for the structural stability of the cAPK regulatory subunit.  相似文献   

20.
Amino acid mutation(s) that cause(s) partial or total unfolding of a protein can lead to disease states and failure to produce mutants. It is therefore very useful to be able to predict which mutations can retain the conformation of a wild-type protein and which mutations will lead to local or global unfolding of the protein. We have developed a fast and reasonably accurate method based on a backbone-dependent side-chain rotamer library to predict the (folded or unfolded) conformation of a protein upon mutation. This method has been tested on proteins whose wild-type 3D structures are known and whose mutant conformations have been experimentally characterized to be folded or unfolded. Furthermore, for the cases studied here, the predicted partially folded or denatured mutant conformation correlate with a decrease in the stability of the mutant relative to the wild-type protein. The key advantage of our method is that it is very fast and predicts locally or globally unfolded states fairly accurately. Hence, it may prove to be useful in designing site-directed mutagenesis, X-ray crystallography and drug design experiments as well as in free energy simulations by helping to ascertain whether a mutation will alter or retain the wild-type conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号