首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

DNA oligonucleotides with appropriately designed complementary sequences can form a duplex in which the two strands are paired in a parallel orientation and not in the conventional antiparallel double helix of B-DNA. All parallel stranded (ps) molecules reported to date have consisted exclusively of dA · dT base pairs. We have substituted four dA · dT base pairs of a 25-nt parallel stranded linear duplex (ps-D1 · D2) with dG · dC base pairs. The two strands still adopt a duplex structure with the characteristic spectroscopic properties of the ps conformation but with a reduced thermodynamic stability. Thus, the melting temperature of the ps duplex with four dG · dC base pairs (ps-D5 · D6) is 10-16°C lower and the van't Hoff enthalpy difference ΔvH for the helix-coil transition is reduced by 20% (in NaCl) and 10% (in MgCl2) compared to that of ps-Dl · D2. Based on energy minimizations of a ps-[d(T5GA5) · d(A5CT5)] duplex using force field calculations we propose a model for the conformation of a trans dG · dC base pair in a ps helix.  相似文献   

2.
Noncanonical parallel-stranded DNA double helices (ps-DNA) of natural nucleotide sequences are usually less stable than the canonical antiparallel-stranded DNA structures, which ensures reliable cell functioning. However, recent data indicate a possible role of ps-DNA in DNA loops or in regions of trinucleotide repeats connected with neurodegenerative diseases. The review surveys recent studies on the effect of nucleotide sequence on preference of one or other type of DNA duplex. (1) Ps-DNA of mixed AT/GC composition was found to have conformational and thermodynamic properties drastically different from those of a Watson–Crick double helix. Its stability depends strongly on the specific sequence in a manner peculiar to the ps double helix, because of the energy disadvantage of the AT/GC contacts. The AT/GC boundary facilitated flipping of A and T out of the ps double helix. Proton acceptor groups of bases are exposed into both grooves of the ps-DNA and are accessible to solvent and ligands, including proteins. (2) DNA regions containing natural minor bases isoguanine and isomethylisocytosine were shown to form ps-DNA with transAT-, trans isoGC, and transiso5meCG pairs exceeding in stability a related canonical duplex. (3) Nucleotide sequence dG(GT)4G from yeast telomeres and microsatellites was demonstrated to form novel ps-DNA with GG and TT base pairing. Unlike d(GT) n - and d(G n T m ) sequences able to form quadruplexes, the dG(GT)4G sequence formed no alternative double- or multistranded structures in a wide range of experimental conditions, thus suggesting that the nucleotide context governs the observed structural polymorphism of the d(GT) n sequence. The possible biological role of ps-DNA and the prospects of its study are discussed.  相似文献   

3.
J Klysik  K Rippe    T M Jovin 《Nucleic acids research》1991,19(25):7145-7154
DNA oligonucleotides with appropriate sequences can form a stable duplex in which the two strands are paired in a parallel orientation instead of as the conventional antiparallel double helix of B-DNA. In parallel-stranded DNA (ps-DNA) base pairing is noncanonical with the glycosidic bonds in a trans orientation. The two grooves are equivalent. We have synthesized DNA duplexes consisting of a central parallel-stranded (dA)15.(dT)15 tract flanked by normal antiparallel regions, and ligated them into the pUC18 plasmid. The effect of negative supercoiling on the covalently closed circular molecules was studied by two-dimensional agarose gel electrophoresis and by chemical modification with OsO4-pyridine (Os,py) and diethylpyrocarbonate (DEPC). The following results were obtained: (i) The ps insert, and by inference ps-DNA in general, adopts a right handed helical form. (ii) Upon increasing the negative superhelix density (-sigma) to greater than 0.03 the 15 bp ps insert undergoes a major transition leading to a relaxation corresponding to a reduction in twist of approximately 2.5 helical turns. The transition free surgery is approximately kcal/mol. (iii) The chemical modification pattern of the resulting structure suggests that the purine strand folds back and associates with the pyrimidine strand, forming a novel intramolecular triplex structure consisting of d(A.A.T) base triplets. A model for the triplex conformation is proposed and its thermodynamic properties are analyzed by statistical mechanics.  相似文献   

4.
Abstract

We have investigated the minor groove binders netropsin (Nt) and related lexitropsins for possible interactions with parallel-stranded DNA (ps-DNA). The fluorescence emission spectra and their temperature dependence between 4°C and 30°C led to two conclusions: (i) The specific ligand Nt induces a conversion of the ps-DNA to an antiparallel-stranded DNA (aps-DNA) with mismatched base pairs, a reaction which is much less pronounced for the imidazole-containing analogs, (ii) The more weakly binding imidazole-bearing netropsin-analogs may bind to ps-DNA.  相似文献   

5.
The infrared spectra of three different 25-mer parallel-stranded DNAs (ps-DNA) have been studied. We have used ps-DNAs containing either exclusively dA x dT base pairs or substitution with four dG x dC base pairs and have them compared with their antiparallel-stranded (aps) reference duplexes in a conventional B-DNA conformation. Significant differences have been found in the region of the thymine C = O stretching vibrations. The parallel-stranded duplexes showed characteristic marker bands for the C2 = O2 and C4 = O4 carbonyl stretching vibrations of thymine at 1685 cm-1 and 1668 cm-1, respectively, as compared to values of 1696 cm-1 and 1663 cm-1 for the antiparallel-stranded reference duplexes. The results confirm previous studies indicating that the secondary structure in parallel-stranded DNA is established by reversed Watson--Crick base pairing of dA x dT with hydrogen bonds between N6H...O2 and N1...HN3. The duplex structure of the ps-DNA is much more sensitive to dehydration than that of the aps-DNA. Interaction with three drugs known to bind in the minor groove of aps-DNA--netropsin, distamycin A and Hoechst 33258--induces shifts of the C = O stretching vibrations of ps-DNA even at low ratio of drug per DNA base pair. These results suggest a conformational change of the ps-DNA to optimize the DNA-drug interaction. As demonstrated by excimer fluorescence of strands labeled with pyrene at the 5'-end, the drugs induce dissociation of the ps-DNA duplex with subsequent formation of imperfectly matched aps-DNA to allow the more favorable drug binding to aps-DNA. Similarly, attempts to form a triple helix of the type d(T)n.d(A)n.d(T)n with ps-DNA failed and resulted in the dissociation of the ps-DNA duplex and reformation of a triple helix based upon an aps-DNA duplex core d(T)10.d(A)10.  相似文献   

6.
Abstract

Conformational analysis has revealed anisotropic flexibility of the B-DNA double helix: it bends most easily into the grooves, being the most rigid when bent in a perpendicular direction. This result implies that DNA in a nucleosome is curved by means of relatively sharp bends (“mini-kinks”) which are directed into the major and minor grooves alternatively and separated by 5–6 base pairs. The “mini-kink” model proved to be in keeping with the x-ray structure of the B-DNA dodecamer resolved later, which exhibits two “annealed kinks”, also directed into the grooves.

The anisotropy of B DNA is sequence-dependent: the pyrimidine-purine dimers (YR) favor bending into the minor groove, and the purine-pyrimidine dinucleotides (RY), into the minor one. The RR and YY dimers appear to be the most rigid dinucleotides. Thus, a DNA fragment consisting of the interchanging oligopurine and oligopyrmidine blocks 5–6 base pairs long should manifest a spectacular curvature in solution.

Similarly, a nucleotide sequence containing the RY and YR dimers separated by a half-pitch of the double helix is the most suitable for wrapping around the nucleosomal core. Analysis of the numerous examples demonstrating the specific alignment of nucleosomes on DNA confirms this concept. So, the sequence-dependent “mechanical” properties of the double helix influence the spatial arrangement of DNA in chromatin.  相似文献   

7.
Noncanonical parallel-stranded DNA double helices (ps-DNA) comprising natural nucleotide sequences are usually second in stability to antiparallel-stranded (aps) canonical DNA structures, which ensures reliable cell functioning. However, recent data indicate a possible role of ps-DNA in DNA loops or in trinucleotide repeats connected with neurodegenerative diseases. The review surveys recent studies on the effect of nucleotide sequence on preference of one or other type of DNA duplex. (1) Ps-DNA with mixed AT/GC composition was found to have conformational and thermodynamic properties drastically different from those of Watson-Crick double helix. Its stability depends strongly on the specific sequence in a manner peculiar to the ps double helix, because of the energy disadvantage of the AT/GC contacts. The AT/GC boundary facilitated flipping of A and T out of the ps double helix. Proton acceptor groups of bases are exposed into the both grooves of the ps-DNA and are accessible to solvent and ligands, including proteins. (2) DNA regions containing natural minor bases isoguanine and isomethylcytosine were shown to form ps-DNA with transAT-, trans isoGC, and trans iso5meCG pairs exceeding in stability a related aps duplex. (3) Nucleotide sequence dG(GT)4G from yeast telomeres and microsatellites was demonstrated to form novel ps-DNA with GG and TT base pairing. Unlike d(GT)n and d(GnTm) sequences able to form quadruplexes, the dG(GT)4G sequence formed no alternative double- or multistranded structures in a wide range of experimental conditions, thus suggesting that the nucleotide context governs the observed structural polymorphism of the d(GT)n sequence. The possible biological role of ps-DNA and the prospects of its study are discussed.  相似文献   

8.
Parallel-stranded (ps) DNAs with mixed AT/GC content comprising G.C pairs in a varying sequence context have been investigated. Oligonucleotides were devised consisting of two 10-nt strands complementary either in a parallel or in an antiparallel orientation and joined via nonnucleotide linkers so as to form 10-bp ps or aps hairpins. A predominance of intramolecular hairpins over intermolecular duplexes was achieved by choice of experimental conditions and verified by fluorescence determinations yielding estimations of rotational relaxation times and fractional base pairing. A multistate mode of ps hairpin melting was revealed by temperature gradient gel electrophoresis (TGGE). The thermal stability of the ps hairpins with mixed AT/GC content depends strongly on the specific sequence in a manner peculiar to the ps double helix. The thermodynamic effects of incorporating trans G.C base pairs into an AT sequence are context-dependent: an isolated G. C base pair destabilizes the duplex whereas a block of > or =2 consecutive G.C base pairs exerts a stabilizing effect. A multistate heterogeneous zipper model for the thermal denaturation of the hairpins was derived and used in a global minimization procedure to compute the thermodynamic parameters of the ps hairpins from experimental melting data. In 0.1 M LiCl at 3 degrees C, the formation of a trans G.C pair in a GG/CC sequence context is approximately 3 kJ mol(-)(1) more favorable than the formation of a trans A.T pair in an AT/TA sequence context. However, GC/AT contacts contribute a substantial unfavorable free energy difference of approximately 2 kJ mol(-)(1). As a consequence, the base composition and fractional distribution of isolated and clustered G.C base pairs determine the overall stability of ps-DNA with mixed AT/GC sequences. Thus, the stability of ps-DNA comprising successive > or =2 G.C base pairs is greater than that of ps-DNA with an alternating AT sequence, whereas increasing the number of AT/GC contacts by isolating G.C base pairs exerts a destabilizing effect on the ps duplex. Molecular modeling of the various helices by force field techniques provides insight into the structural basis for these distinctions.  相似文献   

9.
Monte Carlo simulations are reported for a system of 447 water molecules enclosing a B-DNA double-helix fragment with 12 base pairs and the corresponding sugar and phosphate units. From a detailed analysis on the interaction energies and probability distributions (at a simulated temperature of 300 K), the water molecules can be partitioned into clusters strongly interacting with (1) the phosphates, (2) the sugars, (3) the sugars and the bases, and (4) the base pairs. In addition, transgroove and interphosphate filament of hydrogen-bonded water molecules have been detected. From simulations performed with variable numbers of water molecules, a theoretical isotherm has been obtained, with the characteristic sigmoidal shape, known from absorption–desorption experiments on related systems. The expected main features for the structure of water molecules solvating B-DNA with Na+ counterions are briefly discussed at the end of the paper.  相似文献   

10.
The binding of actinomycin D (C1, 1) and its analog actinomin (2) was studied on base-modified oligonucleotide duplexes with parallel chain orientation (ps) and with anti-parallel chains (aps) for comparison. Actinomycin D binds not only to aps duplexes containing guanine-cytosine base pairs but also to those incorporating modified bases such as 7-deazaguanine or its 6-deoxo derivative. For this, novel phosphoramidites were prepared. The new building block of 7-deaza-2'-deoxyguanosine is significantly more stable than the one currently used and allows normal oxidation conditions during solid-phase oligonucleotide synthesis. Actinomycin binds weakly to ps duplexes containing guanine-isocytosine base pairs but not to ps-DNA incorporating pairs of isoguanine-cytosine residues. On the contrary, the actinomycin D analog actinomin, which contains positively charged side chains instead of the chiral peptide rings, is strongly bound to both ps- and aps-DNA. Guanines, isoguanine, as well as other 7-deaza derivatives are accepted as nucleobases. Apparently, the pentapeptide lacton rings of actinomycin do not fit nicely into the groove of ps-DNA thereby reducing the binding strength of the antibiotic while the groove size of ps-DNA does not affect actinomin binding notably.  相似文献   

11.
DNA oligonucleotides with dA and dU residues can form duplexes with trans d(A · U) base pairing and the sugar-phosphate backbone in a parallel-stranded orientation, as previously established for oligonucleotides with d(A · T) base pairs. The properties of such parallel-stranded DNA (ps-DNA) 25-mer duplexes have been characterized by absorption (uv), CD, ir, and fluorescence spectroscopy, as well as by nuclease sensitivity. Comparisons were made with duplex molecules containing (a) dT in both strands, (b) dU in one strand and dT in the second, and (c) the same base combinations in reference antiparallel-stranded (aps) structures. Thermodynamic analysis revealed that total replacement of deoxythymine by deoxyuridine was accompanied by destabilization of the ps-helix (reduction in Tm by −13°C in 2 mM MgGl2, 10 mM Na-cacodylate). The U-containing ps-helix (U1 · U2) also melted 14°C lower than the corresponding aps-helix under the same ionic conditions; this difference was very close to that observed between ps and aps duplexes with d(A · T) base pairs. Force field minimized structures of the various ps and aps duplexes with either d(A · T) or d(A · U) base pairs ps/aps and dT/dU combinations are presented. The energy-minimized helical parameters did not differ significantly between the DNAs containing dT and dU. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
A parallel stranded linear DNA duplex incorporating dG.dC base pairs   总被引:3,自引:0,他引:3  
DNA oligonucleotides with appropriately designed complementary sequences can form a duplex in which the two strands are paired in a parallel orientation and not in the conventional antiparallel double helix of B-DNA. All parallel stranded (ps) molecules reported to date have consisted exclusively of dA.dT base pairs. We have substituted four dA.dT base pairs of a 25-nt parallel stranded linear duplex (ps-D1.D2) with dG.dC base pairs. The two strands still adopt a duplex structure with the characteristic spectroscopic properties of the ps conformation but with a reduced thermodynamic stability. Thus, the melting temperature of the ps duplex with four dG.dC base pairs (ps-D5.D6) is 10-16 degrees C lower and the van't Hoff enthalpy difference delta HvH for the helix-coil transition is reduced by 20% (in NaCl) and 10% (in MgCl2) compared to that of ps-D1.D2. Based on energy minimizations of a ps-[d(T5GA5).d(A5CT5)] duplex using force field calculations we propose a model for the conformation of a trans dG.dC base pair in a ps helix.  相似文献   

13.
Abstract

Simultaneous binding of two DAPI molecules in the minor groove of (dA)15.(dT)15 B-DNA helix has been simulated by molecular mechanics calculations. The energy minimised structure shows some novel features in relation to binding of DAPI molecules as well as the flexibility of the grooves of DNA helices. The minor groove of the helix expands locally considerably (to 15 Å) to accommodate the two DAPI molecules and is achieved by positive propeller twisting of base pairs at the binding site concomitant with small variations in the local nucleotide stereochemistry. The expansion also brings forth simultaneously a contraction in the width of the major groove spread over to a few phosphates. These findings demonstrate another facet of the flexible stereochemistry of DNA helices in which the local features are significantly altered without being propagated beyond a few base pairs, and with the rest of the regions retaining the normal structure. Both the DAPI molecules are engaged in specific hydrogen bonds with the bases and non specific interactions with phosphates. Stacking interactions of DAPI molecules between themselves as well as with sugar-phosphate backbone contribute to the stability of the complex. The studies provide a stereochemical support to the experimental findings that under high drug-DNA ratio DAPI could bind in the 2:1 ratio.  相似文献   

14.
The binding positions and relative minimum binding energies are calculated for complexes of 9-aminoacridine, proflavine, N-methylphenanthridinium, and ethidium in theoretically determined intercalation sites in B-DNA (sites I and II) and in unconstrained dimer-duplex sites. The selection of site I in B-DNA by these compounds agrees with the theoretical interpretation of studies of unwinding angles in closed circular DNA in all cases but ethidium, which is predicted to select site II. The most stable binding positions of the acridines and ethidium in unconstrained dimer-duplex units agree with experimental results of intercalation complexes of dinucleoside monophosphate units. Base-pair specificity for Watson-Crick pairing is examined. The energy of an intercalation complex is partitioned into ΔE23, the energy required to open base pairs BP2 and BP3 in B-DNA to a site, and ΔEIn, the energy change when a free molecular intercalates. ΔE23 depends strongly on the base-pair sequence, whereas ΔEIn for the four molecules studied does not. The three most stable sequences contain (pyrimidine)p(purine) units, and this provides a rationale for the exclusive formation of crystals of intercalation complexes with these units. In spite of this selectivity, the distribution of G?C and A?T base pairs is equal for these three units and persists as the more unstable sequences are included. Therefore, specificity arises from the interaction between the base pairs and the 2′-deoxyribose 5′-monophosphate backbone for the opening of B-DNA to an intercalation site and not from the interaction between the chromophore and the DNA.  相似文献   

15.
Abstract

The structural distortion of a single- and a double-stranded decadeoxynucleotide upon binding of cis-PtCI2(NH3)2 was studied by 1H-NMR. After selective platination of d(T-C-T- C-G-G-T-C-T-C) (I) at the central d(-GpG-) site (resulting in I-Pt), several non-exchangeable base protons as well as H1′, H2′ H2″ and H3′ protons could be assigned by means of conventional NMR double-resonance techniques. Addition of the complementary decamer strand to I and I-Pt yielded the double-stranded III and III-Pt, respectively. All non-exchangeable base, H1′, and most of the H2′ and H2″ protons in the two double stranded compounds could be assigned using 2D-chemical shift correlation (COSY) and nuclear Overhauser enhancement (NOESY) techniques. The double stranded compound III appears to adopt a B-DNA like structure. Comparison of NOEs and proton-proton coupling constants in the d(-GpG-)·cisPt part in I-Pt and III-Pt reveals that their structure displays large similarity. Significant chemical shift changes (i.e, larger than 0.1 ppm) between III and III-Pt are restricted to the central four base pairs. It follows that the outer three base pairs, located on either side of the central four base pairs in III-Pt are likely to adopt a regular B-DNA type helix. The observed large upfield and downfield chemical shifts in the d(-CpGpG-) part of III with respect to III-Pt can be rationalized by describing the distortion of the double helix as a kink. A discussion of the observed physical effects upon platination of a double-stranded oligonucleotide is presented.  相似文献   

16.
Abstract

Oligonucleotides 3′-d(GT)5-(CH2CH2O)3-d(GT)5-3′ (parGT), containing GT repeats present in the telomeric DNA from Saccharomyces cerevisiae, had been demonstrated to form bimolecular structure, GT-quadruplex (qGT) [O. F. Borisova et al. FEBS Letters 306, 140–142 (1992)]. Four d(GT)5 strands of the GT-quadruplex are parallel and form five G-quartets while thymines are bulged out. The four GT repeats when flanked by guanines, 3′-dG(TG)4G-(CH2CH2O)3- dG(GT)4G-3′ (hp-GT), had been shown to form a novel parallel-stranded (ps) double helix with G·G and T·T base pairs (hp-GT ps-DNA) [A. K. Shchyolkina et al. J. Biomol. Struct. Dynam. 18, 493–503 (2001)]. In the present study the intercalator ethidium bromide (Et) was used for probing the two structures. The mode of Et binding and its effect on thermostability of qGT and hp-GT were compared. The quantum yield (q) and the fluorescence lifetime (τ) of Et:qGT (q = 0.15 ±0.01 and τ = 24 ±1 ns) and Et:hp-GT (q = 0.10 ± 0.01 and τ = 16.5 ± 1 ns) indicative of intercalation mode of Et binding were determined. Et binding to qGT was found to be cooperative with corresponding coefficient ω = 3.9 ± 0.1 and the binding constant K= (6.4 ± 0.1)·10M?1. The maximum number of Et molecules intercalating into GT-quadruplex is as high as twice the number of inerspaces between G-quartets (eight in our case). The data conform to the model of Et association with GT-quadruplex suggested earlier [O. F. Borisova et al. Mol. Biol. (Russ) 35, 732–739 (2001)]. The anticooperative type of Et binding was observed in case of hp- GT ps-DNA, with the maximum number of bound Et molecules, N = 4 ÷ 5, and the association constant K = (1.5 ± 0.1)·105 M?1. Thermodynamic parameters of formation of Et:qGT and EtBr:hp-GT complexes were calculated from UV thermal denaturation profiles.  相似文献   

17.
F Eisenhaber  J H Mannik  V G Tumanyan 《Biopolymers》1990,29(10-11):1453-1464
Being interested in possible effects of sequence-dependent hydration of B-DNA with mixed sequence in fibers, we performed a series of Monte Carlo calculations of hydration of polydeoxyribonucleotides in B form, considering all sequences with dinucleotide repeat. The computational results allow the ten base-stacking types to be classified in accordance with their primary hydration in the minor groove. As a rule, the minor groove is occupied by two water molecules per base pair in the depth of the groove, which are located nearly midway between the planes of successive base pairs and symmetrically according to the dyad there. The primary hydration of the major groove depends on the type of the given base pair. The coordinates of 3 water molecules per base pair in the depth of the major groove are determined by the type of this pair together with its position and orientation in the helix, and are practically independent on the adjacent base pairs. A/T-homopolymer tracts do not fit into this hydration pattern; the base pair edges are hydrated autonomously in both grooves. Analysis of the Li-B-DNA x-ray diffraction intensities reveals those two water positions in the minor groove. In the major groove, no electronic density peaks in sufficient distance from the base edges were found, thus confirming the absence of any helical invariance of primary hydration in this region. With the help of the rules proposed in this paper it is possible to position the water molecules of the first hydration shell in the grooves of canonical B-DNA for any given sequence.  相似文献   

18.
Abstract

The molecular structure of nucleoprotamine from Gibbula divaricata and its packing in oriented fibers has been modelled both to fit the X-ray diffraction pattern and to avoid steric compression. The representative model consists of 51 poly(dinucleotide) B-DNA helices with 51 poly(hexapeptide) chains associated with the major grooves. The prevailing peptide conformation is β, The four arginine residues present are hydrogen-bonded to DNA phosphates while neutral peptides protrude into the minor grooves of neighboring nucleoprotamine molecules which are packed 2.61 nm apart in a screw-disordered, quasi-hexagonal lattice. This model reconciles a number of earlier, apparently conflicting experimental results and explains the remarkable stability of nucleoprotamines.  相似文献   

19.
20.
Abstract

DNA fragments with stretches of cytosine residues can form four-stranded intercalated i-DNA molecules stabilized by hemiprotonated cytosine·cytosine+ (C·C+) base pairs. Intriguing features of this motif are the accomodation of base stacking that is unfavorable due to electrostatic repulsion and the close approach of phosphates in narrow grooves of the molecule. Unusual sources of stability in this structure involve sugar-base stacking and CH-O interribose short contacts between the backbones of adjacent strands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号