首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alterations in the local dynamics of Cu/Zn Superoxide dismutase (SOD1) due to mutations affect the protein folding, stability, and function leading to misfolding and aggregation seen in amyotrophic lateral sclerosis (ALS). Here, we study the structure and dynamics of the most devastating ALS mutation, A4V SOD1 in aqueous trifluoroethanol (TFE) through experiments and simulation. Far‐UV circular dichroism (CD) studies shows that TFE at intermediate concentrations (~15% ‐ 30%) induce partially unfolded β‐sheet‐rich extended conformations in A4V SOD1 which subsequently aggregates. Molecular dynamics (MD) simulation results shows that A4V SOD1 increases local dynamics in the active site loops that leads to the destabilization of the β‐barrel and loss of hydrophobic contacts, thus stipulating a basis for aggregation. Free energy landscape (FEL) and essential dynamics (ED) analysis demonstrates the conformational heterogeneity in A4V SOD1. Our results thus shed light on the role of local unfolding and conformational dynamics in aggregation of SOD1.  相似文献   

2.
Fourteen years after the discovery that mutations in Cu, Zn superoxide dismutase (SOD1) cause a subset of familial amyotrophic lateral sclerosis (fALS), the mechanism by which mutant SOD1 exerts toxicity remains unknown. The two principle hypotheses are (a) oxidative damage stemming from aberrant SOD1 redox chemistry, and (b) misfolding of the mutant protein. Here we review the structure and function of wild-type SOD1, as well as the changes to the structure and function in mutant SOD1. The relative merits of the two hypotheses are compared and a common unifying principle is outlined. Lastly, the potential for therapies targeting SOD1 misfolding is discussed.  相似文献   

3.
Khare SD  Wilcox KC  Gong P  Dokholyan NV 《Proteins》2005,61(3):617-632
Diverse point mutations in the enzyme Cu, Zn superoxide dismutase (SOD1) are linked to its aggregation in the familial form of the disease amyotrophic lateral sclerosis. The disease-associated mutations are known to destabilize the protein, but the structural basis of the aggregation of the destabilized protein and the structure of aggregates are not well understood. Here, we investigate in silico the sequence and structural determinants of SOD1 aggregation: (1) We identify sequence fragments in SOD1 that have a high aggregation propensity, using only the sequence of SOD1, and (2) we perform molecular dynamics simulations of the SOD1 dimer folding and misfolding. In both cases, we identify identical regions of the protein as having high propensity to form intermolecular interactions. These regions correspond to the N- and C-termini, and two crossover loops and two beta-strands in the Greek-key native fold of SOD1. Our results suggest that the high aggregation propensity of mutant SOD1 may result from a synergy of two factors: the presence of highly amyloidogenic sequence fragments ("hot spots"), and the presence of these fragments in regions of the protein that are structurally most likely to form intermolecular contacts under destabilizing conditions. Therefore, we postulate that the balance between the self-association of aggregation-prone sequences and the specific structural context of these sequences in the native state determines the aggregation propensity of proteins.  相似文献   

4.
Cu, Zn superoxide dismutase (SOD1) has been implicated in the familial form of the neurodegenerative disease amyotrophic lateral sclerosis (ALS). It has been suggested that mutant mediated SOD1 misfolding/aggregation is an integral part of the pathology of ALS. We study the folding thermodynamics and kinetics of SOD1 using a hybrid molecular dynamics approach. We reproduce the experimentally observed SOD1 folding thermodynamics and find that the residues which contribute the most to SOD1 thermal stability are also crucial for apparent two-state folding kinetics. Surprisingly, we find that these residues are located on the surface of the protein and not in the hydrophobic core. Mutations in some of the identified residues are found in patients with the disease. We argue that the identified residues may play an important role in aggregation. To further characterize the folding of SOD1, we study the role of cysteine residues in folding and find that non-native disulfide bond formation may significantly alter SOD1 folding dynamics and aggregation propensity.  相似文献   

5.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that is characterized by the selective loss of motor neurons. Approximately 5% to 10% of patients with ALS have a family history of the disease, and approximately 20% of familial amyotrophic lateral sclerosis (fALS) cases are associated with mutations in Cu/Zn superoxide dismutase (SOD1). In this study, we evaluated the structural and functional effects of human A4F and A4V SOD1 protein mutations. We performed an in silico analysis using prediction algorithms of nonsynonymous single-nucleotide polymorphisms (nsSNPs) associated with the fALS development. Our structural conservation results show that the mutations analyzed (A4V and A4F) were in a highly conserved region. Molecular dynamics simulations using the Linux GROMACS package revealed how these mutations affect protein structure, protein stability, and aggregation. These results suggest that there might be an effect on the SOD1 function. Understanding the molecular basis of disease provides new insights useful for rational drug design and advancing our understanding of the ALS development.  相似文献   

6.
ALS (amyotrophic lateral sclerosis) is a fatal neurodegenerative disease attributable to the death of motor neurons. Associated with ALS are mutations in the genes encoding SOD1 (superoxide dismutase 1), FUS (fused in Sarcoma) protein and TDP-43 (TAR DNA-binding protein-43) each of which leads to aggregation of the respective protein. For example, the ALS-associated mutations in the hSOD1 (human SOD1) gene typically destabilize the native SOD homodimer, leading to misfolding, aggregation and degradation of SOD1. The ALS-associated pathology is not a consequence of the functional inactivation of SOD1 itself, but is rather due to a toxic gain-of-function triggered by mutant SOD1. Recently, the molecular basis of a number of human neurodegenerative diseases resulting from protein misfolding and aggregation, including fALS (familial ALS), was probed by using the baker's yeast, Saccharomyces cerevisiae, as a highly tractable model. Such studies have, for example, identified novel mutant SOD1-specific interactions and demonstrated that mutant SOD1 disrupts mitochondrial homoeostasis. Features of ALS associated with TDP-43 aggregation have also been recapitulated in S. cerevisiae including the identification of modulators of the toxicity of TDP-43. In this paper, we review recent studies of ALS pathogenesis using S. cerevisiae as a model organism and summarize the potential mechanisms involved in ALS progression.  相似文献   

7.
Dominant mutations in Cu,Zn-superoxide dismutase (SOD1) are a cause of a familial form of amyotrophic lateral sclerosis. Wild-type SOD1 forms a highly conserved intra-molecular disulfide bond, whereas pathological SOD1 proteins are cross-linked via intermolecular disulfide bonds and form insoluble oligomers. A thiol-disulfide status in SOD1 will thus play a regulatory role in determining its folding/misfolding pathways; however, it remains unknown how pathogenic mutations in SOD1 affect the thiol-disulfide status to facilitate the protein misfolding. Here, we show that the structural destabilization of SOD1 scrambles a disulfide bond among four Cys residues in an SOD1 molecule. The disulfide scrambling produces SOD1 monomers with distinct electrophoretic mobility and also reproduces the formation of disulfide-linked oligomers. We have also found that the familial form of amyotrophic lateral sclerosis-causing mutations facilitate the disulfide scrambling in SOD1. Based upon our results, therefore, scrambling of the conserved disulfide bond will be a key event to cause the pathological changes in disease-associated mutant SOD1 proteins.  相似文献   

8.
More than 100 different mutations in Cu,Zn-superoxide dismutase (SOD1) are linked to a familial form of amyotrophic lateral sclerosis (fALS). Pathogenic mutations facilitate fibrillar aggregation of SOD1, upon which significant structural changes of SOD1 have been assumed; in general, however, a structure of protein aggregate remains obscure. Here, we have identified a protease-resistant core in wild-type as well as fALS-causing mutant SOD1 aggregates. Three different regions within an SOD1 sequence are found as building blocks for the formation of an aggregate core, and fALS-causing mutations modulate interactions among these three regions to form a distinct core, namely SOD1 aggregates exhibit mutation-dependent structural polymorphism, which further regulates biochemical properties of aggregates such as solubility. Based upon these results, we propose a new pathomechanism of fALS in which mutation-dependent structural polymorphism of SOD1 aggregates can affect disease phenotypes.  相似文献   

9.
Dominant mutations in Cu,Zn-superoxide dismutase (SOD1) cause a familial form of amyotrophic lateral sclerosis (fALS), and aggregation of mutant SOD1 has been proposed to play a role in neurodegeneration. A growing body of evidence suggests that fALS-causing mutations destabilize the native structure of SOD1, leading to aberrant protein interactions for aggregation. SOD1 becomes stabilized and enzymatically active after copper and zinc binding and intramolecular disulfide formation, but it remains unknown which step(s) in the SOD1 maturation process is important in the pathological aggregation. In this study we have shown that apoSOD1 without disulfide is the most facile state for formation of amyloid-like fibrillar aggregates. fALS mutations impair either zinc binding, disulfide formation, or both, leading to accumulation of the aggregation-prone, apo, and disulfide-reduced SOD1. Moreover, we have found that the copper chaperone for SOD1 (CCS) facilitates maturation of SOD1 and that CCS overexpression ameliorates intracellular aggregation of mutant SOD1 in vivo. Based on our in vivo and in vitro results, we propose that facilitation of post-translational modifications is a promising strategy to reduce SOD1 aggregation in the cell.  相似文献   

10.
《Journal of molecular biology》2014,426(24):4112-4124
Amyotrophic lateral sclerosis has been linked to the gain of aberrant function of superoxide dismutase, Cu,Zn-SOD1 upon protein misfolding. The mechanism of SOD1 misfolding is thought to involve mutations leading to the loss of Zn, followed by protein unfolding and aggregation. We show that the removal of Zn from SOD1 may not lead to an immediate unfolding but immediately deactivates the enzyme through a combination of subtle structural and electronic effects. Using quantum mechanics/discrete molecular dynamics, we showed that both Zn-less wild-type (WT)-SOD1 and its D124N mutant that does not bind Zn have at least metastable folded states. In those states, the reduction potential of Cu increases, leading to the presence of detectable amounts of Cu(I) instead of Cu(II) in the active site, as confirmed experimentally. The Cu(I) protein cannot participate in the catalytic Cu(I)–Cu(II) cycle. However, even without the full reduction to Cu(I), the Cu site in the Zn-less variants of SOD1 is shown to be catalytically incompetent: unable to bind superoxide in a way comparable to the WT-SOD1. The changes are more radical and different in the D124N Zn-less mutant than in the Zn-less WT-SOD1, suggesting D124N being perhaps not the most adequate model for Zn-less SOD1. Overall, Zn in SOD1 appears to be influencing the Cu site directly by adjusting its reduction potential and geometry. Thus, the role of Zn in SOD1 is not just structural, as was previously thought; it is a vital part of the catalytic machinery.  相似文献   

11.
Mutations in SOD1 cause FALS by a gain of function likely related to protein misfolding and aggregation. SOD1 mutations encompass virtually every domain of the molecule, making it difficult to identify motifs important in SOD1 aggregation. Zinc binding to SOD1 is important for structural integrity, and is hypothesized to play a role in mutant SOD1 aggregation. To address this question, we mutated the unique zinc binding sites of SOD1 and examined whether these changes would influence SOD1 aggregation. We generated single and multiple mutations in SOD1 zinc binding residues (H71, H80 and D83) either alone or in combination with an aggregate forming mutation (A4V) known to cause disease. These SOD1 mutants were assayed for their ability to form aggregates.Using an in vitro cellular SOD1 aggregation assay, we show that combining A4V with mutations in non-zinc binding domains (G37R or G85R) increases SOD1 aggregation potential. Mutations at two zinc binding residues (H71G and D83G) also increase SOD1 aggregation potential. However, an H80G mutation at the third zinc binding residue decreases SOD1 aggregation potential even in the context of other aggregate forming SOD1 mutations. These results demonstrate that various mutations have different effects on SOD1 aggregation potential and that the H80G mutation appears to uniquely act as a dominant inhibitor of SOD1 aggregation.  相似文献   

12.
Mutations in Cu/Zn superoxide dismutase (SOD) are involved in some cases of familial amyotrophic lateral sclerosis, and it appears that misfolding and aggregation, perhaps mediated by abnormal binding or loss of copper (Cu) and/or zinc (Zn), may play a pathological role. It is known that the absence of both metals kinetically destabilizes wild type and mutant SOD leading to a 60-fold increase in their rate of unfolding. Here, the individual contributions of Cu and Zn to the kinetic stability of SOD were investigated, and the results show that Cu plays a greater role. Thus, the deficiency of Cu or Zn, especially the former, will compromise the kinetic stability of SOD, thereby increasing the probability that pathogenic mutants and even the WT protein may misfold and self-assemble into toxic species.  相似文献   

13.
Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron degenerative disease, and the inherited form, familial ALS (fALS), has been linked to over 100 different point mutations scattered throughout the Cu-Zn superoxide dismutase protein (SOD1). The disease is likely due to a toxic gain of function caused by the misfolding, oligomerization, and eventual aggregation of mutant SOD1, but it is not yet understood how the structurally diverse mutations result in a common disease phenotype. The behavior of the apo-monomer fALS-associated mutant protein A4V was explored using molecular-dynamics simulations to elucidate characteristic structural changes to the protein that may allow the mutant form to improperly associate with other monomer subunits. Simulations showed that the mutant protein is less stable than the WT protein overall, with shifts in residue-residue contacts that lead to destabilization of the dimer and metal-binding sites, and stabilization of nonnative contacts that leads to a misfolded state. These findings provide a unifying explanation for disparate experimental observations, allow a better understanding of alterations of residue contacts that accompany loss of SOD1 structural integrity, and suggest sites where compensatory changes may stabilize the mutant structure.  相似文献   

14.
Mutation of the ubiquitous cytosolic enzyme Cu/Zn superoxide dismutase (SOD1) is hypothesized to cause familial amyotrophic lateral sclerosis (FALS) through structural destabilization leading to misfolding and aggregation. Considering the late onset of symptoms as well as the phenotypic variability among patients with identical SOD1 mutations, it is clear that nongenetic factor(s) impact ALS etiology and disease progression. Here we examine the effect of Cys-111 glutathionylation, a physiologically prevalent post-translational oxidative modification, on the stabilities of wild type SOD1 and two phenotypically diverse FALS mutants, A4V and I112T. Glutathionylation results in profound destabilization of SOD1(WT) dimers, increasing the equilibrium dissociation constant K(d) to ~10-20 μM, comparable to that of the aggressive A4V mutant. SOD1(A4V) is further destabilized by glutathionylation, experiencing an ~30-fold increase in K(d). Dissociation kinetics of glutathionylated SOD1(WT) and SOD1(A4V) are unchanged, as measured by surface plasmon resonance, indicating that glutathionylation destabilizes these variants by decreasing association rate. In contrast, SOD1(I112T) has a modestly increased dissociation rate but no change in K(d) when glutathionylated. Using computational structural modeling, we show that the distinct effects of glutathionylation on different SOD1 variants correspond to changes in composition of the dimer interface. Our experimental and computational results show that Cys-111 glutathionylation induces structural rearrangements that modulate stability of both wild type and FALS mutant SOD1. The distinct sensitivities of SOD1 variants to glutathionylation, a modification that acts in part as a coping mechanism for oxidative stress, suggest a novel mode by which redox regulation and aggregation propensity interact in ALS.  相似文献   

15.
Dominant mutations in FUS/TLS cause a familial form of amyotrophic lateral sclerosis (fALS), where abnormal accumulation of mutant FUS proteins in cytoplasm has been observed as a major pathological change. Many of pathogenic mutations have been shown to deteriorate the nuclear localization signal in FUS and thereby facilitate cytoplasmic mislocalization of mutant proteins. Several other mutations, however, exhibit no effects on the nuclear localization of FUS in cultured cells, and their roles in the pathomechanism of fALS remain obscure. Here, we show that a pathogenic mutation, G156E, significantly increases the propensities for aggregation of FUS in vitro and in vivo. Spontaneous in vitro formation of amyloid-like fibrillar aggregates was observed in mutant but not wild-type FUS, and notably, those fibrils functioned as efficient seeds to trigger the aggregation of wild-type protein. In addition, the G156E mutation did not disturb the nuclear localization of FUS but facilitated the formation of intranuclear inclusions in rat hippocampal neurons with significant cytotoxicity. We thus propose that intranuclear aggregation of FUS triggered by a subset of pathogenic mutations is an alternative pathomechanism of FUS-related fALS diseases.  相似文献   

16.
More than 110 mutations in dimeric, Cu,Zn superoxide dismutase (SOD) have been linked to the fatal neurodegenerative disease, amyotrophic lateral sclerosis (ALS). In both human patients and mouse model studies, protein misfolding has been implicated in disease pathogenesis. A central step in understanding the misfolding/aggregation mechanism of this protein is the elucidation of the folding pathway of SOD. Here we report a systematic analyses of unfolding and folding kinetics using single- and double-jump experiments as well as measurements as a function of guanidium chloride, protein, and metal concentration for fully metallated (holo) pseudo wild-type and ALS-associated mutant (E100G, G93R, G93A, and metal binding mutants G85R and H46R) SODs. The kinetic mechanism for holo SODs involves native dimer, monomer intermediate, and unfolded monomer, with variable metal dissociation from the monomeric states depending on solution conditions. The effects of the ALS mutations on the kinetics of the holoproteins in guanidium chloride are markedly different from those observed previously for acid-induced unfolding and for the unmetallated (apo) forms of the proteins. The mutations decrease the stability of holo SOD mainly by increasing unfolding rates, which is particularly pronounced for the metal-binding mutants, and have relatively smaller effects on the observed folding kinetics. Mutations also seem to favour increased formation of a Zn-free monomer intermediate, which has been implicated in the formation of toxic aggregates. The results reveal the kinetic basis for the extremely high stability of wild-type holo SOD and the possible consequences of kinetic changes for disease.  相似文献   

17.
Amino acid replacements at dozens of positions in the dimeric protein human, Cu,Zn superoxide dismutase (SOD1) can cause amyotrophic lateral sclerosis (ALS). Although it has long been hypothesized that these mutations might enhance the populations of marginally-stable aggregation-prone species responsible for cellular toxicity, there has been little quantitative evidence to support this notion. Perturbations of the folding free energy landscapes of metal-free versions of five ALS-inducing variants, A4V, L38V, G93A, L106V and S134N SOD1, were determined with a global analysis of kinetic and thermodynamic folding data for dimeric and stable monomeric versions of these variants. Utilizing this global analysis approach, the perturbations on the global stability in response to mutation can be partitioned between the monomer folding and association steps, and the effects of mutation on the populations of the folded and unfolded monomeric states can be determined. The 2- to 10-fold increase in the population of the folded monomeric state for A4V, L38V and L106V and the 80- to 480-fold increase in the population of the unfolded monomeric states for all but S134N would dramatically increase their propensity for aggregation through high-order nucleation reactions. The wild-type-like populations of these states for the metal-binding region S134N variant suggest that even wild-type SOD1 may also be prone to aggregation in the absence of metals.  相似文献   

18.
Neurotoxic misfolding of Cu, Zn‐superoxide dismutase (SOD1) is implicated in causing amyotrophic lateral sclerosis, a devastating and incurable neurodegenerative disease. Disease‐linked mutations in SOD1 have been proposed to promote misfolding and aggregation by decreasing protein stability and increasing the proportion of less folded forms of the protein. Here we report direct measurement of the thermodynamic effects of chemically and structurally diverse mutations on the stability of the dimer interface for metal free (apo) SOD1 using isothermal titration calorimetry and size exclusion chromatography. Remarkably, all mutations studied, even ones distant from the dimer interface, decrease interface stability, and increase the population of monomeric SOD1. We interpret the thermodynamic data to mean that substantial structural perturbations accompany dimer dissociation, resulting in the formation of poorly packed and malleable dissociated monomers. These findings provide key information for understanding the mechanisms and energetics underlying normal maturation of SOD1, as well as toxic SOD1 misfolding pathways associated with disease. Furthermore, accurate prediction of protein–protein association remains very difficult, especially when large structural changes are involved in the process, and our findings provide a quantitative set of data for such cases, to improve modelling of protein association.  相似文献   

19.
Among the diseases of protein misfolding, amyotrophic lateral sclerosis (ALS) is unusual in that the proteinaceous neuronal inclusions that are the hallmark of the disease have neither the classic fibrillar appearance of amyloid by transmission electron microscopy nor the affinity for the dye Congo red that is a defining feature of amyloid. Mutations in the Cu, Zn superoxide dismutase (SOD1) cause the largest subset of inherited ALS cases. The mechanism by which this highly stable enzyme misfolds to form non-amyloid aggregates is currently poorly understood, as are the stresses that initiate misfolding. The oxidative damage hypothesis proposes that SOD1's normal free radical scavenger role puts it at risk of oxidative damage and that it is this damage that triggers the misfolding primed by mutation. Here, we present evidence that hydrogen peroxide treatment, which generates free radical species at the SOD1 active site, causes oxidative damage to active-site histidine residues, leading to major structural changes and non-amyloid aggregation similar to that seen in ALS. Time-resolved measurements of release of bound metal ligands, exposure of hydrophobic surface area, and alterations in the SOD1 proton NMR spectrum have allowed us to model the early structural changes occurring as SOD1 misfolds, prior to aggregation. ALS-causing SOD1 mutations apparently alter this pathway by increasing exposure of buried epitopes in misfolded species populated at endpoint. We have identified a well-populated early misfolding intermediate that could serve as a target for therapies designed to block downstream misfolding and aggregation events and thereby treat SOD1-associated ALS.  相似文献   

20.
The most prominent form of familial amyotrophic lateral sclerosis (fALS, Lou Gehrig's Disease) is caused by mutations of Cu-Zn superoxide dismutase 1 (SOD1). SOD1 maintains antioxidant activity under fALS causing mutations, suggesting that the mutations introduce a new, toxic, function. There are 100+ such known mutations that are chemically diverse and spatially distributed across the structure. The common phenotype leads us to propose an allosteric regulatory mechanism hypothesis: SOD1 mutants alter the correlated dynamics of the structure and differentially signal across an inherent allosteric network, thereby driving the disease mechanism at varying rates of efficiency. Two recently developed computational methods for identifying allosteric control sites are applied to the wild type crystal structure, 4 fALS mutant crystal structures, 20 computationally generated fALS mutants and 1 computationally generated non-fALS mutant. The ensemble of mutant structures is used to generate an ensemble of dynamics, from which two allosteric control networks are identified. One network is connected to the catalytic site and thus may be involved in the natural antioxidant function. The second allosteric control network has a locus bordering the dimer interface and thus may serve as a mechanism to modulate dimer stability. Though the toxic function of mutated SOD1 is unknown and likely due to several contributing factors, this study explains how diverse mutations give rise to a common function. This new paradigm for allostery controlled function has broad implications across allosteric systems and may lead to the identification of the key chemical activity of SOD1-linked ALS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号