首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The demand for natural and nonpersistent insecticides is increasing day by day. Plant cell cultures could be an alternative to conventional methods of production of insecticides from field-grown plants. In vitro cultured plant cells produce a wide array of insecticides as a part of their secondary metabolism. Their ability to synthesize key enzymes and the manipulation of these could lead to the enhanced production of many insecticides of industrial importance. The development of a high-yielding hairy root culture system for thiophenes, nicotine, and phytoecdysones is of considerable interest. In this article, the current literature on various factors that influence the growth, production, and secretion of six insecticidal compounds, namely, pyrethrins, azadirachtin, thiophenes, nicotine, rotenoids, and phytoecdysones which have been prospects for the scale-up of cell cultures, genetic engineering to obtain transgenic plants, and metabolically engineered plants for increased production of bio-molecules, has been discussed. Environmental safety clearance and the future prospects of application of biomolecules for plant-derived insecticides are presented.  相似文献   

2.
Plants ofNicotiana tabacum L. cv. Burley 21 which showed no difference in nicotine content were used to establish callus cultures. Cultures were initiated from different plants and from different leaves within each plant. The nicotine content of the calli was determined, and the results subjected to an analysis of variance. Differences between plants and differences within plants significantly affected the nicotine content of the cultures. The differences between plants were transmitted sexually and asexually, providing evidence that they are genetically determined. No such differences in nicotine content were found between the plants from which the cultures were established, indicating that nicotine production in vitro involves additional genes to those which are needed for nicotine production in the plant. The differences within plants were further investigated by establishing callus cultures from pith explants taken from different parts of the stem. Explants from apical pith tissue gave calli having far more nicotine and more roots than cultures derived from basal pith explants. This results may reflect the proximity of the apical pith explants to the site of auxin synthesis in the stem apex. Callus cultures derived from pith explants showed greater growth and nicotine production than those derived from leaf explants when the calli were induced on Murashige-Skoog medium containing -naphthalene acetic acid. This result is in conflict with the widely held belief that explants from different parts of the plant give cultures with similar yields of species-specific compounds.Abbreviations HN High nicotine - LN low nicotine  相似文献   

3.
Callus cultures of two low-alkaloid lines of Nicotiana tabacum L. had considerably lower nicotine contents than cultures from the respective highalkaloid cultivars which were isogenic except for the two loci for alkaloid accumulation. Thus, there was a strong correlation between the nicotine content of callus cultures and the plants from which they were derived.  相似文献   

4.
The human liver cytochrome P450 (CYP) 2A6 and the respiratory CYP2A13 enzymes play role in nicotine metabolism and activation of tobacco-specific nitrosamine carcinogens. Inhibition of both enzymes could offer a strategy for smoking abstinence and decreased risks of respiratory diseases and lung cancer. In this study, activity-guided isolation identified four flavonoids 14 (apigenin, luteolin, chrysoeriol, quercetin) from Vernonia cinerea and Pluchea indica, four hirsutinolide-type sesquiterpene lactones 58 from V. cinerea, and acetylenic thiophenes 911 from P. indica that inhibited CYP2A6- and CYP2A13-mediated coumarin 7-hydroxylation. Flavonoids were most effective in inhibition against CYP2A6 and CYP2A13, followed by thiophenes, and hirsutinolides. Hirsutinolides and thiophenes exhibited mechanism-based inhibition and in irreversible mode against both enzymes. The inactivation kinetic KI values of hirsutinolides against CYP2A6 and CYP2A13 were 5.32–15.4 and 0.92–8.67 µM, respectively, while those of thiophenes were 0.11–1.01 and 0.67–0.97 µM, respectively.  相似文献   

5.
Abstract

In plants, an increased production of toxic oxygen species is commonly observed under low oxygen stress, but cellular responses still have to be fully investigated. Plant cell cultures can be a valuable tool to study plant metabolic responses to various environmental stresses including low oxygen condition. Arabidopsis suspension cultures growing in shake flasks were subjected to hypoxia by stopping shaking for different intervals, showing an increase of the antioxidant metabolite α‐tocopherol. In order to obtain a more controlled condition, cultivation of Arabidopsis suspension cultures was established in a 5‐l stirred bioreactor. A constant aeration of 20% dissolved oxygen was found to be the most suitable for cell growth. A 4‐h anoxic shock was induced by suspending the aeration and flushing into the vessel with nitrogen. During the anoxic stress, tocopherol levels resulted increased at the end of the treatment, indicating that the complete oxygen deprivation, indeed, induced a defence response involving antioxidant metabolism. The presence of an oxidative stress as a consequence of anoxic condition was also confirmed by the increased levels of H2O2. Overall, these results indicate that Arabidopsis suspension cultures grown in a stirred bioreactor can be a useful in vitro system for investigating low oxygen stress.  相似文献   

6.
Roots of Primula veris L. contain considerable amounts of triterpene saponins, which are used in medicine as expectorants. P. veris is in many places an endangered plant, and its production in the field is laborious and a low yielding process. Plant tissue culture provides an alternative means for producing secondary metabolites. Shoot apex, callus, suspension, and root cultures of P. veris were developed for saponin production. In these cultures, the content of triterpene saponins, with focus on primula acid I, the most dominant saponin in Primula species, was determined and compared to that in soil-grown plants. The highest content of primula acid I was observed in root cultures, on average 29.5 mg/g dry weight. Some culture lines contained higher amounts of primula acid I (62.6 mg/g dry weight) than the roots of plants grown in soil.  相似文献   

7.
Accumulation of secondary metabolites is one of the common reactions of plants to ozone exposure in nature. To investigate the effect of ozone on the production of desired compounds of plant cell cultures, we assayed hypericin production of Hypericum perforatum suspension cell cultures treated with different doses of ozone at different culture phases. The results show that hypericin contents of the cells treated with 60 to 180 nL L?1 ozone are significantly higher than those of the control, showing that ozone exposure may stimulate hypericin synthesis. Hypericin production of the cells treated with ozone at exponential phase is higher than that of lag and stationary phase, which suggests that exponential phase cell cultures are more responsive to ozone exposure than lag and stationary phase cells. The highest hypericin production is obtained by the cells exposed to 90 nL L?1 ozone at late exponential phase for 3 h, being about fourfold of the control. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

8.
Different methods of in vitro culture of Catharanthus roseus provide new sources of plant material for the production of secondary metabolites such as indole alkaloids. Callus, cell suspension, plantlets, and transgenic roots cultured in the bioreactor are used in those experiments. The most promising outcomes include the production of the following indole alkaloids: ajmalicine in unorganised tissue, catharanthine in the leaf and cell culture in the shake flask and airlift bioreactor, and vinblastine in shoots and transformed roots. What is very important, enzymatic coupling of monomeric indole alkaloids, vindoline and catharanthine, is possible to form vinblastine in cell cultures. The method of catharanthine and ajmalicine production in the suspension culture in bioreactors has been successful. In this method, elicitation may be used acting on different metabolic pathways. Also of interest is the method of obtaining arbutin from the callus culture of C. roseus conducted with hydroquinone. The transformed root culture seems to be the most promising for alkaloid production. The genetically transformed roots, obtained by the infection with Agrobacterium rhizogenes, produce higher levels of secondary metabolites than intact plants. Also, whole plants can be regenerated from hairy roots. The content of indole alkaloids in the transformed roots was similar or even higher when compared to the amounts measured in studies of natural roots. The predominant alkaloids in transformed roots are ajmalicine, serpentine, vindoline and catharanthine, found in higher amounts than in untransformed roots. Transformed hairy roots have been also used for encapsulation in calcium alginate to form artificial seeds.  相似文献   

9.
The effect of alternative carbohydrate sources to sucrose for plant regeneration from long-term cell cultures of creeping bentgrass (Agrostis palustris Huds.cv.Penncross) and japonica rice (Oryza sativa L.cv.Nipponbare) was studied. Both maltose and lactose supported a higher degree of regeneration compared to sucrose; in 8-and 19-month-old cultures of creeping bentgrass, the frequencies of regenerating calli remained at 76–93% and the numbers of plants regenerated were 8 to 36-fold higher. In 35-month-old cultures of japonica rice, 2–4% of the calli were capable of regeneration on maltose and lactose media. These results indicate that loss of plant regeneration in long-term cultures is caused, at least in part, by specific cultural conditions and not by genetic changes.  相似文献   

10.
S. S. Radwan  C. K. Kokate 《Planta》1980,147(4):340-344
Callus cultures of Trigonella foenum-graecum contained 3 to 4 times more trigonelline than the seeds of this plant and 12 to 13 times more than the roots and shoots. Even higher levels of this alkaloid were produced by suspension cultures. This high productivity was maintained during successive subculturing of calli and cell suspensions for eight months. Thus, trigonelline is to be added to the group of the few metabolites whose synthesis in cell cultures exceeds its production in the differentiated plants. Media that had supported the growth of suspension cultures contained one third or more of the total alkaloid, whereas media of callus cultures contained about one tenth of this substance. Trigonelline accumulated in callus and suspension cultures with aging. Raising the level of nicotinic acid in the nutrient medium resulted in some increase of trigonelline production by the culture.Abbreviations 2.4 D 2.4-dichlorophenoxyacetic acid - IAA indoleacetic acid - IPA indolepropionic acid - NAA -naphthaleneacetic acid - GA Gibberellic acid - K kinetin  相似文献   

11.
A tobacco callus strain, OMT-53, was selected from many cultures as a desirable strain having high nicotine producing capacity. Several culture conditions were examined, aiming to get higher nicotine production with the callus strain, OMT-53. It was revealed that the nicotine production was remarkably enhanced when the callus tissues were cultured at a limited concentration of α-NAA in culture medium. The optimal concentrations of sucrose and nitrogen in the culture medium were 3 % and 840 mg N/L respectively. Some precursors in nicotine biosynthesis were examined, and only ornithine gave a slightly positive effect at 2x10-4m concentration. Cultures at 25°C produced the highest yield for nicotine. Considerable amounts of nicotine (ca. 20% of total nicotine) were also recognized in the culture medium. Under the best culture condition mentioned above, nicotine production in tobacco callus tissues has been elevated to 2.14% on D.W, basis at 4 weeks’ culture. This value is near to that of the intact tobacco plants.  相似文献   

12.
The compatibility of the entomopathogenic fungus Lecanicillium muscarium and chemical insecticides used to control the second instar stages of the sweetpotato whitefly, Bemisia tabaci, was investigated. The effect on spore germination of direct exposure for 24 h to the insecticides imidacloprid, buprofezin, teflubenzuron and nicotine was determined. Only exposure to buprofezin was followed by acceptable spore germination. However, all chemicals significantly reduced spore germination when compared to a water control. Infectivity of L. muscarium in the presence of dry residues of buprofezin, teflubenzuron and nicotine (imidacloprid is a systemic pesticide) on foliage were also investigated. No significant detrimental effects on the level of control of B. tabaci was recorded when compared with fungi applied to residue free foliage on either tomato or verbena plants. Fungi in combination with imidacloprid gave higher B. tabaci mortality on verbena foliage compared to either teflubenzuron or nicotine and fungi combinations. Use of these chemical insecticides with L. muscarium in integrated control programmes for B. tabaci is discussed.  相似文献   

13.
Exposure to ozone induced a rapid increase in the levels of the phytohormone abscisic acid (ABA) and sequentially followed by the enhancement of Taxol production in suspension cell cultures of Taxus chinensis. The observed increases in ABA and Taxol were dependent on the concentration of ozone applied to T. chinensis cell cultures. To examine the role of ABA in ozone‐induced Taxol production, we pretreated the cells with ABA biosynthesis inhibitor fluridone to abolish ozone‐triggered ABA generation and assayed the effect of fluridone on ozone‐induced Taxol production. The results showed that pretreatment of the cells with fluridone not only suppressed the ozone‐triggered ABA generation but also blocked the ozone‐induced Taxol production. Moreover, our data indicate that the effect of ABA on Taxol production of T. chinensis cell cultures is dose‐dependent. Interestingly, the suppression of fluridone on ozone‐induced Taxol production was reversed by exogenous application of low dose of ABA, although treatment of low dose ABA alone had no effect on Taxol production of the cells. Together, the data indicated that ozone was an efficient elicitor for improving Taxol production of plant cell cultures. Furthermore, we demonstrated that ABA played critical roles in ozone‐induced Taxol production of T. chinensis suspension cell cultures. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

14.
The sedative triterpene, galphimine B (1), was detected in cell suspension-batch cultures of Galphimia glauca. The effect of inoculum size, growth regulators and different concentrations of sucrose, nitrates and phosphates was evaluated. A two-stage batch process for biomass production and accumulation of compound 1 was established. Major cellular growth (15 g l–1 dry wt) was obtained in the first stage with naphthaleneacetic acid (2 mg l–1) + kinetin (2 mg l–1). Adding 4 mg 2,4-dichlorophenoxyacetic l–1 acid in the second stage resulted in the highest accumulation of 1 (0.21 mg g–1 dry wt) which was 36% higher with respect to calluses and comparable to that obtained from wild plants.  相似文献   

15.
Hairy roots of Tagetes patula have been grown in aqueous two-phase systems. After selecting suitable polymers from single-phase experiments (in which salt phases were unable to support growth in the desired concentrations) several two-phase systems were tested for their influence on cell growth and thiophene production. Cell growth occurred in all aqueous two-phase systems, but the highest growth rate was achieved in normal medium. There was no difference in thiophene production between medium and aqueous two-phase systems. The partition of thiophenes favoured slightly the more hydrophobic top phase in most cases, while the cells were confined to the bottom phase. One aqueous two-phase system (15% polyethyleneglycol 10,000 and 15% Reppal PES 200) was tested in a stirred tank reactor with normal medium as a control. The growth rate in medium was higher than in the aqueous two-phase system, while the thiophene production per unit cell weight was in the same range for both systems. The excretion of thiophenes in the reactor with the aqueous two-phase system was about ten times as high as in the control reactor. The amount excreted was however still not more than 3% of the total production.  相似文献   

16.
Normal roots of Capsicum frutescens were excised from tissue-cultured plants into half strength Murashige and Skoog's medium with 2.23 μM naphthalene acetic acid. Maximum growth of cultured roots was 6.5 g fresh weight 40 ml-1, as recorded on day 20. Even though normal roots were unable to accumulate capsaicin, they contained other phenylpropanoid intermediates and vanillylamine, as detected by HPLC analysis. Normal roots of Capsicum frutescens were treated with ferulic acid and protocatechuic aldehyde in order to study their biotransformation ability. Ferulic acid, which is the nearest precursor to vanillin, when fed at concentrations of 1 and 2 mM led to the accumulation of vanilla flavour metabolites, vanillin being the major one. In cultures treated with 1 and 2 mM ferulic acid, maximum vanillin accumulation of 12.3 and 16.4 μM was observed, on day 6 after precursor addition, respectively. Feeding of ferulic acid and β-cyclodextrin complex (2 mM each) enhanced the accumulation of biotransformed products. Moreover, vanillin accumulation was recorded as 24.7 μM on day 6 after precursor addition, which was 1.5 times higher than in cultures fed with ferulic acid (2 mM) alone. When ferulic acid was fed along with β-cyclodextrin (1 mM each) to cultures growing in a three-litre bubble column bioreactor, the maximum vanillin production of 10.7 μM was obtained; other vanilla flavour metabolites were also formed after 9 days of precursor addition. Root cultures could also biotransform protocatechuic aldehyde wherein a maximum vanillin production of 7.9 μM was recorded on day 6 after precursor addition. The bioconversion efficiency was observed to be 5–7% in case of ferulic acid fed cultures and 3.2% in case of protocatechuic aldehyde fed cultures suggesting the possible channelling of precursors to alternate biosynthetic pathways such as lignin.  相似文献   

17.
ABSTRACT

Plant cell cultivations are being considered as an alternative to agricultural processes for producing valuable phytochemicals. Since many of these products (secondary metabolites) are obtained by direct extraction from plants grown in natural habitat, several factors can alter their yield. The use of plant cell cultures has overcome several inconveniences for the production of these secondary metabolites. Organized cultures, and especially root cultures, can make a significant contribution in the production of secondary metabolites. Most of the research efforts that use differentiated cultures instead of cell suspension cultures have focused on transformed (hairy) roots. Agrobacterium rhizogenes causes hairy root disease in plants. The neoplastic (cancerous) roots produced by A. rhizogenes infection are characterized by high growth rate, genetic stability and growth in hormone free media. These genetically transformed root cultures can produce levels of secondary metabolites comparable to that of intact plants. Hairy root cultures offer promise for high production and productivity of valuable secondary metabolites (used as pharmaceuticals, pigments and flavors) in many plants. The main constraint for commercial exploitation of hairy root cultivations is the development and scaling up of appropriate reactor vessels (bioreactors) that permit the growth of interconnected tissues normally unevenly distributed throughout the vessel. Emphasis has focused on designing appropriate bioreactors suitable to culture the delicate and sensitive plant hairy roots. Recent reactors used for mass production of hairy roots can roughly be divided as liquid-phase, gas-phase, or hybrid reactors. The present review highlights the nature, applications, perspectives and scale up of hairy root cultures for the production of valuable secondary metabolites.  相似文献   

18.
The growing demand for t‐resveratrol for industrial uses has generated considerable interest in its production. Heterologous resveratrol production in plant cell suspensions, apart from requiring the introduction of only one or two genes, has the advantage of high biomass yield and a short cultivation time, and thus could be an option for large‐scale production. Silybum marianum is the source of the flavonolignan silymarin. Phenylpropanoid synthesis in cultures of this species can be activated by elicitation with methyl jasmonate and methylated β‐cyclodextrins, with products of the pathway (coniferyl alcohol and some isomers of the silymarin complex) being released into the medium. Given that stilbene synthase shares the same key precursors involved in flavonoid and /or monolignol biosynthesis, we explored the potential of metabolically engineered S. marianum cultures for t‐resveratrol production. Cell suspensions were stably transformed with Vitis vinifera stilbene synthase 3 and the expression of the transgene led to extracellular t‐resveratrol accumulation at the level of milligrams per litre under elicitation. Resveratrol synthesis occurred at the expense of coniferyl alcohol. Production of silymarin was less affected in the transgenic cultures, since the flavonoid pathway is limiting for its synthesis, due to the preferred supply of precursors for the monolignol branch. The fact that the expressed STS gene took excessively produced precursors of non‐bioactive compounds (coniferyl alcohol), while keeping the metabolic flow for target secondary compounds (i.e. silymarin) unaltered, opens a way to extend the applications of plant cell cultures for the simultaneous production of both constitutive and foreign valuable metabolites.  相似文献   

19.
The effect of oxidative stress on indole alkaloids accumulation by cell suspensions and root cultures of Uncaria tomentosa in bioreactors was investigated. Hydrogen peroxide (H2O2, 200 μM) added to U. tomentosa cell suspension cultures in shaken flasks induced the production of monoterpenoid oxindole alkaloids (MOA) up to 40.0 μg/L. In a stirred tank bioreactor, MOA were enhanced by exogenous H2O2 (200 μM) from no detection up to 59.3 μg/L. Root cultures grew linearly in shaken flasks with a μ=0.045 days?1 and maximum biomass of 12.08±1.24 g DW/L (at day 30). Roots accumulated 3α‐dihydrocadambine (DHC) 2354.3±244.8 μg/g DW (at day 40) and MOA 348.2±32.1 μg/g DW (at day 18). Exogenous addition of H2O2 had a differential effect on DHC and MOA production in shaken flasks. At 200 μM H2O2, MOA were enhanced by 56% and DHC by 30%; while addition of 800 and 1000 μM H2O2, reduced by 30–40% DHC accumulation without change in MOA. Root cultures in the airlift reactor produced extracellular H2O2 with a characteristic biphasic profile after changing aeration. Maximum MOA was 9.06 mg/L at day 60 while at this time roots reached ca. 1 mg/L of DHC. Intracellular H2O2 in root cultures growing in the bioreactor was 0.87 μmol/g DW compared to 0.26 μmol/g DW of shaken flasks cultures. These results were in agreement with a higher activity of the antioxidant enzymes superoxide dismutase and peroxidase by 6‐ and 2‐times, respectively. U. tomentosa roots growing in the airlift bioreactor were exposed to an oxidative stress and their antioxidant system was active allowing them to produce oxindole alkaloids.  相似文献   

20.
Variation of Alkaloid Production in Nicotiana rustica Callus Cultures   总被引:1,自引:0,他引:1  
Callus cultures have been established from the seed, root and leaf of Nicotiana rustica L. var. brasilia in a synthetic medium containing 1 μM 2,4-D and μM kinetin. These callus tissues behaved similarly not only in growth and organogenesis but also in nicotine production. The nicotine contents of callus cultures, which were in the order of 0.25–0.58% of dry weight during a few passages subsequent to callus induction, rapidly decreased to trace amounts in succeeding subcultures in association with the decline of the root-regenerating activity. On the other hand, free cells prepared from a callus tissue in the third passage developed into individual clones showing wide differences in growth and nicotine production. One of these clones gave rise to a relatively stable strain which is capable of producing nicotine at a high rate (0.29% of dry weight) in the absence of organization. The significance of these findings is discussed in connection with some results which have been reported for other callus cultures of Nicotiana species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号