首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The expansion of trinucleotide repeat (TNR) DNA has been linked to several neurodegenerative diseases (McMurray, 2010). The number of repeats is usually a characteristic indication of the severity of TNR-related diseases, with longer repeats giving higher propensity to expand and earlier onset of symptoms (López, Cleary, & Pearson, 2010). It is generally accepted that formation of noncanonical secondary structures, such as stem-loop hairpins or slipouts, contributes to the expansion mechanisms during aberrant DNA replication or repair processes (Mirkin, 2007). The stability of these hairpins is considered an important factor (Paiva & Sheardy, 2005). In this work, we used differential scanning calorimetry (DSC) and UV–Vis spectroscopy to study the thermodynamic and kinetic stability of a series of (CTG)n and (CAG)n TNR stem-loop hairpins and their corresponding (CTG)n/(CAG)n duplexes (n?=?6–14). We found that hairpins with n?=?even and n?=?even?+?1 (odd) repeats possess very similar thermodynamic stability. But, when converting to the canonical duplex form, odd-repeat hairpins are more stabilized compared to those of their even-repeat counterparts. Within both even- and odd-repeat series, hairpins with longer repeats are thermodynamically more stabilized compared to the shorter ones. Kinetic experiments of the stem-loop hairpin to duplex conversion revealed a longer lifetime for the even-repeat hairpins, while the odd-repeat hairpins convert to duplexes 10-fold faster. Also, hairpins with increased number of repeats are more resistant to the conversion when considered within the even- or odd-repeat series individually. Taken together, although it is thermodynamically more favored that hairpins containing longer repeats convert to canonical duplex form; On the contrary, these longer hairpins are kinetically trapped during the conversion and therefore can persist the noncanonical structures, which allows TNR expansion.  相似文献   

2.
DNA trinucleotide repeat (TRs) expansion beyond a threshold often results in human neurodegenerative diseases. The mechanisms causing expansions remain unknown, although the tendency of TR ssDNA to self-associate into hairpins that slip along their length is widely presumed related. Here we apply single molecule FRET (smFRET) experiments and molecular dynamics simulations to determine conformational stabilities and slipping dynamics for CAG, CTG, GAC and GTC hairpins. Tetraloops are favored in CAG (89%), CTG (89%) and GTC (69%) while GAC favors triloops. We also determined that TTG interrupts near the loop in the CTG hairpin stabilize the hairpin against slipping. The different loop stabilities have implications for intermediate structures that may form when TR-containing duplex DNA opens. Opposing hairpins in the (CAG) ∙ (CTG) duplex would have matched stability whereas opposing hairpins in a (GAC) ∙ (GTC) duplex would have unmatched stability, introducing frustration in the (GAC) ∙ (GTC) opposing hairpins that could encourage their resolution to duplex DNA more rapidly than in (CAG) ∙ (CTG) structures. Given that the CAG and CTG TR can undergo large, disease-related expansion whereas the GAC and GTC sequences do not, these stability differences can inform and constrain models of expansion mechanisms of TR regions.  相似文献   

3.
Figueroa AA  Cattie D  Delaney S 《Biochemistry》2011,50(21):4441-4450
Expansion of trinucleotide repeats (TNR) has been implicated in the emergence of neurodegenerative diseases. Formation of non-B conformations such as hairpins by these repeat sequences during DNA replication and/or repair has been proposed as a contributing factor to expansion. In this work we employed a combination of fluorescence, chemical probing, optical melting, and gel shift assays to characterize the structure of a series of (CTG)(n) sequences and the kinetic parameters describing their interaction with a complementary sequence. Our structure-based experiments using chemical probing reveal that sequences containing an even or odd number of CTG repeats adopt stem-loop hairpins that differ from one another by the absence or presence of a stem overhang. Furthermore, we find that this structural difference dictates the rate at which the TNR hairpins convert to duplex with a complementary CAG sequence. Indeed, the rate constant describing conversion to (CAG)(10)/(CTG)(n) duplex is slower for sequences containing an even number of CTG repeats than for sequences containing an odd number of repeats. Thus, when both the CAG and CTG hairpins have an even number of the repeats, they display a longer lifetime relative to when the CTG hairpin has an odd number of repeats. The difference in lifetimes observed for these TNR hairpins has implications toward their persistence during DNA replication or repair events and could influence their predisposition toward expansion. Taken together, these results contribute to our understanding of trinucleotide repeats and the factors that regulate persistence of hairpins in these repetitive sequences and conversion to canonical duplex.  相似文献   

4.
A variety of neurodegenerative disorders are associated with the expansion of trinucleotide repeat (TNR) sequences. These repetitive sequences are prone to adopting non-canonical structures, such as intrastrand stem-loop hairpins. Indeed, the formation and persistence of these hairpins during DNA replication and/or repair have been proposed as factors that facilitate TNR expansion. Given this proposed contribution of TNR hairpins to the expansion mechanism, disruption of such structures via strand invasion offers a potential means to negate the disease-initiating expansion. In this work, we investigated the strand invading abilities of a (CTG)3 unstructured nucleic acid on a (CAG)10 TNR hairpin. Using fluorescence, optical, and electrophoretic methods, instantaneous disruption of the (CAG)10 hairpin by (CTG)3 was observed at low temperatures. Additionally, we have identified three distinct duplex-like species that form between (CAG)10 and (CTG)3; these include 1, 2, or 3 (CTG)3 sequences hybridized to (CAG)10. The results presented here showcase (CTG)3 as an invader of a TNR hairpin and suggest that unstructured nucleic acids could serve as a scaffold to design agents to prevent TNR expansion.  相似文献   

5.
The mechanism of disease-associated trinucleotide repeat length variation may involve slippage of the triplet-containing strand at the replication fork, generating a slipped-strand DNA structure. We recently reported formation in vitro of slipped-strand DNA (S-DNA) structures when DNAs containing triplet repeat blocks of myotonic dystrophy or fragile X diseases were melted and allowed to reanneal to form duplexes. Here additional evidence is presented that is consistent with the existence of S-DNA structures. We demonstrate that S-DNA structures can form between two complementary strands containing equal numbers of repeats. In addition, we show that both the propensity for S-DNA formation and the structural complexity of S-DNAs formed increase with increasing repeat length. S-DNA structures were also analyzed by electron microscopy, confirming that the two strands are slipped out of register with respect to each other and confirming the structural polymorphism expected within long tracts of trinucleotide repeats. For (CTG)50.(CAG)50 two distinct populations of slipped structures have been identified: those involving </=10 repeats per slippage, which appear as bent/kinked DNA molecules, and those involving >10 repeats, which have multiple loops or hairpins indicative of complex alternative DNA secondary structures.  相似文献   

6.
Zhang T  Huang J  Gu L  Li GM 《DNA Repair》2012,11(2):201-209
Expansion of CAG/CTG trinucleotide repeats (TNRs) in humans is associated with a number of neurological and neurodegenerative disorders including Huntington's disease. Increasing evidence suggests that formation of a stable DNA hairpin within CAG/CTG repeats during DNA metabolism leads to TNR instability. However, the molecular mechanism by which cells recognize and repair CAG/CTG hairpins is largely unknown. Recent studies have identified a novel DNA repair pathway specifically removing (CAG)(n)/(CTG)(n) hairpins, which is considered a major mechanism responsible for TNR instability. The hairpin repair (HPR) system targets the repeat tracts for incisions in the nicked strand in an error-free manner. To determine the substrate spectrum of the HPR system and its ability to process smaller hairpins, which may be the intermediates for CAG/CTG expansions, we constructed a series of CAG/CTG hairpin heteroduplexes containing different numbers of repeats (from 5 to 25) and examined their repair in human nuclear extracts. We show here that although repair efficiencies differ slightly among these substrates, removal of the individual hairpin structures all involve endonucleolytic incisions within the repeat tracts in the nicked DNA strand. Analysis of the repair intermediates defined specific incision sites for each substrate, which were all located within the repeat regions. Mismatch repair proteins are not required for, nor do they inhibit, the processing of smaller hairpin structures. These results suggest that the HPR system ensures CAG/CTG stability primarily by removing various sizes of (CAG)(n)/(CTG)(n) hairpin structures during DNA metabolism.  相似文献   

7.
8.
Expansion of CAG/CTG repeats is the underlying cause of >14 genetic disorders, including Huntington's disease (HD) and myotonic dystrophy. The mutational process is ongoing, with increases in repeat size enhancing the toxicity of the expansion in specific tissues. In many repeat diseases, the repeats exhibit high instability in the striatum, whereas instability is minimal in the cerebellum. We provide molecular insights into how base excision repair (BER) protein stoichiometry may contribute to the tissue-selective instability of CAG/CTG repeats by using specific repair assays. Oligonucleotide substrates with an abasic site were mixed with either reconstituted BER protein stoichiometries mimicking the levels present in HD mouse striatum or cerebellum, or with protein extracts prepared from HD mouse striatum or cerebellum. In both cases, the repair efficiency at CAG/CTG repeats and at control DNA sequences was markedly reduced under the striatal conditions, likely because of the lower level of APE1, FEN1, and LIG1. Damage located toward the 5' end of the repeat tract was poorly repaired, with the accumulation of incompletely processed intermediates as compared to an AP lesion in the center or at the 3' end of the repeats or within control sequences. Moreover, repair of lesions at the 5' end of CAG or CTG repeats involved multinucleotide synthesis, particularly at the cerebellar stoichiometry, suggesting that long-patch BER processes lesions at sequences susceptible to hairpin formation. Our results show that the BER stoichiometry, nucleotide sequence, and DNA damage position modulate repair outcome and suggest that a suboptimal long-patch BER activity promotes CAG/CTG repeat instability.  相似文献   

9.
Recombination induced by double-strand breaks (DSBs) in yeast leads to a higher proportion of expansions to contractions than does replication-associated tract length changes. Expansions are apparently dependent on the property of the repeat array to form hairpins, since DSB repair of a CAA(87) repeat induces only contractions of the repeat sequence. DSB-repair efficiency is reduced by 40% when DNA synthesis must traverse a CAG(98) array, as compared with a CAA(87) array. These data indicate that repair- associated DNA synthesis is inhibited by secondary structures formed by CAG(98) and that these structures promote repeat expansions during DSB repair. Overexpression of Mre11p or Rad50p suppresses the inhibition of DSB repair by CAG(98) and significantly increases the average size of expansions found at the recipient locus. Both effects are dependent on the integrity of the Mre11p-Rad50p-Xrs2p complex. The Mre11 complex thus appears to be directly involved in removing CAG or CTG hairpins that arise frequently during DNA synthesis accompanying gene conversion of these trinucleotide repeats.  相似文献   

10.
Effects of exogenous proteins poly(ADP-ribose) polymerase-1 (PARP1) and its 24-kD proteolytic fragment (p24) on the repair of DNA duplexes containing a one nucleotide gap with furan phosphate or phosphate group at the 5'-end of the downstream primer were studied in bovine testis nuclear extract. These damaged DNAs are repaired by the long-patch or short-patch subpathways of base excision repair (BER), respectively. Exogenous PARP1 and p24 decreased the efficiency of gap filling DNA synthesis for both duplexes, but did not influence the ligation stage in the repair of DNA duplex by the short-patch subpathway. Under the same conditions, these proteins inhibited strand-displacement DNA synthesis and decreased the efficiency of the flap endonuclease 1 (FEN1)-catalyzed endonuclease reaction in the nuclear extract, blocking repair of DNA duplex by the long-patch subpathway. Addition of exogenous PARP1 and p24 also reduced the efficiency of UV light crosslinking of extract BER proteins to the photoreactive BER intermediates carrying a nick. Thus, PARP1 and p24 interact with DNA intermediates of BER and compete with nuclear extract proteins for binding to DNA. The interaction of PARP1 and p24 with DNA intermediates of the long-patch subpathway of BER resulted in inhibition of subsequent stages of the repair mediated by this mechanism. However, on recovery of the intact structure of DNA duplex by the short-patch subpathway, PARP1 and p24 suppressed the repair of the one nucleotide gap less efficiently and failed to influence the final stage of the repair, ligation.  相似文献   

11.
Myotonic dystrophy type 1 (DM1) is associated with one of the most highly unstable CTG•CAG repeat expansions. The formation of further repeat expansions in transgenic mice carrying expanded CTG•CAG tracts requires the mismatch repair (MMR) proteins MSH2 and MSH3, forming the MutSβ complex. It has been proposed that binding of MutSβ to CAG hairpins blocks its ATPase activity compromising hairpin repair, thereby causing expansions. This would suggest that binding, but not ATP hydrolysis, by MutSβ is critical for trinucleotide expansions. However, it is unknown if the MSH2 ATPase activity is dispensible for instability. To get insight into the mechanism by which MSH2 generates trinucleotide expansions, we crossed DM1 transgenic mice carrying a highly unstable >(CTG)300 repeat tract with mice carrying the G674A mutation in the MSH2 ATPase domain. This mutation impairs MSH2 ATPase activity and ablates base–base MMR, but does not affect the ability of MSH2 (associated with MSH6) to bind DNA mismatches. We found that the ATPase domain mutation of MSH2 strongly affects the formation of CTG expansions and leads instead to transmitted contractions, similar to a Msh2-null or Msh3-null deficiency. While a decrease in MSH2 protein level was observed in tissues from Msh2G674 mice, the dramatic reduction of expansions suggests that the expansion-biased trinucleotide repeat instability requires a functional MSH2 ATPase domain and probably a functional MMR system.  相似文献   

12.
Myotonic dystrophy type 1 (DM1) is associated with one of the most highly unstable CTG•CAG repeat expansions. The formation of further repeat expansions in transgenic mice carrying expanded CTG•CAG tracts requires the mismatch repair (MMR) proteins MSH2 and MSH3, forming the MutSβ complex. It has been proposed that binding of MutSβ to CAG hairpins blocks its ATPase activity compromising hairpin repair, thereby causing expansions. This would suggest that binding, but not ATP hydrolysis, by MutSβ is critical for trinucleotide expansions. However, it is unknown if the MSH2 ATPase activity is dispensible for instability. To get insight into the mechanism by which MSH2 generates trinucleotide expansions, we crossed DM1 transgenic mice carrying a highly unstable >(CTG)300 repeat tract with mice carrying the G674A mutation in the MSH2 ATPase domain. This mutation impairs MSH2 ATPase activity and ablates base–base MMR, but does not affect the ability of MSH2 (associated with MSH6) to bind DNA mismatches. We found that the ATPase domain mutation of MSH2 strongly affects the formation of CTG expansions and leads instead to transmitted contractions, similar to a Msh2-null or Msh3-null deficiency. While a decrease in MSH2 protein level was observed in tissues from Msh2G674 mice, the dramatic reduction of expansions suggests that the expansion-biased trinucleotide repeat instability requires a functional MSH2 ATPase domain and probably a functional MMR system.  相似文献   

13.
Expansion of trinucleotide repeat sequences is the cause of multiple inherited human genetic diseases including Huntington’s disease and myotonic dystrophy. CTG and CAG repeats have been shown to form stable secondary structures that can impair Okazaki fragment processing and may impede replication fork progression. We recently showed that mutation of DNA damage checkpoint proteins results in increased chromosome breaks at expanded CAG/CTG repeats and in increased repeat instability (expansions and contractions).1 Here we report that long CAG~155 tracts are especially sensitive to absence of Mrc1 (Claspin) checkpoint function, implicating the S-phase checkpoint in maintenance of trinucleotide repeats and other secondary-structure forming sequences. Based on all of our results, we propose a model for the detection of different types of structures by different checkpoint signaling pathways.  相似文献   

14.
Several human genetic diseases have been associated with the genetic instability, specifically expansion, of trinucleotide repeat sequences such as (CTG)(n).(CAG)(n). Molecular models of repeat instability imply replication slippage and the formation of loops and imperfect hairpins in single strands. Subsequently, these loops or hairpins may be recognized and processed by DNA repair systems. To evaluate the potential role of nucleotide excision repair in repeat instability, we measured the rates of repeat deletion in wild type and excision repair-deficient Escherichia coli strains (using a genetic assay for deletions). The rate of triplet repeat deletion decreased in an E. coli strain deficient in the damage recognition protein UvrA. Moreover, loops containing 23 CTG repeats were less efficiently excised from heteroduplex plasmids after their transformation into the uvrA(-) strain. As a result, an increased proportion of plasmids containing the full-length repeat were recovered after the replication of heteroduplex plasmids containing unrepaired loops. In biochemical experiments, UvrA bound to heteroduplex substrates containing repeat loops of 1, 2, or 17 CAG repeats with a K(d) of about 10-20 nm, which is an affinity about 2 orders of magnitude higher than that of UvrA bound to the control substrates containing (CTG)(n).(CAG)(n) in the linear form. These results suggest that UvrA is involved in triplet repeat instability in cells. Specifically, UvrA may bind to loops formed during replication slippage or in slipped strand DNA and initiate DNA repair events that result in repeat deletion. These results imply a more comprehensive role for UvrA, in addition to the recognition of DNA damage, in maintaining the integrity of the genome.  相似文献   

15.
The human genome contains many simple tandem repeats that are widely dispersed and highly polymorphic. At least one group of simple tandem repeats, the DNA trinucleotide repeats, can dramaticallyexpand in size during transmission from one generation to the next to cause disease by a process known as dynamic mutation. We investigated the ability of trinucleotide repeats AAT and CAG to expand in size during DNA replication using a minimal in vitro system composed of the repeat tract, with and without unique flanking sequences, and DNA polymerase. Varying Mg2+concentration and temperature gave dramatic expansions of repeat size during DNA replication in vitro. Expansions of up to 1000-fold were observed. Mismatches partially stabilized the repeat tracts against expansion. Expansions were only detected when the primer was complementary to the repeat tract rather than the flanking sequence. The results imply that cellular environment and whether the growing strand contains a nick or gap are important factors for the expansion process in vivo.  相似文献   

16.
In neurological diseases such as fragile X syndrome, spinal and bulbar muscular atrophy, myotonic dystrophy, and Huntington’s disease, the molecular basis of pathogenicity is the presence of an expanded trinucleotide repeat (TNR) tract (Ashley & Warren, 1995). TNRs implicated in many of these diseases are composed of CAG/CTG repeats. For example, in healthy individuals 5–35, CAG/CTG TNR repeats are present in the huntingtin gene. However, individuals with 40 or greater repeats will develop Huntington’s disease (Andrew et al., 1993). We are particularly interested in how these TNR sequences are packaged in chromatin. Recent evaluations of CAG/CTG TNR sequences in our laboratory have demonstrated that the repeats increase the propensity for the DNA sequences to incorporate into nucleosomes, where nucleosomes represent the minimal unit of packaging in chromatin (Volle & Delaney, 2012). In this work, we are interested in determining the minimum number of CAG/CTG repeats required to confer a significant increase in nucleosome incorporation relative to sequences that lack the TNR sequence. By defining the changes imposed on these fundamental interactions by the presence of a CAG/CTG repeat tract, we will gain insight into the possible interactions that allow for the expansion of these TNR tracts.  相似文献   

17.
The repair protein 8-oxo-7,8-dihydroguanine glycosylase (OGG1) initiates base excision repair (BER) in mammalian cells by removing the oxidized base 8-oxo-7,8-dihydroguanine (8-oxoG) from DNA. Interestingly, OGG1 has been implicated in somatic expansion of the trinucleotide repeat (TNR) sequence CAG/CTG. Furthermore, a 'toxic oxidation cycle' has been proposed for age-dependent expansion in somatic cells. In this cycle, duplex TNR DNA is (1) oxidized by endogenous species; (2) BER is initiated by OGG1 and the DNA is further processed by AP endonuclease 1 (APE1); (3) a stem-loop hairpin forms during strand-displacement synthesis by polymerase β (pol β); (4) the hairpin is ligated and (5) incorporated into duplex DNA to generate an expanded CAG/CTG region. This expanded region is again subject to oxidation and the cycle continues. We reported previously that the hairpin adopted by TNR repeats contains a hot spot for oxidation. This finding prompted us to examine the possibility that the generation of a hairpin during a BER event exacerbates the toxic oxidation cycle due to accumulation of damage. Therefore, in this work we used mixed-sequence and TNR substrates containing a site-specific 8-oxoG lesion to define the kinetic parameters of human OGG1 (hOGG1) activity on duplex and hairpin substrates. We report that hOGG1 activity on TNR duplexes is indistinguishable from a mixed-sequence control. Thus, BER is initiated on TNR sequences as readily as non-repetitive DNA in order to start the toxic oxidation cycle. However, we find that for hairpin substrates hOGG1 has reduced affinity and excises 8-oxoG at a significantly slower rate as compared to duplexes. Therefore, 8-oxoG is expected to accumulate in the hairpin intermediate. This damage-containing hairpin can then be incorporated into duplex, resulting in an expanded TNR tract that now contains an oxidative lesion. Thus, the cycle restarts and the DNA can incrementally expand.  相似文献   

18.
Trinucleotide repeat (TNR) expansions and deletions are associated with human neurodegeneration and cancer. However, their underlying mechanisms remain to be elucidated. Recent studies have demonstrated that CAG repeat expansions can be initiated by oxidative DNA base damage and fulfilled by base excision repair (BER), suggesting active roles for oxidative DNA damage and BER in TNR instability. Here, we provide the first evidence that oxidative DNA damage can induce CTG repeat deletions along with limited expansions in human cells. Biochemical characterization of BER in the context of (CTG)20 repeats further revealed that repeat instability correlated with the position of a base lesion in the repeat tract. A lesion located at the 5′-end of CTG repeats resulted in expansion, whereas a lesion located either in the middle or the 3′-end of the repeats led to deletions only. The positioning effects appeared to be determined by the formation of hairpins at various locations on the template and the damaged strands that were bypassed by DNA polymerase β and processed by flap endonuclease 1 with different efficiency. Our study indicates that the position of a DNA base lesion governs whether TNR is expanded or deleted through BER.  相似文献   

19.
J. M. Darlow  DRF. Leach 《Genetics》1995,141(3):825-832
Unusual DNA secondary structures have been implicated in the expansion of trinucleotide repeat tracts that are associated with several human inherited disorders. We present evidence consistent with the folding of these trinucleotide repeats into hairpin loops at the center of a long DNA palindrome in vivo. Our assay utilizes a palindrome in bacteriophage λ, the center of which determines its ability to inhibit plaque formation in a manner that is consistent with folding into a hairpin or cruciform structure. We show that central inserts of even numbers of d(CAG)·d(CTG) repeats inhibit plaque formation more than do odd numbers. Both d(CAG)(2)·d(CTG)(2) and d(CGG)(2)·d(CCG)(2) central sequences behave like DNA sequences known to form two-base loops in vitro, suggesting that they may also form compact and stable loops. By contrast, repeats of d(GAC)·d(GTC) do not show any evidence consistent with unusual loop stability. These results agree with in vitro evidence that the unstable repeats can form hairpin secondary structures and suggest a favored position of folding. We discuss the potential roles of secondary structures, DNA replication and recombination in models of repeat tract expansion.  相似文献   

20.
Trinucleotide repeat (TNR) expansion is responsible for numerous human neurodegenerative diseases. However, the underlying mechanisms remain unclear. Recent studies have shown that DNA base excision repair (BER) can mediate TNR expansion and deletion by removing base lesions in different locations of a TNR tract, indicating that BER can promote or prevent TNR expansion in a damage location–dependent manner. In this study, we provide the first evidence that the repair of a DNA base lesion located in the loop region of a CAG repeat hairpin can remove the hairpin, attenuating repeat expansion. We found that an 8-oxoguanine located in the loop region of CAG hairpins of varying sizes was removed by OGG1 leaving an abasic site that was subsequently 5′-incised by AP endonuclease 1, introducing a single-strand breakage in the hairpin loop. This converted the hairpin into a double-flap intermediate with a 5′- and 3′-flap that was cleaved by flap endonuclease 1 and a 3′-5′ endonuclease Mus81/Eme1, resulting in complete or partial removal of the CAG hairpin. This further resulted in prevention and attenuation of repeat expansion. Our results demonstrate that TNR expansion can be prevented via BER in hairpin loops that is coupled with the removal of TNR hairpins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号