首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Abstract

The binding of naturally occurring methylxanthines such as theophylline, theobromine and caffeine to nucleic acids are reckoned to be pivotal as they are able to modulate the cellular activities. We explore the interaction of yeast RNA binding efficacy of the above xanthine derivatives by using UV absorption differential spectroscopy and Fourier Transform Infrared (FTIR) spectroscopy. Both the analyses show discrimination in their binding affinity to RNA. The differential UV-spectrum at P/D 3.3 reveals the greater RNA binding activity for theophylline (85 ± 5%), whereas moderate and comparatively less binding activity for theobromine (45 ± 5%) and caffeine (30 ± 5%) and the binding activity was found to depend on concentration of the drugs. In FTIR analysis we observed changes in the amino group (NH) of RNA complexed by drugs, where the NH band is found to become very broad, indicating hydrogen bonding (H-bonding) with theophylline (3343.4 cm?1), theobromine (3379.8 cm? 1) and caffeine (3343 cm?1) as compared to the free RNA (3341.6 cm?1). Furthermore in RNA-theophylline complex, it is observed that the carbonyl (C=O) vibration frequency (υC=O) of both drug (υC=O=1718, 1666 cm?1) as well as RNA (υC=O=1699, 1658 cm?1) disappeared and a new vibration band appeared around 1703 cm?1, indicating that the C=O and NH groups of drug and RNA are effectively involved in H-bonding. Whereas in RNA-theo- bromine and RNA-caffeine complexes, we found very little changes in C=O frequency and only broadening of the NH band of RNA due to complexation is observed in these groups. The changes in the vibrations of G-C/A-U bands and other bending frequencies are discussed. Thus the discrimination in the binding affinity of methylxanthines with RNA molecule shows that strong RNA binding drugs like theophylline can selectively be delivered to RNA targets of microbial pathogens having the mechanism of RNA catalysis.  相似文献   

3.
Abstract

The interaction of calf-thymus DNA with La3+, Eu3+ and Tb3+ has been investigated in aqueous solution at pH 6.5, using metal/DNA(P) molar ratios (r) 1/80, 1/40, 1/20, 1/10, 1/4 and 1/2. Correlations between FTIR spectral changes and DNA structural properties have been established. At low metal/DNA(P) (r) 1/80, the metal ions bind mainly to the PO? 2 groups of the backbone, resulting in increased base-stacking interaction and duplex stability. At (r) 1/40 and 1/20, metal ion binding to the PO? 2 and the guanine N-7 site (chelation) predominates with minor perturbations of the A-T base pairs. Evidence for this comes from the displacement of the band at 1712 cm?1 (T,G) towards a lower frequency and the PO? 2 antisymmetric band at 1222 cm?1 towards a higher frequency. At higher metal/DNA(P) ratio, r> 1/20, DNA begins to condensate and drastic structural changes occur, which are accompanied by the shift and intensity changes of several G-C and A-T absorption bands. No major departure from B-DNA conformation was observed before and after DNA condensation eventhough some local structural modifications were observed. A comparison with the Cu-DNA complexes (denaturated DNA) shows some degree of helical destabilizition of the biopolymer in the presence of lanthanide ions.  相似文献   

4.
Abstract

The interaction of calf-thymus DNA with trivalent Al and Ga cations, in aqueous solution at pH =6–7 with cation/DNA(P) (P=phosphate) molar ratios (r) 1/80, 1/40, 1/20, 1/10, 1/4 and 1/2 was characterized by Fourier Transform infrared (FTIR) difference spectroscopy.

Spectroscopic results show the formation of several types of cation-DNA complexes. At low metal ion concentration (r=l/80, 1/40), both cations bind mainly to the backbone PO2 group and the guanine N-7 site of the G-C base pairs (chelation). Evidence for cation chelate formation comes from major shifting and intensity increase of the phosphate antisymmetric stretch at 1222 cm-1 and the mainly guanine band at 1717 cm1. The perturbations of A-T base pairs occur at high cation concentration with major helix destabilization. Evidence for cation binding to A-T bases comes from major spectral changes of the bands at 1663 and 1609 cm-1 related mainly to the thymine and adenine in-plane vibrations. A major reduction of the B-DNA structure occurs in favor of A-DNA upon trivalent cation coordination.  相似文献   

5.
Porphyrins and their metal derivatives are strong nucleic acids binders. Some of these compounds have been used for radiation sensitization therapy of cancer and are targeted to interact with cellular DNA. Chlorophyll (Chl) binds DNA via guanine N-7 atom (major groove) and the backbone phosphate group (Neault and Tajmir-Riahi. Biophys. J. 76, 2177, 1999), whereas chlorophyllin (Chln) intercalates into A-T and G-C regions (Neault and Tajmir-Riahi. J. Phys. Chem. B. 102, 1610, 1998). This study was designed to examine the interaction of RNA with chlorophyll a and chlorophyllin in aqueous solution at physiological pH with pigment/RNA(phosphate) ratios (r) of 1/80 to 1/2. Fourier transform infrared (FTIR) and UV-visible difference spectroscopic methods were used to characterize the nature of pigment-RNA interaction and to establish correlation between spectral changes and the pigment binding mode, binding constant, RNA secondary structure and structural variations of pigment-RNA complexes in aqueous solution. Spectroscopic results showed that Chl and Chln bind RNA through G-C and A-U bases and the backbone phosphate group with overall binding constants of KChl = 1.95 x 10(5) M(-1) and KChln = 1.61 x 10(5) M(-1). The larger K value obtained for Chl-RNA complexes is attributed to the formation of more stable five or six-coordinate Mg cation in the RNA adducts, while the four-coordination Cu(II) in Chln can be more stable than that of the five or six-coordinated copper ion in the Chln-RNA complexes. Aggregation of pigment-RNA complexes occurs at high metalloporphyrin concentrations. No biopolymer secondary structural changes were observed upon pigment interaction and RNA remains in the A-family structure in these pigment complexes.  相似文献   

6.
The RNA conformational changes of B, A and C forms are reflected in the infrared absorption spectra in the region of 800 cm?1 to 900 cm?1 and allow one to investigate unoriented samples. The transition to the A form is characterized by the appearence of bands at about 870 cm?1 and at 813 cm?1 whereas the B and the C forms exhibit a band at 837 cm?1, these bands undoubtedly arise from phosphate diester stretching vibrations and yield information about backbone conformation. The presence of these infrared bands provides a criterion for testing the simultaneous presence of two coexisting forms of DNA. It represents a useful method for structural studies of nucleic acid complexes such as protein-DNA for which it is difficult to obtain orientation.  相似文献   

7.
Arsenic salts have been used for centuries to treat a variety of medical conditions ranging from infectious disease to cancer. More recently, trivalent arsenic trioxide was found to exhibit high antitumor activity towards hematological malignancies. Even though much is known about antitumor activity and DNA damage by As2O3, there has been no report on the interaction of arsenic trioxide with isolated DNA or RNA. Therefore, it was of interest to examine the interaction of As2O3 with DNA and RNA in aqueous solution at physiological pH. FTIR and UV-visible difference spectroscopic methods were used to characterize the nature of drug-DNA and drug-RNA interactions and to determine the As binding site, the binding constant, the sequence selectivity, the helix stability, and the biopolymer secondary structure in the As2O3-polynucleotide complexes in vitro. The FTIR spectroscopic studies were conducted with As2O3-polynucleotide (phosphate) ratios of 1/40, 1/20, 1/10, and 1/5, with a final DNA (P) or RNA (P) concentration of 6.25 mmol/l. Spectroscopic results showed As2O3 binds to DNA and RNA at G-C, A-T, and A-U bases, and no interaction with the backbone PO2 group. As2O3-DNA and -RNA adducts showed one type of binding with overall binding constant of K(As2O3-DNA) = 1.24 x 10(5) M(-1) and K(As2O3-RNA) = 2.60 x 10(5) M(-1). The As2O3-polynucleotide complexation is associated with a partial biopolymer aggregation and no major alterations of B-DNA or A-RNA structure.  相似文献   

8.
Abstract

We report the interaction of calf-thymus DNA with D-glucose, D-fructose, D-galactose and sucrose in aqueous solution at physiological pH with sugar/DNA(P)(P=phosphate) molar ratios (r) of 1/10,1/5,1,5 and 10. FTIR difference spectroscopy was used to characterize the nature of sugar-DNA interaction and correlations between spectral changes and structural variations for both sugar and DNA complexes have been established.

FTIR difference spectroscopic results showed major sugar interaction (H-bonding) with the P02 groups of the backbone at low sugar concentrations (r= 1/10 and 1/5). Such interaction was characterized by the shift and the intensity variations of the backbone P02 antisymmetric stretch at 1222 cm?1, which resulted in a major helical stability of DNA duplex. As sugar concentration increased, carbohydrate binding to DNA bases occurred. Evidence for this comes from major shiftings of the sugar O-H stretching vibrations at 3500–3200 cm?1, and sugar C-O stretches and OH bending modes at 1450–1000 cm”. Similarly, shifting and intensity variations of several DNA in-plane vibrations at 1717 (G,T), 1663 (T,G,A,C) and 1492 cm?1 (C,G) were observed, that are characterized by the presence of sugar-base interaction (via H20). The shiftings and the intensity changes of the sugar OH stretching modes at 35003200 cm?1 are also indicative of the rearrangements of the sugar intermolecular H-bonding network, on DNA complex formation. A partial B to A conformational transition was observed for DNA molecule on sugar complexation, whereas carbohydrate binding occurred via both a- and β-anomeric structures.  相似文献   

9.
Abstract

Flavonoids are strong antioxidants that prevent DNA damage. The anticancer and antiviral activities of these natural products are implicated in their mechanism of actions. However, there has been no information on the interactions of these antioxidants with individual DNA at molecular level. This study was designed to examine the interaction of quercetin (que), kaempferol (kae), and delphinidin (del) with calf-thymus DNA in aqueous solution at physiological conditions, using constant DNA concentration (6.5 mmol) and various drug/DNA(phosphate) ratios of 1/65 to 1. FTIR and UV-Visible difference spectroscopic methods are used to determine the drug binding sites, the binding constants and the effects of drug complexation on the stability and conformation of DNA duplex.

Structural analysis showed quercetin, kaempferol, and delphinidin bind weakly to adenine, guanine (major groove), and thymine (minor groove) bases, as well as to the backbone phosphate group with overall binding constants Kque = 7.25 × 104M?1, Kkae = 3.60 × 104M?1, and Kdel = 1.66 × 104M?1. The stability of adduct formation is in the order of que>kae>del. Delphinidin with a positive charge induces more stabilizing effect on DNA duplex than quercetin and kaempferol. A partial B to A-DNA transition occurs at high drug concentrations.  相似文献   

10.
Ultraviolet absorption (UV) and circular dichroism (CD) spectra of wheat germ 5S RNA, when compared to tRNAPhe, indicate a largely base-paired and base-stacked helical structure, containing up to 36 base pairs. Fourier-transform infrared (FT-IR) spectra of tRNAPhe and wheat germ ribosomal 5S RNA have been acquired at 30 and 90 degrees C. From the difference of the FT-IR spectra between 90 and 30 degrees C, the number of base pairs in both RNAs was determined by modification of a previously published procedure [Burkey, K. O., Marshall, A. G., & Alben, J. O. (1983) Biochemistry 22, 4223-4229]. The base-pair composition and total base-pair number from FT-IR data are now consistent for the first time with optical (UV, CD, Raman) and NMR results for ribosomal 5S RNA. Without added Mg2+, tRNAPhe gave 18 +/- 2 base pairs [7 A-U and 11 G-C], in good agreement with the number of secondary base pairs from X-ray crystallography [8 A-U, 12 G-C, and 1 G-U]. Within the 10% precision of the FT-IR method, wheat germ 5S RNA exhibits essentially the same number of base pairs [14 A-U, 17 G-C, and 5 G-U; for a total of 36] in the absence of Mg2+ as in the presence of Mg2+ [14 A-U, 18 G-C, and 3 G-U; for a total of 35], in agreement with the UV hyperchromism estimate of G-C/(A-U + G-C) = 0.58.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Abstract

Saffron is the red dried stigmas of Crocus sativus L. flowers and used both as a spice and as a drug in traditional therapeutic. The biological activity of saffron in modern medicine is in development. Its numerous applications as an anti-oxidant and anti-cancer agent are due to its secondary metabolites and their derivatives (safranal, crocins, crocetin, dimethylcrocetin). The aim of this study was to examine the interaction of transfer RNA with safranal, crocetin, and dimethylcrocetin in aqueous solution at physiological conditions. Constant tRNA concentration (6.25 mM) and various drug/tRNA (phosphate) molar ratios of 1/48 to 1/8 were used. FT-IR and UV-Visible difference spectroscopic methods have been applied to determine the drug binding mode, the binding constants and the effects of drug complexation on the stability and conformation of tRNA duplex. External binding mode was observed for safranal crocetin and dimethylcrocetin, with overall binding constants Ksafranal = 6.8 (± 0.34) × 103 M?1, KCRT = 1.4 (± 0.31) × 104 M?1, and KDMCRT = 3.4 (± 0.30) × 104 M?1. Transfer RNA remains in the A-family structure, upon safranal, crocetin and dimethylcrocetin complexation.  相似文献   

12.
The interaction of calf thymus DNA with Cu2+and Pb2+ was studied in aqueous solution at pH 6.5 with metal/DNA (P) (P = phosphate) molar ratios (r) 1/80, 1/40, 1/20, 1/10, 1/4, 1/2, and 1, using Fourier Transform ir (FTIR) spectroscopy. Correlations between the ir spectral changes, metal ion binding mode, DNA condensation, and denaturation, as well as conformational features, were established. Spectroscopic evidence has shown that at low metal/DNA (P) molar rations 1/80 and 1/40, copper and lead ions bind mainly to the PO of the backbone, resulting in increased base-stacking interaction and duplex stability. The major copper ion base binding via G-C base pairs begins at r > 1/40, while the lead ion base binding occurs at r > 1/20 with the A-T base pairs. The denaturation of DNA begins at r = 1/10 and continues up to r = 1/2 in the presence of copper ions, whereas a partial destabilization of the helical structure was observed for the lead ion at high metal ion concentration (r = 1/2). Metal-DNA binding also results in DNA condensation. No major departure from the B-family structure was observed, upon DNA interaction with these metal ions. © 1993 John Wiley & Sons, Inc.  相似文献   

13.
The Raman spectra of the double helical complexes of poly C–poly G and poly I–poly C at neutral pH are presented and compared with the spectra of the constituent homopolymers. When a completely double-helical structure is formed in solution a strong sharp band at 810–814 cm?1 appears which has previously been shown to be due to the A-type conformation of the sugar–phosphate backbone chain. By taking the ratio of the intensity of the 810–814 cm?1 band to the intensity of the 1090–1100 cm?1 phosphate vibration, one can obtain an estimate of the fraction of the backbone chain in the A-type conformation for both double-stranded helices and self-stacked single chains. This type of information can apparently only be obtained by Raman spectroscopy. In addition, other significant changes in Raman intensities and frequencies have been observed and tabulated: (1) the Raman intensity of certain of the ring vibrations of guanine and hypoxanthine bases decrease as these bases become increasingly stacked (Raman hypochromism), (2) the Raman band at 1464 cm?1 in poly I is asigned to the amide II band of the cis-amide group of the hypoxanthine base. It shifts in frequency upon base pairing to 1484 cm?1, thus permitting the determination of the fraction of I–C pairs formed.  相似文献   

14.
The binding of polyamines, including spermidine ( 1 ) and spermine ( 2 ), to poly[d(G-C) · d(G-C) ] was probed using spectroscopic studies of anthracene-9-carbonyl-N1-spermine ( 3 ); data from normal absorption, linear dichroism (LD), and circular dichroism (CD) are reported. Ligand LD and CD for transitions located in the DNA region of the spectrum were used. The data show that 3 binds to DNA in a manner characteristic of both its amine and polycyclic aromatic parts. With poly [(dG-dC) · (dG-dC)], binding modes are occupied sequentially and different modes correspond to different structural perturbations of the DNA. The most stable binding mode for 3 with poly[d(G-C) · d(G-C)] has a site size of 6 ± 1 bases, and an equilibrium binding constant of (2.2 ± 1.1) × 107 M?1 with the anthracene moiety intercalated. It dominates the spectra from mixing ratios of approximately 133:1 until 6:1 DNA phosphate: 3 is reached. The analogous data for poly [d(A-T) · d(A-T)] between mixing ratios 36:1 and 7:1 indicates a site size of 8.3 ± 1.1 bases and an equilibrium binding constant of (6.6 ± 3.3) × 105 M?1. Thus, 3 binds preferentially to poly [d(G-C) · d(G-C)] at these concentrations. © 1994 John Wiley & Sons, Inc.  相似文献   

15.
In this report we are examining how the antioxidant flavonoids can prevent DNA damage and what mechanism of action is involved in the process. Flavonoids are strong antioxidants that prevent DNA damage. The anticancer and antiviral activities of these natural products are implicated in their mechanism of actions. We study the interactions of quercetin (que), kaempferol (kae), and delphinidin (del) with DNA and transfer RNA in aqueous solution at physiological conditions, using constant DNA or RNA concentration 6.25 mmol (phosphate) and various pigment/polynucleotide(phosphate) ratios of 1/65 to 1 (DNA) and 1/48 to 1/8 (tRNA). The structural analysis showed quercetin, kaempferol, and delphinidin intercalate DNA and RNA duplexes with minor external binding to the major or minor groove and the backbone phosphate group with overall binding constants for DNA adducts K que = 7.25 (±0.65) × 104 M−1, K kae = 3.60 (±0.33) × 104 M−1, and K del = 1.66 (±0.25) × 104 M−1 and for tRNA adducts K que = 4.80 (±0.50) × 104 M−1, K kae = 4.65 (±0.45) × 104 M−1, and K del = 9.47 (±0.70) × 104 M−1. The stability of adduct formation is in the order of del>que>kae for tRNA and que>kae>del for DNA. Low flavonoid concentration induces helical stabilization, whereas high pigment content causes helix opening. A partial B to A-DNA transition occurs at high drug concentration, while tRNA remains in A-family structure. The antioxidant activity of flavonoids changes in order delphinidin>quercetin>kaempferol. The results show intercalated flavonoids can make them strong antioxidants to protect DNA from harmful free radical reactions.  相似文献   

16.
The thermodynamics of self-association (stacking) of free bases and nucleotides, intramolecular stacking in dinucleotides, nearest-neighbour base pair stacking interactions in duplex DNA and RNA, and the formation of hairpin loops illustrate enthalpy/entropy compensations. Large stacking exothermicities are associated with large negative entropy changes that ensure that delta G is small, permitting readily reversible associations in solution. We rationalise enthalpy/entropy compensations with reference to residual motions and torsional vibrations which make a larger entropic contribution to binding when - delta H approximately kT (thermal energy at room temperature), than when - delta H >> kT. We present a factorisation of experimental free energies for helix formation in terms of approximate contributions from the restriction of rotations, hydrophobic interactions, electrostatic interactions due to base stacking, and contributions from hydrogen bonding, and estimate the adverse free energy cost per rotor (mainly entropy) of ordering the phosphate backbone as between 1.9 and 5.4 kJ mol-1 [averaged over 12 rotors per base pair for A-U on A-U stacking (lower limit), and G-C on C-G stacking (upper limit)]. The largest cost is associated with the most exothermic stacking interactions, while the range of values is consistent with earlier conclusions from data on the fusion of hydrocarbon chains (lower value), and with entropy changes in covalent isomerisations of small molecules involving severe restrictions (upper value).  相似文献   

17.
The B -to-A conformational transition of calf thymus DNA fibers was followed employing Raman spectroscopy. The transition was induced by soaking DNA fibers in water/ethanol mixtures increasing from 60 to 85% ethanol (v/v). Intensity changes of 17 Raman vibrational bands were quantified in the region from 400 to 860 cm?1. Two bands at 500 and 784 cm?1 were employed as internal standards. These bands do not appear to change in intensity with ethanol concentration. Large intensity changes relative to these two bands are observed between 70 and 74% ethanol for backbone vibrations at 708, 808, and 835 cm?1, and base vibrations at 682, 730, and 750 cm?1. These results indicate that a highly cooperative conformational change takes place between different portions of DNA in the B -to-A transition. Relative intensity changes preceding the onset of the major transition are observed in only two bands; at 835 cm?1, assigned to a ribose–phosphate vibration, and at 750 cm?1, assigned to thymine. The implications of these pretransition changes are discussed.  相似文献   

18.
Ag(I) is a strong nucleic acids binder and forms several complexes with DNA such as types I, II, and III. However, the details of the binding mode of silver(I) in the Ag-polynucleotides remains unknown. Therefore, it was of interest to examine the binding of Ag(I) with calf-thymus DNA and bakers yeast RNA in aqueous solutions at pH 7.1-6.6 with constant concentration of DNA or RNA and various concentrations of Ag(I). Fourier transform infrared spectroscopy and capillary electrophoresis were used to analyze the Ag(I) binding mode, the binding constant, and the polynucleotides' structural changes in the Ag-DNA and Ag-RNA complexes. The spectroscopic results showed that in the type I complex formed with DNA, Ag(I) binds to guanine N7 at low cation concentration (r = 1/80) and adenine N7 site at higher concentrations (r = 1/20 to 1/10), but not to the backbone phosphate group. At r = 1/2, type II complexes formed with DNA in which Ag(I) binds to the G-C and A-T base pairs. On the other hand, Ag(I) binds to the guanine N7 atom but not to the adenine and the backbone phosphate group in the Ag-RNA complexes. Although a minor alteration of the sugar-phosphate geometry was observed, DNA remained in the B-family structure, whereas RNA retained its A conformation. Scatchard analysis following capillary electrophoresis showed two binding sites for the Ag-DNA complexes with K(1) = 8.3 x 10(4) M(-1) for the guanine and K(2) = 1.5 x 10(4) M(-1) for the adenine bases. On the other hand, Ag-RNA adducts showed one binding site with K = 1.5 x 10(5) M(-1) for the guanine bases.  相似文献   

19.
In non-specific lac headpiece-DNA complexes selective NMR line broadening is observed that strongly depends on length and composition of the DNA fragments. This broadening involves amide protons found in the non-specific lac-DNA structure to be interacting with the DNA phosphate backbone, and can be ascribed to DNA sliding of the protein along the DNA. This NMR exchange broadening has been used to estimate the 1D diffusion constant for sliding along non-specific DNA. The observed 1D diffusion constant of 4×10?12 cm2/s is two orders of magnitude smaller than derived from previous kinetic experiments, but falls in the range of values determined more recently using single molecule methods. This strongly supports the notion that sliding could play at most a minor role in the association kinetics of binding of lac repressor to lac operator and that other processes such as hopping and intersegment transfer contribute to facilitate the DNA recognition process.  相似文献   

20.
Fourier-transform infrared (FT-IR) spectra of yeast ribosomal 5S RNA have been acquired at several temperatures between 30 and 90 degrees C. The difference spectrum between 90 (bases unstacked) and 30 degrees C (bases stacked) provides a measure of base stacking in the RNA. Calibration difference spectra corresponding to stacking of G-C or A-U pairs are obtained from "reference" FT-IR spectra of poly(rG) X poly(rC) minus 5'-GMP and 5'-CMP or poly(rA) X poly(rU) minus 5'-AMP and 5'-UMP. The best fit linear combination of the calibration G-C and A-U difference spectra to the 5S RNA (90-30 degrees C) difference spectrum leads to a total of 25 +/- 3 base pairs (17 G-C pairs + 8 A-U pairs) for the native yeast 5S RNA in the absence of Mg2+. In the presence of Mg2+, an additional six base pairs are detected by FT-IR (one G-C and five A-U). FT-IR melting curve midpoints show that A-U and G-C pairs melt together (65 and 63 degrees C) in the presence of Mg2+ but A-U pairs melt before G-C pairs (47 vs. 54 degrees C) in the absence of Mg2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号