首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract

Previously we described the B-Z junctions produced in oligomers containing (5meCG)4 segments in the presence of 5.0 M NaCl or 50 uM Co(NH3)6 +3 [Sheardy, R.D. & Winkle, S.A., Biochemistry 28, 720–725 (1989); Winkle, S. A., Aloyo, M.C., Morales, N., Zambrano, T.Y. & Sheardy, R.D., Biochemistry 30, 10601–10606 (1991)]. The circular dichroism spectra of an analogous unmethylated oligomer containing (CG)4, termed BZ-IV, in 5.0 M NaCl and in 50 uM CO(NH3)+3 suggest, however, that this oligomer does not form a B-Z hybrid. BZ-IV possesses Hha I sites (CGCG) in the (CG)4 segment and an Mbo I site (GATC) at the terminus of the (CG)4 segment BZ-IV is equally digestible in the presence and absence of cobalt hexamine by Hha I, further indicating that the structure of BZ-IV is fully B-like under these conditions. The Mbo I cleavage site at the juncture between the (CG)4 segment and the adjacent random segment displays enhanced cleavage by both Mbo I and its isoschizomer Sau3A I in the presence of cobalt hexamine. In addition, exonuclease IH digestion of BZ-IV is inhibited at this juncture. Actinomycin inhibits Mbo I activity in the presence of cobalt hexamine but not in the absence. Together, these results suggest that enzymes recognize the interfaces of (CG)n and adjacent random sequences as altered substrates even in the absence of a B-Z junction formation.  相似文献   

2.
3.
4.
The energetics of the Sox-5 HMG box interaction with DNA duplexes, containing the recognition sequence AACAAT, were studied by fluorescence spectroscopy, isothermal titration calorimetry (ITC) and differential scanning calorimetry (DSC). Fluorescence titration showed that the association constant of this HMG box with the duplexes is of the order 4x10(7) M(-1), increasing somewhat with temperature rise, i.e. the Gibbs energy is -40 kJ mol(-1) at 5 degrees C, decreasing to -48 kJ mol(-1) at 32 degrees C. ITC measurements of the enthalpy of association over this temperature range showed an endothermic effect below 17 degrees C and an exothermic effect above, suggesting a heat capacity change on binding of about -4 kJ K(-1) mol(-1), a value twice larger than expected from structural considerations. A straightforward interpretation of ITC data in heat capacity terms assumes, however, that the heat capacities of all participants in the association reaction do not change over the considered temperature range. Our previous studies showed that over the temperature range of the ITC experiments the HMG box of Sox-5 starts to unfold, absorbing heat and the heat capacities of the DNA duplexes also increase significantly. These heat capacity effects differ from that of the DNA/Sox-5 complex. Correcting the ITC measured binding enthalpies for the heat capacity changes of the components and complex yielded the net enthalpies which exhibit a temperature dependence of about -2 kJ K(-1) mol(-1), in good agreement with that predicted on the basis of dehydration of the protein-DNA interface. Using the derived heat capacity change and the enthalpy and Gibbs energy of association measured at 5 degrees C, the net enthalpy and entropy of association of the fully folded HMG box with the target DNA duplexes was determined over a broad temperature range. These functions were compared with those for other known cases of sequence specific DNA/protein association. It appears that the enthalpy and entropy of association of minor groove binding proteins are more positive than for proteins binding in the major groove. The observed thermodynamic characteristics of protein binding to the A+T-rich minor groove of DNA might result from dehydration of both polar and non-polar groups at the interface and release of counterions. The expected entropy of dehydration was calculated and found to be too large to be compensated by the negative entropy of reduction of translational/rotational freedom. This implies that DNA/HMG box association proceeds with significant decrease of conformational entropy, i.e. reduction in conformational mobility.  相似文献   

5.
6.
The thermal properties and energetics of formation of 10, 12 and 16 bp DNA duplexes, specifically interacting with the HMG box of Sox-5, have been studied by isothermal titration calorimetry (ITC) and differential scanning calorimetry (DSC). DSC studies show that the partial heat capacity of these short duplexes increases considerably prior to the cooperative process of strand separation. Direct extrapolation of the pre and post-transition heat capacity functions into the cooperative transition zone suggests that unfolding/dissociation of strands results in no apparent heat capacity increment. In contrast, ITC measurements show that the negative enthalpy of complementary strand association increases in magnitude with temperature rise, implying that strand association proceeds with significant decrease of heat capacity. Furthermore, the ITC-measured enthalpy of strand association is significantly smaller in magnitude than the enthalpy of cooperative unfolding measured by DSC. To resolve this paradox, the heat effects upon heating and cooling of the separate DNA strands have been measured by DSC. This showed that cooling of the strands from 100 degrees C to -10 degrees C proceeds with significant heat release associated with the formation of intra and inter-molecular interactions. When the enthalpy of residual structure in the strands and the temperature dependence of the heat capacity of the duplexes and of their unfolded strands have been taken into account, the ITC and DSC results are brought into agreement. The analysis shows that the considerable increase in heat capacity of the duplexes with temperature rise is due to increasing fluctuations of their structure (e.g. end fraying and twisting) and this effect obscures the heat capacity increment resulting from the cooperative separation of strands, which in fact amounts to 200(+/-40) JK(-1) (mol bp)(-1). Using this heat capacity increment, the averaged standard enthalpy, entropy and Gibbs energy of formation of fully folded duplexes from fully unfolded strands have been determined at 25 degrees C as -33(+/-2) kJ (mol bp)(-1), -93(+/-4) J K(-1) (mol bp)(-1) and -5.0(+/-0.5) kJ (mol bp)(-1), respectively.  相似文献   

7.
A nitroxide spin-labeled analogue of thymidine (1a), in which the methyl group is replaced by an acetylene-tethered nitroxide, was evaluated as a probe for structural and dynamics studies of sequence specifically spin-labeled DNA. Residue 1a was incorporated into synthetic deoxyoligonucleotides by using automated phosphite triester methods. 1H NMR, CD, and thermal denaturation studies indicate that 1a (T*) does not significantly alter the structure of 5'-d(CGCGAATT*CGCG) from that of the native dodecamer. EPR studies on monomer, single-stranded, and duplexed DNA show that 1a readily distinguishes environments of different rigidity. Comparison of the general line-shape features of the observed EPR spectra of several small duplexes (12-mer, 24-mer) with simulated EPR spectra assuming isotropic motion suggests that probe 1a monitors global tumbling of small duplexes. Increasing the length of the DNA oligomers results in significant deviation from isotropic motion, with line-shape features similar to those of calculated spectra of objects with isotropic rotational correlation times of 20-100 ns. EPR spectra of a spin-labeled GT mismatch and a T bulge in long DNAs are distinct from those of spin-labeled Watson-Crick paired DNAs, further demonstrating the value of EPR as a tool in the evaluation of local dynamic and structural features in macromolecules.  相似文献   

8.
9.
10.
To clarify the physical basis of DNA binding specificity, the thermodynamic properties and DNA binding and bending abilities of the DNA binding domains (DBDs) of sequence-specific (SS) and non-sequence-specific (NSS) HMG box proteins were studied with various DNA recognition sequences using micro-calorimetric and optical methods. Temperature-induced unfolding of the free DBDs showed that their structure does not represent a single cooperative unit but is subdivided into two (in the case of NSS DBDs) or three (in the case of SS DBDs) sub-domains, which differ in stability. Both types of HMG box, most particularly SS, are partially unfolded even at room temperature but association with DNA results in stabilization and cooperation of all the sub-domains. Binding and bending measurements using fluorescence spectroscopy over a range of ionic strengths, combined with calorimetric data, allowed separation of the electrostatic and non-electrostatic components of the Gibbs energies of DNA binding, yielding their enthalpic and entropic terms and an estimate of their contributions to DNA binding and bending. In all cases electrostatic interactions dominate non-electrostatic in the association of a DBD with DNA. The main difference between SS and NSS complexes is that SS are formed with an enthalpy close to zero and a negative heat capacity effect, while NSS are formed with a very positive enthalpy and a positive heat capacity effect. This indicates that formation of SS HMG box-DNA complexes is specified by extensive van der Waals contacts between apolar groups, i.e. a more tightly packed interface forms than in NSS complexes. The other principal difference is that DNA bending by the NSS DBDs is driven almost entirely by the electrostatic component of the binding energy, while DNA bending by SS DBDs is driven mainly by the non-electrostatic component. The basic extensions of both categories of HMG box play a similar role in DNA binding and bending, making solely electrostatic interactions with the DNA.  相似文献   

11.
Structure-prone DNA repeats are common components of genomic DNA in all kingdoms of life. In humans, these repeats are linked to genomic instabilities that result in various hereditary disorders, including many cancers. It has long been known that DNA repeats are not only highly polymorphic in length but can also cause chromosomal fragility and stimulate gross chromosomal rearrangements, i.e., deletions, duplications, inversions, translocations and more complex shuffles. More recently, it has become clear that inherently unstable DNA repeats dramatically elevate mutation rates in surrounding DNA segments and that these mutations can occur up to ten kilobases away from the repetitive tract, a phenomenon we call repeat-induced mutagenesis (RIM). This review describes experimental data that led to the discovery and characterization of RIM and discusses the molecular mechanisms that could account for this phenomenon.  相似文献   

12.
We have constructed a genetic assay which selects positively for a functional interaction between Tet repressor and its cognate operator in Escherichia coli. In this strain Tet repressor blocks expression of lacI and lacZ. This leads to derepression of a lacPO controlled galK gene. The strain can be selected by growth on galactose as the sole carbon source and screened for the beta-galactosidase phenotype. These features allow the identification of one candidate among 10(8) false clones on a single plate. The assay was applied to select mutants with a ts DNA binding phenotype and to screen oligonucleotide generated Tet repressor mutants. Analysis of these mutations revealed that they affect DNA and inducer binding and possibly the dimerization domains. These mutations are located at residues 21, 48, 49, 89 and at the C terminus of the protein (193), respectively.  相似文献   

13.
Hsiao NW  Samuel D  Liu YN  Chen LC  Yang TY  Jayaraman G  Lyu PC 《Biochemistry》2003,42(38):11183-11193
A unique class of proteins, containing high-mobility group (HMG) domain(s), recognizes unusual DNA structures and/or bends specific to AT-rich linear double-stranded DNA. The DNA binding feature of these proteins is exhibited in the HMG domain(s). Although the sequence specific and non-sequence specific HMG domains exhibit very high degrees of sequence similarity, the reasons for the difference between their DNA recognition mechanisms are unclear. A series of zebra fish SOX9 HMG domain mutants was prepared in an effort to elucidate the importance of various residues on protein stability and DNA binding. This study is the first of a comprehensive mutagenesis study on a sequence specific HMG domain. Comparing how various residues influence sequence specific and non-sequence specific HMG domains helps us to rationalize their mode of action. Positively charged amino acids concentrated at the surface of sequence specific HMG domains recognize specific, linear AT-rich DNA segments. After the negative charges at the surface of the DNA are neutralized, the hydrophobic residues of the protein may intercalate DNA. Phenylalanine at position 12 plays a crucial role in the sequence specific HMG domain. The differences in pI values, the instability index, and DNA contact regions between sequence and non-sequence specific HMG domains are associated with their functional modes.  相似文献   

14.
The HMG box of human LEF-1 (hLEF-1, formerly TCF1alpha) has been expressed in four forms: a parent box of 81 amino acids and constructs having either a 10 amino acid C-terminal extension, a 9 amino acid N-terminal extension, or both. These four species have been compared for DNA binding and bending ability using a 28 bp recognition sequence from the TCR alpha-chain enhancer. In the bending assay, whereas the parent box and that with the N-terminal extension bent the DNA by 57/58 degrees, the box extended at the C-terminus bent the DNA by 77/78 degrees, irrespective of the presence or absence of the N-terminal extension. A 6- fold increase in DNA affinity also resulted from addition of both terminal extensions. These observations redefine the functional boundaries of the HMG box. The structure of a mouse LEF-1/DNA complex recently published [Love et al. (1995) Nature 376, 791-795] implies that the higher DNA affinity and in particular the increased bend angle observed are consequences, at least in part, of the C-terminal extension spanning the major groove on the inside of the DNA bend.  相似文献   

15.
HMG 14 and protamine can be used to enhance intermolecular ligation of low concentrations of linear DNA. Adding HMG 14 (50 moles per mole DNA) caused 50% of blunt-ended DNA to form predominantly dimers, and all cohesive-ended DNA to form multimers (greater than 6-mer) in response to T4 ligase. Protamine was maximally effective at 40:1, producing mostly dimers and trimers. Adding higher concentrations of HMG 14 did not affect the ligation pattern of cohesive-ended DNA, while higher concentrations of protamine inhibit the formation of multimers. Phosphorylation of HMG 14 at Ser 20 by Ca(++)-phospholipid dependent protein kinase abolished the ability of HMG 14 to stimulate intermolecular ligation, but did not substantially interfere with intramolecular ligation, or the binding of HMG 14 to linear or circular DNA as assessed by gel mobility. Thus Ser 20, which is located in the amino terminal DNA-binding domain of HMG 14, appears to modulate DNA-DNA interactions.  相似文献   

16.
Molecular dynamics simulations of the complex formed between the HMG box of the lymphoid enhancer-binding factor (LEF-1) and its cognate DNA duplex were carried out with explicit inclusion of water. The simulation started with an NMR-based model (pdb code 2LEF) and the dynamics was pursued for 10 nanoseconds without constraints. It revealed that water intervenes in many ionic/polar interactions, establishing in particular local equilibria between direct and water-mediated hydrogen bonds, and thus increasing the entropy of the complex. Quite unexpectedly, the simulation indicated that a binding pocket for a specific water molecule may be reversibly formed at the apex of the bend induced in the DNA helix by LEF-1 binding, where a methionine side chain intercalates between two destacked adenines. We observed that the specific water molecule can temporarily replace the intercalated S-CH(3) group, acting as a sort of "extension" of the side chain. The residence time of this water molecule was about 3.5 ns. Simulations of the cognate DNA alone showed that this sequence has no intrinsic tendency to bend; therefore, the bending occurs solely as a consequence of the recognition, following the "induced-fit" mechanism.  相似文献   

17.
ABSTRACT

The basic ideas of replication, mutagenesis, and repair have outlined a picture of how point mutations occur that has provided a valuable framework for theory and experiment, much as the Standard Model of particle physics has done for our concept of fundamental particles. However, alternative modes of mutagenesis are being defined that are changing our perspective of the “Standard Model” of mutagenesis, requiring an expanded model. The genome is now envisioned as being in dynamic equilibrium between a multitude of forces for mutational change and forces that counteract such change. By maintaining a delicate balance between these forces, cells avoid unwanted or excessive mutations. Yet, cells allow mutagenesis to occur under certain conditions. We can define an emerging paradigm. Namely, mechanisms exist that can direct point mutations to specific designated genes or regions of genes. In some cases, this is achieved by specific enzymes, and in other cases high mutability is programmed into the sequence of certain genes to help generate diversity. In yet additional cases, general mutability is increased under stress, and selective forces allow the recovery of favorable mutants.  相似文献   

18.
Abstract

The sequence dependent conformation, flexibility and hydration properties of DNA molecules constitute selectivity determinants in the formation of protein-DNA complexes. TATA boxes in which AT basepairs (bp) have been substituted by IC bp (TITI box) allow for probing these selectivity determinants for the complexation with the TATA box-binding protein (TBP) with different sequences but identical chemical surfaces. The reference promoter Adenovirus 2 Major Late Promoter (mlp) is formed by the apposition of two sequences with very different dynamic properties: an alternating TATA sequence and an A-tract. For a comparative study, we carried out molecular dynamics simulations of two DNA oligomers, one containing the mlp sequence (2 ns), and the other an analog where AT basepairs were substituted by IC basepairs (1 ns). The simulations, carried out with explicit solvent and counteri-ons, yield straight purine tracts, the A-tract being stiffer than the I-tract, an alternating structure for the YRYR tracts, and hydration patterns that differ between the purine tracts and the alternating sequence tracts. A detailed analysis of the proposed interactions responsible for the stiffness of the purine tracts indicates that the stacking between the bases bears the strongest correlation to stiffness. The hydration properties of the minor groove in the two oligomers are distinctly different. Such differences are likely to be responsible for the stronger binding of TBP to mlp over the inosine-substituted variant. The calculations were made possible by the development, described here, of a new set of forcefield parameters for inosine that complement the published CHARMM all-hydrogen nucleic acid parametrization.  相似文献   

19.
Analysis of the mechanistic basis by which sodium-coupled transport systems respond to changes in membrane potential is inherently complex. Algebraic expressions for the primary kinetic parameters (K m and V max ) consist of multiple terms that encompass most rate constants in the transport cycle. Even for a relatively simple cotransport system such as the Na+/alanine cotransporter in LLC-PK1 cells (1:1 Na+ to substrate coupling, and an ordered binding sequence), the algebraic expressions for K m for either substrate includes ten of the twelve rate constants necessary for modeling the full transport cycle. We show here that the expression of K m of the first-bound substrate (Na+) simplifies markedly if the second-bound substrate (alanine) is held at a low concentration so that its' binding becomes the rate limiting step. Under these conditions, the expression for the K Na m includes rate constants for only two steps in the full cycle: (i) binding/dissociation of Na+, and (ii) conformational `translocation' of the substrate-free protein. The influence of imposed changes in membrane potential on the apparent K Na m for the LLC-PK1 alanine cotransporter at low alanine thus provides insight to potential dependence at these sites. The data show no potential dependence for K Na m at 5 μm alanine, despite marked potential dependence at 2 mm alanine when the full algebraic expression applies. The results suggest that neither translocation of the substrate-free form of the transporter nor binding/dissociation of extracellular sodium are potential dependent events for this transport system. Received: 10 April 1998/Revised: 6 July 1998  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号