首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Arylhydrazines found in the mushroom Agaricus bisporus have been shown to be carcinogenic. Upon metabolic activation, arylhydrazines are transformed into aryl radicals, forming 8-arylpurines, which may play a role in arylhydrazine carcinogenesis. These adducts are poorly read and inhibit chain extension but do alter the conformational preferences of oligonucleotides. We have shown that C8-phenylguanine modification of d(CGCGCG*CGCG) (G*= 8-phenylguanine) stabilizes it in the Z-DNA conformation (B/Z-DNA=1:1, 200 mM NaCl, pH 7.4). Here we have conducted molecular dynamics and free energy calculations to determine the sources(s) of these conformational affects and to predict the affect of the related C8-tolyl and C8-hydroxymethylphenyl guanine adducts on B/Z-DNA equilibrium. Force field parameters for the modified guanines were first developed using Guassian98 employing the B3LYP method and the standard 6-31G* basis set and fit to the Cornell 94 force field with RESP. Molecular dynamics simulations and free energy calculations, using the suite of programs contained in Amber 6 and 7 with the Cornell 94 force field, were used to determine the structural and thermodynamic properties of the DNA. The principal factors that drive conformation are stacking of the aryl group over the 5'-cytosine in the phenyl and tolyl modified oligonucleotides while hydrogen bonding opposes stacking in the hydroxymethylphenyl derivative. The phenyl and tolyl-modified DNA's favored the Z-DNA form as did the hydroxymethylphenyl derivative when hydrogen bonding was not present. The B-DNA conformation was preferred by the unmodified oligonucleotide and by the hydroxymethylphenyl-modified oligonucleotide when hydrogen bonding was considered. Z-DNA stability was not found to directly correlated with carcinogenicity and additional biological factors, such as recognition and repair, may also need to be considered in addition to Z-DNA formation.  相似文献   

2.
We describe the packing features of the oligonucleotide duplex d(AAATTT)2, as determined by X-ray diffraction. There is little information on sequences that only contain A and T bases. The present structure confirms that these sequences tend to pack as a helical arrangement of stacked oligonucleotides in a B conformation with Watson-Crick hydrogen bonding. Our results demonstrate that the virtual TA base step between stacked duplexes has a negative twist that improves base stacking. This observation is consistent with the low stability of TA base steps in B-form DNA.  相似文献   

3.
Abstract

We describe the packing features of the oligonucleotide duplex d(AAATTT)2, as determined by X-ray diffraction. There is little information on sequences that only contain A and T bases. The present structure confirms that these sequences tend to pack as a helical arrangement of stacked oligonucleotides in a B conformation with Watson-Crick hydrogen bonding. Our results demonstrate that the virtual TA base step between stacked duplexes has a negative twist that improves base stacking. This observation is consistent with the low stability of TA base steps in B-form DNA.  相似文献   

4.
Meneni SR  Shell SM  Gao L  Jurecka P  Lee W  Sponer J  Zou Y  Chiarelli MP  Cho BP 《Biochemistry》2007,46(40):11263-11278
A systematic spectroscopic and computational study was conducted in order to probe the influence of base sequences on stacked (S) versus B-type (B) conformational heterogeneity induced by the major dG adduct derived from the model carcinogen 7-fluoro-2-aminofluorene (FAF). We prepared and characterized eight 12-mer DNA duplexes (-AG*N- series, d[CTTCTAG*NCCTC]; -CG*N- series, d[CTTCTCG*NCCTC]), in which the central guanines (G*) were site-specifically modified with FAF with varying flanking bases (N = G, A, C, T). S/B heterogeneity was examined by CD, UV, and dynamic 19F NMR spectroscopy. All the modified duplexes studied followed a typical dynamic exchange between the S and B conformers in a sequence dependent manner. Specifically, purine bases at the 3'-flanking site promoted the S conformation (G > A > C > T). Simulation analysis showed that the S/B energy barriers were in the 14-16 kcal/mol range. The correlation times (tau = 1/kappa) were found to be in the millisecond range at 20 degrees C. The van der Waals energy force field calculations indicated the importance of the stacking interaction between the carcinogen and neighboring base pairs. Quantum mechanics calculations showed the existence of correlations between the total interaction energies (including electrostatic and solvation effects) and the S/B population ratios. The S/B equilibrium seems to modulate the efficiency of Escherichia coli UvrABC-based nucleotide excision repair in a conformation-specific manner: i.e., greater repair susceptibility for the S over B conformation and for the -AG*N- over the -CG*N- series. The results indicate a novel structure-function relationship, which provides insights into how bulky DNA adducts are accommodated by UvrABC proteins.  相似文献   

5.
It is known that oligonucleotides containing cyclonucleosides with a high anti (intermediate between anti and syn) glycosidic conformation adopt left-handed, single- and double-helical structures [Uesugi, S., Yano, J., Yano, E., & Ikehara, M. (1977) J. Am. Chem. Soc. 99, 2313-2323]. In order to see whether DNA can adopt the high anti left-handed double-helical structure or not, a self-complementary hexanucleotide containing 6,2'-O-cyclocytidine (C(o)), 8,2'-O-cycloguanosine (G(o)), thymidine, and deoxyadenosine, C(o)G(o)dTdAC(o)G(o), was synthesized. Imino proton NMR spectra and the results of nuclear Overhauser effect experiments strongly suggest that C(o)G(o)dTdAC(o)G(o) adopts a left-handed double-helical structure where the deoxynucleoside residues are involved in hydrogen bonding and take a high anti glycosidic conformation. A conformational model of the left-handed duplex was obtained by calculation with energy minimization. Thus it appears that DNA can form a high anti, left-handed double helix under some constrained conditions, which is quite different from that of Z-DNA.  相似文献   

6.
A series of 1,5-disubstituted tetrazole-tethered combretastatin analogues with extended hydrogen-bond donors at the ortho-positions of the aryl A and B rings were developed and evaluated for their antitubulin and antiproliferative activity. We wanted to test whether intramolecular hydrogen-bonding used as a conformational locking element in these analogues would improve their activity. The correlation of crystal structures with the antitubulin and antiproliferative profiles of the modified analogues suggested that hydrogen-bond-mediated conformational control of the A ring is deleterious to the bioactivity. In contrast, although there was no clear evidence that intramolecular hydrogen bonding to the B ring enhanced activity, we found that increased substitution on the B ring had a positive effect on antitubulin and antiproliferative activity. Among the various analogues synthesized, compounds 5d and 5e, having hydrogen-bonding donor groups at the ortho and meta-positions on the 4-methoxy phenyl B ring, are strong inhibitors of tubulin polymerization and antiproliferative agents having IC50 value in micromolar concentrations.  相似文献   

7.
The structures of ZI- and ZII-form RNA and DNA oligonucleotides were energy minimized in vacuum using the AMBER molecular mechanics force field. Alternating C-G sequences were studied containing either unmodified nucleotides, 8-bromoguanosine in place of all guanosine residues, 5-bromocytidine in place of all cytidine residues, or all modified residues. Some molecules were also energy minimized in the presence of H2O and cations. Free energy perturbation calculations were done in which G8 and C5 hydrogen atoms in one or two residues of Z-form RNAs and DNAs were replaced in a stepwise manner by bromines. Bromination had little effect on the structures of the energy-minimized molecules. Both the minimized molecular energies and the results of the perturbation calculations indicate that bromination of guanosine at C8 will stabilize the Z forms of RNA and DNA relative to the nonbrominated Z form, while bromination of cytidine at C5 stabilizes Z-DNA and destabilizes Z-RNA. These results are in agreement with experimental data. The destabilizing effect of br5C in Z-RNAs is apparently due to an unfavorable interaction between the negatively charged C5 bromine atom and the guanosine hydroxyl group. The vacuum-minimized energies of the ZII-form oligonucleotides are lower than those of the corresponding ZI-form molecules for both RNA and DNA. Previous x-ray diffraction, nmr, and molecular mechanics studies indicate that hydration effects may favor the ZI conformation over the ZII form in DNA. Molecular mechanics calculations show that the ZII-ZI energy differences for the RNAs are greater than three times those obtained for the DNAs. This is due to structurally reinforcing hydrogen-bonding interactions involving the hydroxyl groups in the ZII form, especially between the guanosine hydroxyl hydrogen atom and the 3'-adjacent phosphate oxygen. In addition, the cytidine hydroxyl oxygen forms a hydrogen bond with the 5'-adjacent guanosine amino group in the ZII-form molecule. Both of these interactions are less likely in the ZI-form molecule: the former due to the orientation of the GpC phosphate away from the guanosine ribose in the ZI form, and the latter apparently due to competitive hydrogen bonding of the cytidine 2'-hydroxyl hydrogen with the cytosine carbonyl oxygen in the ZI form. The hydrogen-bonding interaction between the cytidine hydroxyl oxygen and the 5'-adjacent guanosine amino group in Z-RNA twists the amino group out of the plane of the base. This may be responsible for differences in the CD and Raman spectra of Z-RNA and Z-DNA.  相似文献   

8.
We have determined the single crystal x-ray structure of the synthetic DNA hexamer d(pCpGpCpGpCpG) in two different crystal forms. The hexamer pCGCGCG has the Z-DNA conformation and in both cases the asymmetric unit contains more than one Z-DNA duplex. Crystals belong to the space group C222(1) with a = 69.73, b = 52.63, and c = 26.21 A, and to the space group P2(1) with a = 49.87, b = 41.26, c = 21.91 A, and gamma = 97.12 degrees. Both crystals show new crystal packing modes. The molecules also show striking new features when compared with previously determined Z-DNA structures: 1) the bases in one duplex have a large inclination with respect to the helical axis, which alters the overall shape of the molecule. 2) Some cytosine nitrogens interact by hydrogen bonding with phosphates in neighbor molecules. Similar base-phosphate interactions had been previously detected in some B-DNA crystals. 3) Basepair stacking between the ends of neighbor molecules is variable and no helical continuity is maintained between contiguous hexamer duplexes.  相似文献   

9.
The transition between the B and Z conformations of double-helical deoxyribonucleic acid (DNA) belongs to the most complex and elusive conformational changes occurring in biomolecules. Since the accidental discovery of the left-handed Z-DNA form in the late 1970s, research on this DNA morphology has been engaged in resolving questions relative to its stability, occurrence, and function in biological processes. While the occurrence of Z-DNA in vivo is now widely recognized and the major factors influencing its thermodynamical stability are largely understood, the intricate conformational changes that take place during the B-to-Z transition are still unknown at the atomic level. In this article, we report simulations of this transition for the 3'-(CGCGCG)-5' hexamer duplex using targeted molecular dynamics with the GROMOS96 force field in explicit water under different ionic-strength conditions. The results suggest that for this oligomer length and sequence, the transition mechanism involves: 1), a stretched intermediate conformation, which provides a simple solution to the important sterical constraints involved in this transition; 2), the transient disruption of Watson-Crick hydrogen-bond pairing, partly compensated energetically by an increase in the number of solute-solvent hydrogen bonds; and 3), an asynchronous flipping of the bases compatible with a zipperlike progression mechanism.  相似文献   

10.
The crystal structure of a hexamer duplex d(CACGTG)(2) has been determined and refined to an R-factor of 18.3% using X-ray data up to 1.2 A resolution. The sequence crystallizes as a left-handed Z-form double helix with Watson-Crick base pairing. There is one hexamer duplex, a spermine molecule, 71 water molecules, and an unexpected diamine (Z-5, 1,3-propanediamine, C(3)H(10)N(2)) in the asymmetric unit. This is the high-resolution non-disordered structure of a Z-DNA hexamer containing two AT base pairs in the interior of a duplex with no modifications such as bromination or methylation on cytosine bases. This structure does not possess multivalent cations such as cobalt hexaammine that are known to stabilize Z-DNA. The overall duplex structure and its crystal interactions are similar to those of the pure-spermine form of the d(CGCGCG)(2) structure. The spine of hydration in the minor groove is intact except in the vicinity of the T5A8 base pair. The binding of the Z-5 molecule in the minor grove of the d(CACGTG)(2) duplex appears to have a profound effect in conferring stability to a Z-DNA conformation via electrostatic complementarity and hydrogen bonding interactions. The successive base stacking geometry in d(CACGTG)(2) is similar to the corresponding steps in d(CG)(3). These results suggest that specific polyamines such as Z-5 could serve as powerful inducers of Z-type conformation in unmodified DNA sequences with AT base pairs. This structure provides a molecular basis for stabilizing AT base pairs incorporated into an alternating d(CG) sequence.  相似文献   

11.
AAF linked to the guanine amino group: a B-Z junction.   总被引:1,自引:1,他引:0       下载免费PDF全文
Minimized conformational potential energy calculations have been performed for AAF linked to dCpdG at the guanine amino group. This is a model for the minor AAF adduct observed in DNA, whose conformational influence has been difficult to ascertain. A global minimum energy conformation was computed with torsion angles like those of the dCpdG residue of Z-DNA. This conformation was incorporated into a larger polymer model at a B-Z junction, with the carcinogen residing in the groove in the Z direction. Local minimum energy conformations of the B type were also computed. In addition, two minima were found with fluorenecytidine stacking. These results suggest that existing B-Z junctions may be vulnerable to modification by AAF at the guanine amino group, or that such junctions may be induced by the carcinogen if the base sequence is appropriate. Otherwise the carcinogen can be located in the minor groove of the B helix (5, 10, 11) or covalently intercalated (13-15).  相似文献   

12.
Contiguous stacking hybridization of oligodeoxyribonucleotides with DNA as template was investigated using three types of complexes: oligonucleotide contiguously stacked with the stem of the preformed minihairpin (complexes I), oligonucleotide tandems containing two (complexes II) or three (complexes III) short oligomers with a common DNA template. Enthalpy Delta H degrees and entropy Delta S degrees of the coaxial stacking of adjacent duplexes were determined for GC/G*pC, GT/A*pC, AC/G*pT, AT/A*pT, CT/A*pG, AG/C*pT, AA/T*pT and TT/A*pA nicked (*) dinucleotide base pairs. The maximal efficiency of co-operative interaction was found for the GC/G*pC interface (Delta G degrees(NN/N*pN)=-2.7 kcal/mol) and the minimal one for the AA/T*pT interface (Delta G degrees(NN/N*pN)=-1.2 kcal/mol) at 37 degrees C. As a whole, the efficiency of the base pairs interaction Delta G degrees(NN/N*pN) in the nick is not lower than that within the intact DNA helix (Delta G degrees(NN/NN)).These observed Delta G degrees(NN/N*pN) values are proposed may include the effect of the partial removal of fraying at the adjacent helix ends additionally to the effect of the direct stacking of the terminal base pairs in the duplex junction (Delta G degrees(NN/NN). The thermodynamic parameters have been found to describe adequately the formation of all tandem complexes of the II and III types with oligonucleotides of various length and hybridization properties. The performed thermodynamic analysis reveals features of stacking oligonucleotide hybridization which allow one to predict the temperature dependence of association of oligonucleotides and the DNA template within tandem complexes as well as to determine optimal concentration for formation of these complexes characterized by high co-operativity level.  相似文献   

13.
Natural and artificial oligonucleotides are capable of assuming many different conformations and functions. Here we present results of an NMR restrained molecular modelling study on the conformational preferences of the modified decanucleotide d((m)C1G2(m)C3G4C5(L)G6(L)(m)C7G8(m)C9G10) .d((m)C11G12(m)C13G14C15(L)G (L)16(m)C17-G18(m)C19G20 ) which contains L deoxynucleotides in its centre. This chimeric DNA was expected to form a right-left-right-handed B-type double-helix (BB*B) at low salt concentration. Actually, it matured into a fully right-handed double helix with its central C(L)pG(L) core forming a right-handed Z-DNA helix embedded in a B-DNA matrix (BZ*B). The interplay between base-base and base-sugar stackings within the core and its immediately adjacent residues was found to be critical in ensuring the stabilisation of the right-handed helix. The structure could serve as a model for the design of antisense oligonucleotides resistant to nucleases and capable of hybridising to natural DNAs and RNAs.  相似文献   

14.
We have used 2D NMR spectroscopy to study the sugar conformations of oligonucleotides containing a conformationally restricted nucleotide (LNA) with a 2'-O, 4'-C-methylene bridge. We have investigated a modified 9-mer single stranded oligonucleotide as well as three 9- and 10-mer modified oligonucleotides hybridized to unmodified DNA. The single-stranded LNA contained three modifications whereas the duplexes contained one, three and four modifications, respectively. The LNA:DNA duplexes have normal Watson-Crick base-pairing with all the nucleotides in anti-conformation. By use of selective DQF-COSY spectra we determined the ratio between the N-type (C3'-endo) and S-type (C2'-endo) sugar conformations of the nucleotides. In contrast to the corresponding single-stranded DNA (ssDNA), we found that the sugar conformations of the single-stranded LNA oligonucleotide (ssLNA) cannot be described by a major S-type conformer of all the nucleotides. The nucleotides flanking an LNA nucleotide have sugar conformations with a significant population of the N-type conformer. Similarly, the sugar conformations of the nucleotides in the LNA:DNA duplexes flanking a modification were also shown to have significant contributions from the N-type conformation. In all cases, the sugar conformations of the nucleotides in the complementary DNA strand in the duplex remain in the S-type conformation. We found that the locked conformation of the LNA nucleotides both in ssLNA and in the duplexes organize the phosphate backbone in such a way as to introduce higher population of the N-type conformation. These conformational changes are associated with an improved stacking of the nucleobases. Based on the results reported herein, we propose that the exceptional stability of the LNA modified duplexes is caused by a quenching of concerted local backbone motions (preorganization) by the LNA nucleotides in ssLNA so as to decrease the entropy loss on duplex formation combined with a more efficient stacking of the nucleobases.  相似文献   

15.
The aim of the present study is to determine the chemical structure and conformation of DNA adducts formed by incubation of the bioactive form of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), N-acetoxy-PhIP, with a single-stranded 11mer oligodeoxyribonucleotide. Using conditions optimized to give the C8-dG-PhIP adduct as the major product, sufficient material was synthesized for NMR solution structure determination. The NMR data indicate that in duplex DNA this adduct exists in equilibrium between two different conformational states. In the main conformer, the covalently bound PhIP molecule intercalates in the helix, whilst in the minor conformation the PhIP ligand is probably solvent exposed. In addition to the C8-dG-PhIP adduct, at least eight polar adducts are found after reaction of N-acetoxy-PhIP with the oligonucleotide. Three of these were purified for further characterization and shown to exhibit lowest energy UV absorption bands in the range 342–347 nm, confirming the presence of PhIP or PhIP derivative. Accurate mass determination of two of the polar adducts by negative ion MALDI-TOF MS revealed ions consistent with a spirobisguanidino-PhIP derivative and a ring-opened adduct. The third adduct, which has the same mass as the C8-dG-PhIP oligonucleotide adduct, may contain PhIP bound to the N2 position of guanine.  相似文献   

16.
Studies have been made of conformational parameters in single crystal structures of very short chain oligonucleotides consisting of strands with lengths in the range 2-3 bases. Using published data extracted from the Cambridge structural database for 20 such structures, a total of 14 base-pairs were found, of which 10 were hetero-pairs and 4 homo-pairs. Subjecting these to analysis to examine hydrogen bond parameters, propeller twist, buckle and C1'-C1' separation revealed an average propeller twist of 11.6 degrees, with no dependence of this parameter on hydrogen bonding details. In addition, an analysis of base stacking showed there to be no correlation between in-plane geometry and degree of inter-plane overlap.  相似文献   

17.
The B form of DNA exists in equilibrium with the Z form and is mainly affected by sequence, electrostatic interactions, and steric effects. C8-purine substitution shifts the equilibrium toward the Z form though how this interaction overcomes the unfavorable electrostatic interactions and decrease in stacking in the Z form has not been determined. Here, a series of C8-arylguanine derivatives, bearing a para-substituent were prepared and the B/Z equilibrium determined. B/Z ratios were measured by CD and conformational effects of the aryl substitution determined by NMR spectroscopy and molecular modeling. The para-substituent was found to have a significant effect on the B/Z DNA equilibrium caused by altering base-pair stacking of the B form and modifying the hydration/ion shell of the B form. A unique melting temperature versus salt concentration was observed and provides evidence relevant to the mechanism of B/Z conformational interconversion.  相似文献   

18.
We synthesized several DNA oligonucleotides containing one or several 2′-O-methyl-8-methyl guanosine (m8Gm) and demonstrated that these oligonucleotides not only stabilize the Z-DNA with a wide range of sequences under low salt conditions but also possess high thermal stability. Using artificial nucleobase-containing oligonucleotides, we studied the interaction of the Zα domain with Z-DNA. Furthermore, we showed that the m8Gm-contained oligonucleotides allow to study the photochemical reaction of Z-DNA.  相似文献   

19.
Twisted intercalating nucleic acids (TINA) possessing acridine derivatives have been synthesized via the postsynthetic modifications of oligonucleotides possessing insertions of (R)-1-O-(4-iodobenzyl)glycerol (8) or (R)-1-O-(4-ethynylbenzyl)glycerol (9) at the 5'-end or in the middle as a bulge. In the first postsynthetic step, oligonucleotides 8 and 9 on the CPG support were treated with a Sonogashira coupling reaction mixture containing 9-chloro-2-ethynylacridine or 9-chloro-2-iodoacridine, respectively. After the postsynthetic step, treatment of the oligonucleotides with 32% aq ammonia or 50% ethanolic solution of tris(2-aminoethyl)amine led to the substitution of chloride on acridine concurrent with deprotection of the bases and cleavage of the oligonucleotides from CPG. Molecular modeling of the parallel triplex with a bulged insertion of the monomer (R)-3-O-[4-(9-aminoacridin-2-ylethynyl)benzyl]glycerol in the triplex-forming oligonucleotide (TFO) showed that the acridine moiety was stacking between the bases of the duplex, while phenyl was placed between the bases of the TFO. Thermal denaturation studies and fluorescence properties of TINA-acridine oligonucleotide duplexes and triplexes are discussed.  相似文献   

20.
A preferential target of antisense oligonucleotides directed against human PGY/MDR1 mRNA is a hairpin containing a stem with a G*U wobble pair, capped by the purine-rich 5'r(GGGAUG)3' hexaloop. This hairpin is studied by multidimensional NMR and restrained molecular dynamics, with special emphasis on the conformation of south sugars and non-standard phosphate linkages evidenced in both the stem and the loop. The hairpin is found to be highly structured. The G*U wobble pair, a strong counterion binding site, displays structural particularities that are characteristic of this type of mismatch. The upper part of the stem undergoes distortions that optimize its interactions with the beginning of the loop. The loop adopts a new fold in which the single-stranded GGGA purine tract is structured in A-like conformation stacked in continuity of the stem and displays an extensive hydrogen bonding surface for recognition. The remarkable hairpin stability results from classical inter- and intra-strand interactions reinforced by numerous hydrogen bonds involving unusual backbone conformations and ribose 2'-hydroxyl groups. Overall, this work emphasizes numerous features that account for the well-ordered structure of the whole hairpin and highlights the loop properties that facilitate interaction with antisense oligonucleotides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号