首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inferring the protein architecture chronology is one of central topics in origin of life study and has been given much attention. Based on an amino acid evolutionary model that late amino acids were bio-synthesized prior to early counterparts, we addressed the issue by examining the structures of amino acid synthases. Despite the limited structural information on amino acid synthases, our deduction revealed that alpha/beta was the oldest protein class, which is in good agreement with the prior fold-usage-based conclusion.  相似文献   

2.
Ketoacyl synthases are enzymes involved in fatty acid synthesis and can be classified into five families based on primary sequence similarity. Different families have different catalytic mechanisms. Developing cost-effective computational models to identify the family of ketoacyl synthases will be helpful for enzyme engineering and in knowing individual enzymes’ catalytic mechanisms. In this work, a support vector machine-based method was developed to predict ketoacyl synthase family using the n-peptide composition of reduced amino acid alphabets. In jackknife cross-validation, the model based on the 2-peptide composition of a reduced amino acid alphabet of size 13 yielded the best overall accuracy of 96.44% with average accuracy of 93.36%, which is superior to other state-of-the-art methods. This result suggests that the information provided by n-peptide compositions of reduced amino acid alphabets provides efficient means for enzyme family classification and that the proposed model can be efficiently used for ketoacyl synthase family annotation.  相似文献   

3.
[背景] 聚酮类化合物在医药领域有重要的应用,相关药物研发依赖聚酮合酶多变的结构认知,人源脂肪酸合酶的组成结构和催化机制与聚酮合酶相近,研究人源脂肪酸合酶结构可为聚酮合酶的研究奠定基础。[目的] 在酿酒酵母中表达纯化人源脂肪酸合酶蛋白,确定合适的体外纯化条件。[方法] 以酿酒酵母BJ5464为表达载体,构建带有His和Strep双亲和层析标签的重组质粒,诱导表达蛋白后用亲和层析方法获取目标蛋白,并结合凝胶电泳和快速蛋白质液相层析技术,确定合适的蛋白纯化条件。[结果] 成功构建重组表达质粒pxw55-hfas-cSHII, 并在体外纯化得到合适浓度和纯度的人源脂肪酸合酶蛋白,筛选不同缓冲液条件并结合电子显微镜观察结果反馈,确定合适的蛋白体外纯化体系。[结论] 蛋白电镜结构分析需要有高纯度、合适浓度并且形成正确构象的蛋白样品,而人源脂肪酸合酶蛋白纯化体系的建立和纯化条件的确定为其电镜结构分析提供了良好的样品,为人源脂肪酸合酶的结构解析及结构相似但更为复杂的聚酮合酶蛋白解析奠定了良好基础。  相似文献   

4.
ABSTRACT

Abscisic acid (ABA) is one of the plant hormones that regulates physiological functions in various organisms, including plants, sponges, and humans. The biosynthetic machinery in plants is firmly established, while that in fungi is still unclear. Here, we elucidated the functions of the four biosynthetic genes, bcABA1-bcABA4, found in Botrytis cinerea by performing biotransformation experiments and in vitro enzymatic reactions with putative biosynthetic intermediates. The first-committed step is the cyclization of farnesyl diphosphate to give α-ionylideneethane catalyzed by a novel sesquiterpene synthase, BcABA3, which exhibits low amino acid sequence identities with sesquiterpene synthases. Subsequently, two cytochrome P450s, BcABA1 and BcABA2, mediate oxidative modifications of the cyclized product to afford 1?,4?-trans-dihydroxy-α-ionylideneacetic acid, which undergoes alcohol oxidation to furnish ABA. Our results demonstrated that production of ABA does not depend on the nucleotide sequence of bcABA genes. The present study set the stage to investigate the role of ABA in infections.  相似文献   

5.
The Hedychium coronarium can emit a strong scent which is mainly composed of monoterpenes. A cDNA clone, HcTPS2 (H. coronarium terpene synthases), was cloned from H. coronarium flower. The gene has an open reading frame of 1,788 bp which encodes a protein of 596 amino acids with a calculated molecular mass of 66.7 kDa. The deduced amino acid sequence shows 35–38% identity with known monoterpene synthases in other angiosperm species. HcTPS2 was appreciably expressed in the petals, sepals, and stamens of H. coronarium, whereas no expression signal was detected in those of nonscented species. To the best of our knowledge, this is for the first time to clone the terpene synthase gene from H. coronarium, which provides the basis for biotechnological manipulation of scent composition in H. coronarium.  相似文献   

6.
Callus cultures were initiated from the bud apices of 10–40-year-old Scots pines (Pinus sylvestris L.) at different seasons and maintained on modified MS medium without subculturing. Separate sets of experiments were used for analyses of carbohydrate content, ethylene production, amino acid composition, protein patterns andin vitro translation. In each case the change in the colour of the calli was recorded and the fresh mass of the samples measured. The onset of tissue browning was found to be associated with changes in protein pattern, amino acid content, ethylene production and the occurrence of sucrose and accumulation of starch.In vitro translation experiments using poIy(A)+ RNA isolated and purified from the calli indicated that the switch in metabolism accompanying browning is paralleled by activated protein synthesis. Thus, the development of brown colour does not as such seem to be harmful to the tissue. The later, more intense tissue browning and deterioration which is reflected in a reduced capacity for protein synthesis and changes in the free amino acid pool and protein pattern is probably a secondary phenomenon.  相似文献   

7.
The nucleotide sequence of the entire nuclear-encoded precursor for subunit delta of the ATP synthase from spinach thylakoid membranes was determined by cDNA sequencing. Appropriate recombinant DNAs were selected from pBR322 and lambda gt11 libraries made from polyadenylated RNA of greening spinach seedlings. The mature protein consists of 187 amino acid residues corresponding to a molecular weight of 20468. The precursor protein (257 amino acid residues; M r=27676) is probably processed between a Met-Val bond. The predicted secondary structure of the transit sequence (70 residues; 7.2 kDa) resembles that of the Rieske Fe/S polypeptide, but shows little similarity with those of stromal or luminal proteins. The comparison of the chloroplast delta amino acid sequence with the published delta sequences from respiratory ATP synthases of bacterial and mitochondrial sources and from the thylakoid ATP synthase of the cyanobacterium Synechococcus suggests substantial divergence at the genic level although structural elements appear to be remarkably conserved.  相似文献   

8.
[目的]枯草芽胞杆菌ComQ是一种类异戊二烯生物合成酶.利用生物信息学预测分析了ComQ的生物学特性,对comQ基因进行过表达和敲除,构建突变菌,孔板发酵培养验证生物膜形态变化.[方法]运用NCBI (National Center for Biotechnology Information)网站里的Protein数据...  相似文献   

9.
Pectobacterium chrysanthemi PY35 secretes the endoglucanase Cel5Z, an enzyme of the glycoside hydrolase family 5. Cel5Z is a 426 amino acid, signal peptide (SP)-containing protein composed of two domains: a large N-terminal catalytic domain (CD; 291 amino acids) and a small C-terminal cellulose binding domain (CBD; 62 amino acids). These two domains are separated by a 30 amino acid linker region (LR). A truncated cel5Z gene was constructed with the addition of a nonsense mutation that removes the C-terminal region of the protein. A truncated Cel5Z protein, consisting of 280 amino acid residues, functioned as a mature enzyme despite the absence of the SP, 11 amino acid CD, LR, and CBD region. In fact, this truncated Cel5Z protein showed an enzymatic activity 80% higher than that of full-length Cel5Z. However, cellulase activity was undetectable in mature Cel5Z proteins truncated to less than 280 amino acids.  相似文献   

10.
Concepts of the uniqueness of the amino acid sequences of proteins were defined in a prior report (Saroff, H. A. and F. A. Kutyna. 1981. “The Uniqueness of Protein Sequences: A Monte Carlo Analysis.”Bull. math. Biol. 43, 619–639), which presented a detailed discussion ofi-uniqueness, i.e. the tendency of small peptides to be repeated within an amino acid sequence of a protein. We now report on the quantitative analysis ofo-uniqueness, which evaluates the tendency of small peptides to be repeated amongst different proteins, usually of a single species. A detailed analysis of theo-uniqueness of several proteins is presented to illustrate the method and the range of values encountered. Uniqueness data on sequences of human proteins in a data bank of sequences containing about 32,500 amino acids are made available in the form of a microfiche. Analysis of biologically active subsequences such as the angiotensins and the enkephalins suggest a tendency of the subsequences contributing to the property ofo-uniqueness to cluster in portions of the parent protein sequence which are biologically active. This property may provide a general method for predicting biologically active areas of proteins. Current data may already be adequate to permit useful predictions, and the rapidly accumulating and interrelated new data on nucleic acid and protein sequences will further enhance the power ofo-uniqueness analysis.  相似文献   

11.
Predicted protein sequences of fungal chitin synthases can be divided into a non-homologous N-terminal region and a C-terminal region that shows significant homology among the various synthases. We have explored the function of these domains by constructing a series of nested deletions, extending from either end, in theCHS1 andCHS2 genes ofSaccharomyces cerevisiae. In both cases, most or all of the sequences encoding the non-homologous N-terminal region (one-third of the protein for Chs1p and about one-fourth for Chs2p) could be excised, with little effect on the enzymatic activity in vitro of the corresponding synthase or on its function in vivo. However, further small deletions (20–25 amino acids) into the homologous region were deleterious to enzymatic activity and function, and often led to changes in the zymogenic character of the enzymes. Similarly, relatively small (about 75 amino acids) deletions from the C-terminus resulted in loss of enzymatic activity and function of both synthases. Thus, it appears that all the information necessary for membrane localization, enzymatic activity and function resides in the homologous regions of Chs1p and Chs2p, a situation that may also apply to other chitin synthases.These authors contributed equally to this paper  相似文献   

12.
13.
14.
The “cognate bias hypothesis” states that early in evolutionary history the biosynthetic enzymes for amino acid x gradually lost residues of x, thereby reducing the threshold for deleterious effects of x scarcity. The resulting reduction in cognate amino acid composition of the enzymes comprising a particular amino acid biosynthetic pathway is predicted to confer a selective growth advantage on cells. Bioinformatic evidence from protein-sequence data of two bacterial species previously demonstrated reduced cognate bias in amino acid biosynthetic pathways. Here we show that cognate bias in amino acid biosynthesis is present in the other domains of life—Archaebacteria and Eukaryota. We also observe evolutionarily conserved underrepresentations (e.g., glycine in methionine biosynthesis) and overrepresentations (e.g., tryptophan in asparagine biosynthesis) of amino acids in noncognate biosynthetic pathways, which can be explained by secondary amino acid metabolism. Additionally, we experimentally validate the cognate bias hypothesis using the yeast Saccharomyces cerevisiae. Specifically, we show that the degree to which growth declines following amino acid deprivation is negatively correlated with the degree to which an amino acid is underrepresented in the enzymes that comprise its cognate biosynthetic pathway. Moreover, we demonstrate that cognate fold representation is more predictive of growth advantage than a host of other potential growth-limiting factors, including an amino acid’s metabolic cost or its intracellular concentration and compartmental distribution. Electronic supplementary material The online version of this article (doi: ) contains supplementary material, which is available to authorized users. Reviewing Editor: Dr. Niles Lehman Ethan O. Perlstein and Benjamin L. de Bivort contributed equally to this work.  相似文献   

15.
The first two genes of ferredoxin-dependent glutamate synthase (Fd-GOGAT) from a prokaryotic organism, the cyanobacterium Synechocystis sp. PCC 6803, were cloned in Escherichia coli. Partial sequencing of the cloned genomic DNA, of the 6.3 kb Hind III and 9.3 kb Cla I fragments, confirmed the existence of two different genes coding for glutamate synthases, named gltB and gltS. The gltB gene was completely sequenced and encodes for a polypeptide of 1550 amino acid residues (M r 168 964). Comparative analysis of the gltB deduced amino acid sequence against other glutamate synthases shows a higher identity with the alfalfa NADH-GOGAT (55.2%) than with the corresponding Fd-GOGAT from the higher plants maize and spinach (about 43%), the red alga Antithamnnion sp. (42%) or with the NADPH-GOGAT of bacterial source, such as Escherichia coli (41%) and Azospirillum brasilense (45%). The detailed analysis of Synechocystis gltB deduced amino acid sequence shows strongly conserved regions that have been assigned to the 3Fe-4S cluster (CX5CHX3C), the FMN-binding domain and the glutamine-amide transferase domain. Insertional inactivation of gltB and gltS genes revealed that both genes code for ferredoxin-dependent glutamate synthases which were nonessential for Synechocystis growth, as shown by the ferredoxin-dependent glutamate synthase activity and western-blot analysis of the mutant strains.  相似文献   

16.
An Intriguing Controversy over Protein Structural Class Prediction   总被引:9,自引:0,他引:9  
A recent report by Bahar et al. [(1997), Proteins 29, 172–185] indicates that the coupling effects among different amino acid components as originally formulated by K. C. Chou [(1995), Proteins 21, 319–344] are important for improving the prediction of protein structural classes. These authors have further proposed a compact lattice model to illuminate the physical insight contained in the component-coupled algorithm. However, a completely opposite result was concluded by Eisenhaber et al. [(1996), Proteins 25, 169–179], using a different dataset constructed according to their definition. To address such an intriguing controversy, tests were conducted by various approaches for the datasets from an objective database, the SCOP database [Murzin et al. (1995), J. Mol. Biol. 247, 536–540]. The results obtained by both self-consistency and jackknife tests indicate that the overall rates of correct prediction by the algorithm incorporating the coupling effect among different amino acid components are significantly higher than those by the algorithms without counting such an effect. This is fully consistent with the physical reality that the folding of a protein is the result of a collective interaction among its constituent amino acid residues, and hence the coupling effects of different amino acid components must be incorporated in order to improve the prediction quality. It was found by a revisiting the calculation procedures by Eisenhaber et al. that there was a conceptual mistake in constructing the structural class datasets and a systematic mistake in applying the component-coupled algorithm. These findings are informative for understanding and utilizing the component-coupled algorithm to study the structural classes of proteins.  相似文献   

17.
Maier T  Yu C  Küllertz G  Clemens S 《Planta》2003,218(2):300-308
Metal-binding domains consisting of short, contiguous stretches of amino acids are found in many proteins mediating the transport, buffering, trafficking or detoxification of metal ions. Phytochelatin synthases are metal-activated enzymes that function in the detoxification of Cd2+ and other toxic metal and metalloid ions. In order to localize Cd2+-binding sites, peptide libraries of two diverse phytochelatin synthases were synthesized and incubated with 109Cd2+. Distinct binding sites and binding motifs could be localized based on the patterns of Cd2+-binding. The number of binding sites was consistent with previous findings for recombinant protein. Positions of binding sites appeared to be conserved even among diverse phytochelatin synthases. Mutant peptide analysis was used to assess the contribution of exemplary amino acids to binding. Several binding motifs contain cysteines or glutamates. For cysteines a strong correlation was found between binding activity and degree of conservation among known phytochelatin synthases. These findings indicate the suitability of peptide scanning for the identification of metal-binding sites. The functional role of several cysteines was investigated by expression of hemagglutinin-tagged phytochelatin synthases in phytochelatin synthase-deficient, Cd2+-hypersensitive Schizosaccharomyces pombe cells. The data are consistent with a model suggesting functionally essential metal-binding activation sites in the N-terminal catalytic part of phytochelatin synthases and additional binding sites at the C-terminus not essential for activity.Abbreviations EMM Edinburgh's minimal medium - GSH glutathione - HA hemagglutinin - PC phytochelatin - PCS phytochelatin synthase  相似文献   

18.
Chalcone (CHS) and stilbene (STS) synthases are related plant-specific polyketide synthases that are key enzymes in the biosynthesis of flavonoids and of stilbene phytoalexins, respectively. A phylogenetic tree constructed from 34 CHS and four STS sequences revealed that the STS formed no separate cluster but grouped with CHS from the same or related plants. This suggested that STS evolved from CHS several times independently. We attempted to simulate this by site-directed mutagenesis of an interfamily CHS/STS hybrid, which contained 107 amino acids of a CHS from Sinapis alba (N-terminal) and 287 amino acids of a STS from Arachis hypogaea. The hybrid had no enzyme activity. Three amino acid exchanges in the CHS part (Gln-100 to Glu, Val-103 to Met, Val-105 to Arg) were sufficient to obtain low STS activity, and one additional exchange (Gly-23 to Thr) resulted in 20–25% of the parent STS activity. A kinetic analysis indicated (1) that the hybrids had the same Km for the substrate 4-coumaroyl-CoA but a lower Vmax than the parent STS, and (2) that they had a different substrate preference than the parent STS and CHS. Most of the other mutations and their combinations led to enzymatically inactive protein aggregates, suggesting that the subunit folding and/or the dimerization was disturbed. We propose that STS evolved from CHS by a limited number of amino acid exchanges, and that the advantage gained by this enzyme function favored the selection of plants with improved STS activity.Abbreviations AA amino acid - CHS chalcone synthase - STS stilbene synthase Correspondence to: J. Schröder 0592The data are discussed on the level of the presently available CHS and STS sequences although many were published after beginning the experiments several years ago. The new information changed the CHS consensus in some details but otherwise confirmed the deductions on the potential significance of amino acid differences between CHS and STS  相似文献   

19.
Polyhydroxyalkanoate (PHA) synthase PhaC plays a very important role in biosynthesis of microbial polyesters PHA. Compared to the extensively analyzed C-terminus of PhaC, N-terminus of PhaC was less studied. In this paper, the N-terminus of two class I PHA synthases PhaCRe and PhaCAh from Ralstonia eutropha and Aeromonas hydrophila, respectively, and one class II synthase PhaC2Ps of Pseudomonas stutzeri strain 1317, were investigated for their effect on PHA synthesis. For PhaCRe, deletion of 2–65 amino acid residues on the N-terminus led to enhanced PHB production with high PHB molecular weight of 2.50 × 106 Da. For PhaCAh, the deletion of the N-terminal residues resulted in increasing molecular weights and widening polydispersity accompanied by a decreased PHA production. It was found that 3-hydroxybutyrate (3HB) monomer content in copolyesters of 3-hydroxybutyrate and 3-hydroxyhexanoate (3HHx) increased when the first 2–9 and 2–13 amino acid residues in the N-terminus of PhaC2Ps were deleted. However, deletion up to the 40th amino acid disrupted the PHA synthesis. This study confirmed that N-terminus in different types of PHA synthases showed significant roles in the PHA productivity and elongation activity. It was also indicated that N-terminal mutation was very effective for the location of functional regions at N-terminus.  相似文献   

20.
[目的]谷氨酸棒杆菌是重要的氨基酸生产菌株,本研究针对SigE与ZAS家族蛋白CseE相互作用机制进行探索研究,重点分析CseE突变体影响与SigE结合能力的机制。[方法]本研究选择谷氨酸棒杆菌ATCC 13032来源的SigE和CseE蛋白为研究目标,利用遗传学方法获得过表达的重组谷氨酸棒杆菌,通过RT-qPCR研究SigE调控sigEcseE的转录情况。同时,利用ITC和His pull-down实验验证ZAS家族的CseE蛋白与Zn2+及SigE的结合情况。之后对CseE蛋白进行功能域分析、多序列比对,研究功能域关键氨基酸位点对SigE结合能力的影响。其次对SigE和CseE蛋白进行分子对接和动力学模拟,分析关键氨基酸影响其结合的机制。[结果]谷氨酸棒杆菌SigE调控基因sigEcseE的转录并且其活性受CseE蛋白控制。CseE蛋白为ZAS家族蛋白,具有Zn2+结合能力。CseEHis83A、CseEcys87A和CseEcys90A突变体不会影响与SigE的结合能力,而CseEC87A-C90A和CseEHis83A-C87A-C90A突变体与SigE的结合能力略有下降。分子动力学模拟发现SigE-CseEC87A-C90A和SigE-CseEHis83A-C87A-C90A之间的结合能量为-17.23 kcal/mol和-14.06 kcal/mol,分别比未突变体系结合能量降低22.8%及36.9%。[结论]谷氨酸棒杆菌SigE通过聚集RNA聚合酶来调控基因sigEcseE的表达。CseE蛋白属于ZAS家族,具有Zn2+结合能力同时通过与SigE蛋白互作来抑制SigE活性。CseEC87A-C90A及CseEHis83A-C87A-C90A突变体能影响与SigE结合的能力,减弱对SigE活性的控制。本研究产生的三维结构和确定的氨基酸关键位点为后续探索谷氨酸棒杆菌SigE和CseE响应环境压力机制提供了理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号