首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Etoricoxib, widely used for the treatment of osteoarthritis, rheumatoid arthritis, ankylosing spondylitis, and related conditions has ample affinity to bind with globular proteins. Here, the molecular interaction between purified human hemoglobin (HHb), a major heme protein and etoricoxib, a cyclooxygenase-2 inhibitor was studied by various spectroscopic, calorimetric, and molecular modeling techniques. The binding affected hypochromic changes in the Soret band of hemoglobin (Hb) and induced remarkable quenching of the intrinsic fluorescence property of protein molecules. Synchronous fluorescence studies revealed alterations in tryptophan (Trp) and tyrosine (Tyr) microenvironments of HHb molecule in presence of etoricoxib. Flouremetric and isothermal titration calorimetric studies suggested two binding sites in HHb for etoricoxib at three different temperatures (298.15, 303.15, and 310.15 K). Negative values of Gibbs energy change (ΔG0) and enthalpy change (ΔH0) strongly suggest that it is spontaneous and exothermic reaction, mainly stabilized by hydrogen bonding as evidenced by sucrose binding assay. These findings support our in silico molecular docking study, which specified the binding site and the non-covalent interactions involved in the association. Moreover, the interaction impacts on structural integrity and functional aspects of HHb as confirmed by decreased α helicity, increased free iron release, increased rate of co-oxidation, and decreased rate of esterase activity. Overall, these studies conclude that etoricoxib leads to a remarkable alteration in the conformational aspects of binding to HHb.

Communicated by Ramaswamy H. Sarma.  相似文献   


2.
Acetaminophen, a widely used analgesic and antipyretic drug has ample affinity to bind globular proteins. Here, we have illustrated a substantive study pertaining to the interaction of acetaminophen with human hemoglobin (HHb). Different spectroscopic (absorption, fluorescence, and circular dichroism (CD) spectroscopy), calorimetric, and molecular docking techniques have been employed in this study. Acetaminophen-induced graded alterations in absorbance and fluorescence of HHb confirm their interaction. Analysis of fluorescence quenching at different temperature and data obtained from isothermal titration calorimetry indicate that the interaction is static and the HHb has one binding site for the drug. The negative values of Gibbs energy change (ΔG0) and enthalpy changes (ΔH0) and positive value of entropy change (ΔS0) strongly suggest that it is entropy-driven spontaneous and exothermic reaction. The reaction involves hydrophobic pocket of the protein which is further stabilized by hydrogen bonding as evidenced from ANS and sucrose binding studies. These findings were also supported by molecular docking simulation study using AutoDock 4.2. The interaction influences structural integrity as well as functional properties of HHb as evidenced by CD spectroscopy, increased rate of co-oxidation and decreased esterase activity of HHb. So, from these findings, we may conclude that acetaminophen interacts with HHb through hydrophobic and hydrogen bonding, and the interaction perturbs the structural and functional properties of HHb.  相似文献   

3.
Interactions of sulfadiazine sodium (SD‐Na) with calf thymus DNA (ctDNA) and human serum albumin (HSA) were studied using fluorescence spectroscopy, UV absorption spectroscopy and molecular modeling. The fluorescence experiments showed that the processes were static quenching. The results of UV spectra and molecular modeling of the interaction between SD‐Na and ctDNA indicated that the binding mode might be groove binding. In addition, the interaction of SD‐Na with HSA under simulative physiological conditions was also investigated. The binding constants (K) and the number of binding sites (n) at different temperatures (292, 302, 312 K) were 5.23 × 103 L/mol, 2.18; 4.50 × 103 L/mol, 2.35; and 4.08 × 103 L/mol, 2.47, respectively. Thermodynamic parameters including enthalpy change (ΔH) and entropy change (ΔS) were calculated, the results suggesting that hydrophobic force played a very important role in SD‐Na binding to HSA, which was in good agreement with the molecular modeling study. Moreover, the effect of SD‐Na on the conformation of HSA was analyzed using three‐dimensional fluorescence spectra. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Molecular interaction of atenolol, a selective β1 receptor antagonist with the major carrier protein, bovine serum albumin (BSA), was investigated under imitated physiological conditions (pH 7.4) by means of fluorescence spectroscopy, UV absorption spectroscopy, Fourier transform infrared spectroscopy (FT-IR), and molecular modeling studies. The steady-state fluorescence spectra manifested that static type, due to formation of the atenolol-BSA complex, was the dominant mechanism for fluorescence quenching. The characteristic information about the binding interaction of atenolol with BSA in terms of binding constant (Kb) were determined by the UV–vis absorption titration, and were found to be in the order of 103 M?1 at different temperatures, indicating the existence of a weak binding in this system. Thermodynamic analysis revealed that the binding process was primarily mediated by van der Waals force and hydrogen bonds due to the negative sign for enthalpy change (ΔH0), entropy change (ΔS0). The molecular docking results elucidated that atenolol preferred binding on the site II of BSA according to the findings observed in competitive binding experiments. Moreover, via alterations in synchronous fluorescence, three-dimensional fluorescence and FT-IR spectral properties, it was concluded that atenolol could arouse slight configurational and micro-environmental changes of BSA.  相似文献   

5.
The binding interaction of lovastatin with calf thymus DNA (ct‐DNA) was studied using UV/Vis absorption spectroscopy, fluorescence emission spectroscopy, circular dichroism (CD), viscosity measurement and molecular docking methods. The experimental results showed that there was an obvious binding interaction of lovastatin with ct‐DNA and the binding constant (Kb) was 5.60 × 103 M–1 at 298 K. In the binding process of lovastatin with ct‐DNA, the enthalpy change (ΔH0) and entropy change (ΔS0) were –24.9 kJ/mol and –12.0 J/mol/K, respectively, indicating that the main binding interaction forces were van der Waal's force and hydrogen bonding. The molecular docking results suggested that lovastatin preferred to bind on the minor groove of different B‐DNA fragments and the conformation change of lovastatin in the lovastatin–DNA complex was obviously observed, implying that the flexibility of lovastatin molecule plays an important role in the formation of the stable lovastatin–ct‐DNA complex. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Linezolid, one of the reserve antibiotic of oxazolidinone class has wide range of antimicrobial activity. Here we have conducted a fundamental study concerning the dynamics of its interaction with bovine serum albumin (BSA), and the post binding modification of the later by employing different spectroscopic (absorption, fluorescence and circular dichroism (CD) spectroscopy) and molecular docking tools. Gradual quenching of the tryptophan (Trp) fluorescence upon addition of linezolid to BSA confirms their interaction. Analysis of fluorescence quenching at different temperature indicates that the interaction is made by static complex formation and the BSA has one binding site for the drug. The negative Gibbs energy change (ΔG0), and positive values of enthalpy change (ΔH0) and entropy change (ΔS0) strongly suggest that it is an entropy driven spontaneous and endothermic reaction. The reaction involves hydrophobic pocket of the protein, which is further stabilized by hydrogen bonding and electrostatic interactions as evidenced from 8-anilino-1-napthalene sulfonic acid, sucrose and NaCl binding studies. These findings also support the molecular docking study using AutoDock 4.2. The influence of this interaction on the secondary structure of the protein is negligible as evidenced by CD spectroscopy. So, from these findings, we conclude that linezolid interacts with BSA in 1:1 ratio through hydrophobic, hydrogen bonding and ionic interactions, and this may not affect the secondary structure of the protein.  相似文献   

7.
The binding interaction between bovine serum albumin (BSA) and enalapril (ENPL) at the imitated physiological conditions (pH = 7.4) was investigated using UV–vis absorption spectroscopy (UV–vis), fluorescence emission spectroscopy (FES), synchronous fluorescence spectroscopy (SFS), Fourier transform infrared spectroscopy (FT‐IR), circular dichroism (CD) and molecular docking methods. It can be deduced from the experimental results from the steady‐state fluorescence spectroscopic titration that the intrinsic BSA fluorescence quenching mechanism induced by ENPL is static quenching, based on the decrease in the BSA quenching constants in the presence of ENPL with increase in temperature and BSA quenching rates >1010 L mol?1 sec?1. This result indicates that the ENPL–BSA complex is formed through an intermolecular interaction of ENPL with BSA. The main bonding forces for interaction of BSA and ENPL are van der Waal's forces and hydrogen bonding interaction based on negative values of Gibbs free energy change (ΔG 0), enthalpic change (ΔH 0) and entropic change (ΔS 0). The binding of ENPL with BSA is an enthalpy‐driven process due to |ΔH °| > |T ΔS °| in the binding process. The results of competitive binding experiments and molecular docking confirm that ENPL binds in BSA sub‐domain IIA (site I) and results in a slight change in BSA conformation, but BSA still retains its α‐helical secondary structure.  相似文献   

8.
The interactions between human serum albumin (HSA) and fluphenazine (FPZ) in the presence or absence of rutin or quercetin were studied by fluorescence, absorption and circular dichroism (CD) spectroscopy and molecular modeling. The results showed that the fluorescence quenching mechanism was static quenching by the formation of an HSA–FPZ complex. Entropy change (ΔS 0) and enthalpy change (ΔH 0) values were 68.42 J/(mol? K) and ?4.637 kJ/mol, respectively, which indicated that hydrophobic interactions and hydrogen bonds played major roles in the acting forces. The interaction process was spontaneous because the Gibbs free energy change (ΔG 0) values were negative. The results of competitive experiments demonstrated that FPZ was mainly located within HSA site I (sub‐domain IIA). Molecular docking results were in agreement with the experimental conclusions of the thermodynamic parameters and competition experiments. Competitive binding to HSA between flavonoids and FPZ decreased the association constants and increased the binding distances of FPZ binding to HSA. The results of absorption, synchronous fluorescence, three‐dimensional fluorescence, and CD spectra showed that the binding of FPZ to HSA caused conformational changes in HSA and simultaneous effects of FPZ and flavonoids induced further HSA conformational changes.  相似文献   

9.
The interaction between pyrano[3, 2-f]quinoline (PQ) and calf thymus DNA (CTDNA) using spectroscopic and molecular modeling approach has been presented here. Apparent association constant (1.05×105 L/mol) calculated from UV-vis specta, indicates a moderate complex formation between CTDNA and PQ. The quenching phenomena as obtained from emission spectra of ethidium bromide (EB)–CTDNA by PQ was found to be a dynamic one and the binding constants found to be 8.64, 9.25, 11.17, 12.03 × 104 L/mol at 293, 300, 308, and 315 K. Thermodynamic parameter enthalpy change (ΔH) and entropy change (ΔS), indicates weak force like van der Walls force and hydrogen bonds having the key role in this binding process. The results of circular dichroism (CD) demonstrate that PQ has not induced characteristic changed in CTDNA. Results achieved from UV absorption and fluorescence spectroscopy indicating the binding mode of PQ with DNA seems to be a nonintercalative binding. The theoretical results as originating from molecular modeling showed that PQ possibly will bind into the hydrophobic region of DNA having docking binding energy = ?10.03 kcal/mol and the obtained results are in consonance with the inferences obtained from experimental data. This result is important for the better understanding of pharmaceutical aspects of binding affinity of PQ and CTDNA.  相似文献   

10.
The interaction of fisetholz with bovine serum albumin (BSA) and human serum albumin (HSA) was investigated by multi-spectroscopic, cyclic voltammetric, and molecular docking technique. The results revealed that there was a static quenching of BSA/HSA induced by fisetholz. The binding constants (Ka) and binding sites (n) were calculated at different temperatures (293, 303, and 311?K). The enthalpy change (ΔH) were calculated to be –17.20?kJ mol?1 (BSA) and –18.28?kJ mol?1 (HSA) and the entropy change (ΔS) were calculated to be 35.41?J mol?1 (BSA) and 24.02?J mol?1 (HSA), respectively, which indicated that the interaction between fisetholz and BSA/HSA was mainly by electrostatic attraction. Based on displacement experiments using site probes, indomethacin and ibuprofen, the binding site of fisetholz to BSA/HSA was identified as sub-domain IIIA, which was further confirmed by molecular docking method. There was little effect of K+, Ca2+, Cu2+, Zn2+, and Fe3+ on fisetholz-BSA or fisetholz-HSA complex. The spectra of synchronous fluorescence, circular dichroism (CD) and Fourier transform infrared (FT-IR) all showed that fisetholz binding to BSA/HSA leads to secondary structures change of the two serum albumins. According to the Förster non-radiation energy transfer theory, the binding distance between fisetholz and BSA/HSA was 2.94/4.68?nm. The cyclic voltammetry as a supporting tool also indicated that fisetholz interacted with protein.

Communicated by Ramaswamy H. Sarma  相似文献   


11.
The binding of bovine serum albumin (BSA) to ethambutol (EMB) was investigated using spectroscopic methods, viz., fluorescence, Fourier transform infrared (FTIR), ultraviolet (UV)/vis absorption and cyclic voltammetry techniques. Spectroscopic analysis of the emission quenching at different temperatures revealed that the quenching mechanism of serum albumin by EMB is static, which was also confirmed by lifetime measurements. The number of binding sites, n, and binding constant, K, were obtained at various temperatures. The distance, r, between EMB and the protein was evaluated according to the Förster energy transfer theory. Based on displacement experiments using site probes, viz., warfarin, ibuprofen and digitoxin, the site of binding of EMB in BSA was proposed to be Sudlow's site I. The effect of EMB on the conformation of BSA was analyzed by using synchronous fluorescence spectra (SFS) and 3D fluorescence spectra. The results of fluorescence, UV/vis absorption and FTIR spectra showed that the conformation of BSA was changed in the presence of EMB. The thermodynamic parameters including enthalpy change (ΔH0), entropy change (ΔS0) and free energy change (ΔG0) for BSA–EMB were calculated according to the van't Hoff equation and are discussed.  相似文献   

12.
A combination of fluorescence, UV–Vis absorption, circular dichroism (CD), Fourier transform infrared (FT-IR) and molecular modeling approaches were employed to determine the interaction between lysionotin and bovine serum albumin (BSA) at physiological pH. The fluorescence titration suggested that the fluorescence quenching of BSA by lysionotin was a static procedure. The binding constant at 298 K was in the order of 105 L mol?1, indicating that a high affinity existed between lysionotin and BSA. The thermodynamic parameters obtained at different temperatures (292, 298, 304 and 310 K) showed that the binding process was primarily driven by hydrogen bond and van der Waals forces, as the values of the enthalpy change (ΔH°) and entropy change (ΔS°) were found to be ?40.81 ± 0.08 kJ mol?1 and ?35.93 ± 0.27 J mol?1 K?1, respectively. The surface hydrophobicity of BSA increased upon interaction with lysionotin. The site markers competitive experiments revealed that the binding site of lysionotin was in the sub-domain IIA (site I) of BSA. Furthermore, the molecular docking results corroborated the binding site and clarified the specific binding mode. The results of UV–Vis absorption, CD and FT-IR spectra demonstrated that the secondary structure of BSA was altered in the presence of lysionotin.  相似文献   

13.
The interaction between vincamine (VCM) and human serum albumin (HSA) has been studied using a fluorescence quenching technique in combination with UV/vis absorption spectroscopy, Fourier transform infrared (FT–IR) spectroscopy, circular dichroism (CD) spectroscopy and molecular modeling under conditions similar to human physiological conditions. VCM effectively quenched the intrinsic fluorescence of HSA via static quenching. The binding constants were calculated from the fluorescence data. Thermodynamic analysis by Van't Hoff equation revealed enthalpy change (ΔH) and entropy change (ΔS) were ?4.57 kJ/mol and 76.26 J/mol/K, respectively, which indicated that the binding process was spontaneous and the hydrophobic interaction was the predominant force. The distance r between the donor (HSA) and acceptor (VCM) was obtained according to the Förster's theory of non‐radiative energy transfer and found to be 4.41 nm. Metal ions, viz., Na+, K+, Li+, Ni2+, Ca2+, Zn2+ and Al3+ were found to influence binding of the drug to protein. The 3D fluorescence, FT–IR and CD spectral results revealed changes in the secondary structure of the protein upon interaction with VCM. Furthermore, molecular modeling indicated that VCM could bind to the subdomain IIA (site I) of HSA. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Maltol, a food additive, is extensively used in our daily life. To date, its biological safety is still debated. In this article, binding interaction of maltol with bovine hemoglobin (BHb), an important functional protein, was studied by molecular docking research and spectroscopic and calorimetric measurements. We found that maltol could cause structural changes of BHb. By interacting with Glu 101 (1.27 Å) and Lys 104 (2.49 Å) residues, maltol changed the cavity structure and induced a microenvironment change around tryptophan (Trp) residue. Thermodynamic parameters obtained from isothermal titration calorimetry (ITC) measurement showed that hydrophobic forces were the main forces existing in this system. The association constant of K (8.0 ± 3.4 × 104 M?1) shows the mild ligand–protein binding for maltol with BHb. The α‐helix amount in BHb increased (59.6–62.6%) with different concentrations of maltol and the intrinsic fluorescence intensity was quenched by maltol, indicating the conformation changes and denaturation of BHb. This work presents the interactions of maltol with BHb at the molecular level and obtains evidence that maltol induces adverse effects to proteins in vitro.  相似文献   

15.
The binding interactions of simvastatin (SIM), pravastatin (PRA), fluvastatin (FLU), and pitavastatin (PIT) with bovine serum albumin (BSA) were investigated for determining the affinity of four statins with BSA through multiple spectroscopic and molecular docking methods. The experimental results showed that SIM, PRA, FLU, and PIT statins quenched the intrinsic fluorescence of BSA through a static quenching process and the stable stains–BSA complexes with the binding constants in the order of 104 M?1 at 298 K were formed through intermolecular nonbond interaction. The values of ΔH0, ΔS0 and ΔG0 in the binding process of SIM, PRA, FLU, and PIT with BSA were negative at the studied temperature range, suggesting that the binding process of four statins and BSA was spontaneous and the main interaction forces were van der Waals force and hydrogen-bonding interactions. Moreover, the binding of four statins with BSA was enthalpy-driven process due to |ΔH°|>|TΔS°| under the studied temperature range. From the results of site marker competitive experiments and molecular docking, subdomain IIIA (site II) was the primary binding site for SIM, PRA, FLU, and PIT on BSA. The results of UV–vis absorption, synchronous fluorescence, 3D fluorescence and FT-IR spectra proved that the slight change in the conformation of BSA, while the significant changes in the conformation of SIM, PRA, FLU, and PIT drug in statin–BSA complexes, indicating that the flexibility of statin molecules plays an important role in increasing the stability of statin–BSA complexes.  相似文献   

16.
The interaction between strictosamide (STM) and human serum albumin (HSA) was investigated by fluorescence spectroscopy, synchronous fluorescence spectroscopy, three‐dimensional fluorescence spectroscopy, ultraviolet‐visible absorption spectroscopy, circular dichroism spectroscopy and molecular modeling under physiological pH 7.4. STM effectively quenched the intrinsic fluorescence of HSA via static quenching. The binding site number n and apparent binding constant Ka were determined at different temperatures by fluorescence quenching. The thermodynamic parameters, enthalpy change (ΔH) and entropy change (ΔS) for the reaction were calculated as ?3.01 kJ/mol and 77.75 J/mol per K, respectively, which suggested that the hydrophobic force played major roles in stabilizing the HSA–STM complex. The distance r between donor and acceptor was obtained to be 4.10 nm according to Förster's theory. After the addition of STM, the synchronous fluorescence and three‐dimensional fluorescence spectral results showed that the hydrophobicity of amino acid residues increased and the circular dichroism spectral results showed that the α‐helix content of HSA decreased (from 61.48% to 57.73%). These revealed that the microenvironment and conformation of HSA were changed in the binding reaction. Furthermore, the study of molecular modeling indicated that STM could bind to site I of HSA and the hydrophobic interaction was the major acting force, which was in agreement with the binding mode study. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
The interaction of bioactive protoberberine alkaloids berberine, palmatine, and coralyne with the DNA triplex poly(dT)⋅(poly(dA)⋅poly(dT)) was studied using biophysical and calorimetric techniques. All three alkaloids bound the triplex cooperatively. Berberine and palmatine predominantly stabilized the triplex structure, while coralyne stabilized both triplex and duplex structures as inferred from optical thermal melting profiles. Fluorescence quenching, polarization, and viscometric studies hinted at an intercalative mode of binding for the alkaloids to the triplex, coralyne being more strongly intercalated compared to partial intercalation of berberine and palmatine. The overall affinity of coralyne was two order higher (2.29×107 M −1) than that of berberine (3.43×105 M −1) and palmatine (2.34×105 M −1). Isothermal titration calorimetric studies revealed that the binding to the triplex was favored by negative enthalpy change (ΔH=−3.34 kcal/mol) with favorable entropy contribution (TΔS = 4.07 kcal/mol) for berberine, favored by almost equal negative enthalpy (ΔH =−3.88 kcal/mol) and entropy changes (TΔS = 3.37 kcal/mol) for palmatine, but driven by large enthalpy contributions (ΔH =−25.62 kcal/mol and TΔS =−15.21 kcal/mol) for coralyne. These results provide new insights on the binding of isoquinoline alkaloids to the DNA triplex structure.  相似文献   

18.
In the present investigation, the protein‐binding properties of naphthyl‐based hydroxamic acids (HAs), N‐1‐naphthyllaurohydroxamic acid ( 1 ) and N‐1‐naphthyl‐p‐methylbenzohydroxamic acid ( 2 ) were studied using bovine serum albumin (BSA) and UV–visible spectroscopy, fluorescence spectroscopy, diffuse reflectance spectroscopy–Fourier transform infrared (DRS–FTIR), circular dichroism (CD), and cyclic voltammetry along with computational approaches, i.e. molecular docking. Alteration in the antioxidant activities of compound 1 and compound 2 during interaction with BSA was also studied. From the fluorescence studies, thermodynamic parameters such as Gibb's free energy (ΔG), entropy change (ΔS) and enthalpy change (ΔH) were calculated at five different temperatures (viz., 298, 303, 308, 313 or 318 K) for the HAs–BSA interaction. The results suggested that the binding process was enthalpy driven with dominating hydrogen bonds and van der Waals’ interactions for both compounds. Warfarin (WF) and ibuprofen (IB) were used for competitive site‐specific marker binding interaction and revealed that compound 1 and compound 2 were located in subdomain IIA (Sudlow's site I) on the BSA molecule. Conclusions based on above‐applied techniques signify that various non‐covalent forces were involved during the HAs–BSA interaction. Therefore the resulted HAs–BSA interaction manifested its effect in transportation, distribution and metabolism for the drug in the blood circulation system, therefore establishing HAs as a drug‐like molecule.  相似文献   

19.
The intermolecular interaction of fosinopril, an angiotensin converting enzyme inhibitor with bovine serum albumin (BSA), has been investigated in physiological buffer (pH 7.4) by multi‐spectroscopic methods and molecular docking technique. The results obtained from fluorescence and UV absorption spectroscopy revealed that the fluorescence quenching mechanism of BSA induced by fosinopril was mediated by the combined dynamic and static quenching, and the static quenching was dominant in this system. The binding constant, Kb, value was found to lie between 2.69 × 103 and 9.55 × 103 M?1 at experimental temperatures (293, 298, 303, and 308 K), implying the low or intermediate binding affinity between fosinopril and BSA. Competitive binding experiments with site markers (phenylbutazone and diazepam) suggested that fosinopril preferentially bound to the site I in sub‐domain IIA on BSA, as evidenced by molecular docking analysis. The negative sign for enthalpy change (ΔH0) and entropy change (ΔS0) indicated that van der Waals force and hydrogen bonds played important roles in the fosinopril‐BSA interaction, and 8‐anilino‐1‐naphthalenesulfonate binding assay experiments offered evidence of the involvements of hydrophobic interactions. Moreover, spectroscopic results (synchronous fluorescence, 3‐dimensional fluorescence, and Fourier transform infrared spectroscopy) indicated a slight conformational change in BSA upon fosinopril interaction.  相似文献   

20.
The binding interactions between megestrol acetate (MA) and bovine serum albumin (BSA) under simulated physiological conditions (pH 7.4) were investigated by fluorescence spectroscopy, circular dichroism and molecular modeling. The results revealed that the intrinsic fluorescence of BSA was quenched by MA due to formation of the MA–BSA complex, which was rationalized in terms of a static quenching procedure. The binding constant (Kb) and number of binding sites (n) for MA binding to BSA were 2.8 × 105 L/mol at 310 K and about 1 respectively. However, the binding of MA with BSA was a spontaneous process due to the negative ∆G0 in the binding process. The enthalpy change (∆H0) and entropy change (∆S0) were – 124.0 kJ/mol and –295.6 J/mol per K, respectively, indicating that the major interaction forces in the binding process of MA with BSA were van der Waals forces and hydrogen bonding. Based on the results of spectroscopic and molecular docking experiments, it can be deduced that MA inserts into the hydrophobic pocket located in subdomain IIIA (site II) of BSA. The binding of MA to BSA leads to a slight change in conformation of BSA but the BSA retained its secondary structure, while conformation of the MA has significant change after forming MA–BSA complex, suggesting that flexibility of the MA molecule supports the binding interaction of BSA with MA. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号