共查询到20条相似文献,搜索用时 0 毫秒
1.
Hamza A Wei NN Johnson-Scalise T Naftolin F Cho H Zhan CG 《Journal of biomolecular structure & dynamics》2012,29(4):699-714
Combined factor deficiency (F5F8D) is a rare autosomal recessive disorder caused by mutations in the LMAN1 or MCFD2 genes. It has been proposed that this pathogenic process occurs via a multi-step pathway involving metal loss, EF-hand-Ca21 dissociation and assembly of misfolded MCFD2-LMAN1 complex. Here, we have investigated the solution conformations of the MCFD2((D81H,V100D)) protein mutant through extensive molecular dynamics (MD) simulations. The V100D, one of the many MCFD2 mutations known to be associated to F5F8D, is difficult to be reconciled with the pathway model because it is located far from the metal sites and the MCFD2/LMAN1 interface. Consequently, an inspection of all the steps involved in D81H/V100D MCFD2 misfolding is expected to provide hints in the understanding of the molecular basis of the disease. A comparison with parallel studies carried out for the Wild-Type (WT) MCFD2 pointed out that the mutation decreases the affinity of the protein for the Ca21 ion. Multiple explicit solvents MD simulations (50_ns) performed on the two proteins revealed that in the WT protein, stable H-bond network and compact hydrophobic core region are created thus confirming a pivotal role of this region in driving the biophysical properties of the entire protein. In fact it is shown that the V100D mutation, although located far away the EF-hand domain, may induce subtle modification in the structural core of MCFD2 leading to the loosening of metal binding and to the formation of metastable intermediate states along the unfolding pathway. The native-like hydrophobic cluster formed near the V100 residue in the wild-type protein is disrupted by the negatively charged Asparagine residue. Furthermore, the presence of the D81H mutation in the EF-1 hand domain may also increase the protein unfolding rate and consequently prevent the formation of the MCFD2-LMAN1 complex. The detailed structural insights obtained from our large-scale simulations complement the clinical features and offer useful insights into the mechanism behind MCFD2 protein misfolding. 相似文献
2.
《Biochemical and biophysical research communications》2020,521(3):716-720
Long noncoding RNAs (lncRNAs) display essential roles in cancer progression. FLVCR1-AS1 is a rarely investigated lncRNAs involved in various human cancers, such as hepatocellular carcinoma and lung cancer. However, its function in glioma has not been clarified. In our study, we found that FLVCR1-AS1 was highly expressed in glioma tissues and cell lines. And upregulation of FLVCR1-AS1 predicted poor prognosis in patients with glioma. Moreover, FLVCR1-AS1 knockdown inhibited proliferation, migration and invasion of glioma cells. Through bioinformatics analysis, we identified that FLVCR1-AS1 was a sponge for miR-4731-5p to upregulate E2F2 expression. Moreover, rescue assays indicated that FLVCR1-AS1 modulated E2F2 expression to participate in glioma progression. Altogether, our research demonstrates that the FLVCR1-AS1/miR-4731-5p/E2F2 axis is a novel signaling in glioma and may be a potential target for tumor therapy. 相似文献
3.
Human MCFD2 (multiple coagulation factor deficiency 2) is a 16-kDa protein known to participate in transport of the glycosylated human coagulation factors V and VIII along the secretory pathway. Mutations in MCFD2 or in its binding partner, the membrane-bound transporter ERGIC (endoplasmic reticulum-Golgi intermediate compartment)-53, cause a mild form of inherited hemophilia known as combined deficiency of factors V and VIII (F5F8D). While ERGIC-53 is known to be a lectin-type mannose binding protein, the role of MCFD2 in the secretory pathway is comparatively unclear. MCFD2 has been shown to bind both ERGIC-53 and the blood coagulation factors, but little is known about the binding sites or the true function of the protein. In order to facilitate understanding of the function of MCFD2 and the mechanism by which mutations in the protein cause F5F8D, we have determined the structure of human MCFD2 in solution by NMR. Our results show the folding of MCFD2 to be dependent on availability of calcium ions. The protein, which is disordered in the apo state, folds upon binding of Ca2+ to the two EF-hand motifs of its C-terminus, while retaining some localized disorder in the N-terminus. NMR studies on two disease-causing mutant variants of MCFD2 show both to be predominantly disordered, even in the presence of calcium ions. These results provide an explanation for the previously observed calcium dependence of the MCFD2-ERGIC-53 interaction and, furthermore, clarify the means by which mutations in this protein result in inefficient secretion of blood coagulation factors V and VIII. 相似文献
4.
5.
Mathias-Costa Blaise Dananjay Bhattacharyya Ramanathan Sowdhamini Nityananda Pradhan 《Journal of biomolecular structure & dynamics》2013,31(4):399-410
Abstract N-Methyl-D-Aspartate (NMDA) receptors are the ligand gated as well as voltage sensitive ionotropic glutamate receptors, widely distributed in the vertebrate central nervous system and they play critical role in the pathogenesis of schizophrenia. Molecular dynamics simulations have been carried out on high resolution crystal structure of NR1 subunit of NMDA receptor ligand binding core (S1S2) in four different conformations. We have investigated consequence of D481N/K483Q double mutation of NR1 subunit from simulation results of (a) glycine bound form (WG), (b) unbound (closed-apo) form (WOG), (c) a double mutated form (DM), and (d) the antagonist (5,7-dichlorokynuric acid) bound form (DCKA). The MD simulations and simulated annealing for 4ns show a distinct conformation for the double mutated conformation that neither follows the antagonist nor apo conformation. There are two distinct sites, loop1 and loop2 where the double mutated structure in its glycine bound form shows significant RMSD deviations as compared to the wild-type. The interactions of glycine with the receptor remain theoretically unchanged in the double mutated structure and there is no detachment of S1S2 domains. The results suggest that separation of S1 and S2 domains may not be essential for channel inactivation. Therefore, it is hypothesized that hypoactivation of NMDA receptor channels may arise out of the conformational changes at non-conserved Loop1 and Loop2 regions observed in the mutated structure. The Loop1 and Loop2 regions responsible for inter-subunit interactions in a functional NMDA receptor, may therefore, render the ligand bound form defunct. This may account for behavioral anomalies due to receptor inactivation seen in grin1 mutated mice. 相似文献
6.
7.
Horacio Poblete Ingrid Oyarzún Pablo Olivero Jeffrey Comer Matías Zu?iga Romina V. Sepulveda David Báez-Nieto Carlos González Leon Fernando González-Nilo Ramón Latorre 《The Journal of biological chemistry》2015,290(4):2086-2098
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) has been recognized as an important activator of certain transient receptor potential (TRP) channels. More specifically, TRPV1 is a pain receptor activated by a wide range of stimuli. However, whether or not PI(4,5)P2 is a TRPV1 agonist remains open to debate. Utilizing a combined approach of mutagenesis and molecular modeling, we identified a PI(4,5)P2 binding site located between the TRP box and the S4-S5 linker. At this site, PI(4,5)P2 interacts with the amino acid residues Arg-575 and Arg-579 in the S4-S5 linker and with Lys-694 in the TRP box. We confirmed that PI(4,5)P2 behaves as a channel agonist and found that Arg-575, Arg-579, and Lys-694 mutations to alanine reduce PI(4,5)P2 binding affinity. Additionally, in silico mutations R575A, R579A, and K694A showed that the reduction in binding affinity results from the delocalization of PI(4,5)P2 in the binding pocket. Molecular dynamics simulations indicate that PI(4,5)P2 binding induces conformational rearrangements of the structure formed by S6 and the TRP domain, which cause an opening of the lower TRPV1 channel gate. 相似文献
8.
Barbato G Bianchi E Ingallinella P Hurni WH Miller MD Ciliberto G Cortese R Bazzo R Shiver JW Pessi A 《Journal of molecular biology》2003,330(5):1101-1115
Inhibition of human immunodeficiency virus (HIV) fusion with the host cell has emerged as a viable therapeutic strategy, and rational design of inhibitors and vaccines, interfering with this process, is a prime target for antiviral research. To advance our knowledge of the structural biology of HIV fusion, we have studied the membrane-proximal region of the fusogenic envelope subunit gp41, which includes the epitope ELDKWA of the broadly neutralizing human antibody 2F5. The structural evidence available for this region is contradictory, with some studies suggesting an overall helical conformation, while the X-ray structure of the ELDKWAS peptide bound to the antibody shows it folded in a type I beta turn. We used a two-step strategy: Firstly, by a competition binding assay, we identified the proper boundaries of the domain recognized by 2F5, which we found considerably larger than the ELDKWAS hexapeptide. Secondly, we studied the structure of the resulting 13 amino acid residue peptide by collecting NMR data and analyzing them by our previously developed statistical method (NAMFIS). Our study revealed that the increase in binding affinity goes in parallel with stabilization of specific local and global conformational propensities, absent from the shorter epitope. When compounded with the available biological evidence, our structural analysis allows us to propose a specific role for the membrane-proximal region during HIV fusion, in terms of a conformational transition between the turn and the helical structure. At the same time, our hypothesis offers a structural explanation for the mechanism of neutralization of mAb 2F5. 相似文献
9.
Ichikawa J Ishii H Bonaccorso S Fowler WL O'Laughlin IA Meltzer HY 《Journal of neurochemistry》2001,76(5):1521-1531
Atypical antipsychotic drugs (APDs), all of which are relatively more potent as serotonin (5-HT)(2A) than dopamine D(2) antagonists, may improve negative symptoms and cognitive dysfunction in schizophrenia, in part, via increasing cortical dopamine release. 5-HT(1A) agonism has been also suggested to contribute to the ability to increase cortical dopamine release. The present study tested the hypothesis that clozapine, olanzapine, risperidone, and perhaps other atypical APDs, increase dopamine release in rat medial prefrontal cortex (mPFC) via 5-HT(1A) receptor activation, as a result of the blockade of 5-HT(2A) and D(2) receptors. M100907 (0.1 mg/kg), a 5-HT(2A) antagonist, significantly increased the ability of both S:(-)-sulpiride (10 mg/kg), a D(2) antagonist devoid of 5-HT(1A) affinity, and R:(+)-8-OH-DPAT (0.05 mg/kg), a 5-HT(1A) agonist, to increase mPFC dopamine release. These effects of M100907 were abolished by WAY100635 (0.05 mg/kg), a 5-HT(1A) antagonist, which by itself has no effect on mPFC dopamine release. WAY100635 (0.2 mg/kg) also reversed the ability of clozapine (20 mg/kg), olanzapine (1 mg/kg), risperidone (1 mg/kg), and the R:(+)-8-OH-DPAT (0.2 mg/kg) to increase mPFC dopamine release. Clozapine is a direct acting 5-HT(1A) partial agonist, whereas olanzapine and risperidone are not. These results suggest that the atypical APDs via 5-HT(2A) and D(2) receptor blockade, regardless of intrinsic 5-HT(1A) affinity, may promote the ability of 5-HT(1A) receptor stimulation to increase mPFC DA release, and provide additional evidence that coadministration of 5-HT(2A) antagonists and typical APDs, which are D(2) antagonists, may facilitate 5-HT(1A) agonist activity. 相似文献
10.
11.
12.
Ariyuki Kagaya† Masahiko Mikuni Shin-ichiro Muraoka Kazuko Saitoh Tetsuo Ogawa Hideto Shinno† Shigeto Yamawaki† Kiyohisa Takahashi 《Journal of neurochemistry》1993,61(3):1050-1056
Abstract: Serotonin 5-HT2 receptor-mediated intracellular Ca2+ mobilization was investigated in rat glioma C6BU-1 cells. The receptors became desensitized after previous exposure to 5-HT in a time-and concentration-dependent manner. The desensitization of 5-HT2 receptor-mediated intracellular signaling appeared to be homologous because previous exposure to 5-HT did not alter the response to other transmitters such as thrombin or isoproterenol and because previous exposure to thrombin or isoproterenol did not diminish the response to 5-HT. The desensitization induced by pretreatment with 5-HT was potently prevented by the naphthalenesulfonamide derivative W-7, a calmodulin antagonist, when it was cosupplied with 5-HT. Furthermore, the preventive effect of W-7 was greater than that of W-5, a weak analogue of W-7, and than that of H-7, a nonselective inhibitor of protein kinases. These results suggest that 5-HT2 receptor-mediated Ca2+ mobilization can be desensitized homologously after prolonged exposure to 5-HT in a calmodulin-dependent manner in rat glioma C6BU-1 cells. 相似文献
13.
Jin He Qi-Jie Zhang Qi-Fang Lin Ya-Fang Chen Xiao-Zhen Lin Min-Ting Lin Shen-Xing Murong Ning Wang Wan-Jin Chen 《Gene》2013
Spinal muscular atrophy (SMA) is a common and lethal autosomal recessive neurodegenerative disorder, which is caused by mutations of the survival motor neuron 1 (SMN1) gene. Additionally, the phenotype is modified by several genes nearby SMN1 in the 5q13 region. In this study, we analyzed mutations in SMN1 and quantified the modifying genes, including SMN2, NAIP, GTF2H2, and H4F5 by polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP), multiplex ligation-dependent probe amplification (MLPA), TA cloning, allele-specific long-range PCR, and Sanger sequencing in 157 SMA patients. Most SMA patients (94.90%) possessed a homozygous SMN1 deletion, while 10 patients demonstrated only the absence of exon 7, but the presence of exon 8. Two missense mutations (c.689 C > T and c.844 C > T) were identified in 2 patients who both carried a single copy of SMN1. We found inverse correlations between SMN2, the NAIP copy number, and the clinical severity of the disease. Furthermore, 7 severe type I patients possessed large-scale deletions, including SMN1, NAIP, and GTF2H2. We conclude that SMN1 gene conversion, SMN1 subtle mutations, SMN2 copy number, and the extent of deletion in the 5q13 region should all be considered in the genotype–phenotype analysis of SMA. 相似文献
14.
15.
Adiel Cohen Martin Kupiec Ronit Weisman 《The Journal of biological chemistry》2014,289(31):21727-21737
The target of rapamycin (TOR) kinase belongs to the highly conserved eukaryotic family of phosphatidylinositol 3-kinase-related kinases. TOR proteins are found at the core of two evolutionary conserved complexes, known as TORC1 and TORC2. In fission yeast, TORC2 is dispensable for proliferation under optimal growth conditions but is required for starvation and stress responses. TORC2 has been implicated in a wide variety of functions; however, the signals that regulate TORC2 activity have so far remained obscure. TORC2 has one known direct substrate, the AGC kinase Gad8, which is related to AKT in human cells. Gad8 is phosphorylated by TORC2 at Ser-546 (equivalent to AKT Ser-473), leading to its activation. Here, we show that glucose is necessary and sufficient to induce Gad8 Ser-546 phosphorylation in vivo and Gad8 kinase activity in vitro. The glucose signal that activates TORC2-Gad8 is mediated via the cAMP/PKA pathway, a major glucose-sensing pathway. By contrast, Pmk1, similar to human extracellular signal-regulated kinases and a major stress-induced mitogen activated protein kinase (MAPK) in fission yeast, inhibits TORC2-dependent Gad8 phosphorylation and activation. Inhibition of TORC2-Gad8 also occurs in response to ionic or osmotic stress, in a manner dependent on the cAMP/PKA and Pmk1-MAPK signaling pathways. Our findings highlight the significance of glucose availability in regulation of TORC2-Gad8 and indicate a novel link between the cAMP/PKA, Pmk1/MAPK, and TORC2-Gad8 signaling. 相似文献
16.
17.
Elizabeth J. Gray Evangelia Petsalaki D. Andrew James Richard D. Bagshaw Melissa M. Stacey Oliver Rocks Anne-Claude Gingras Tony Pawson 《The Journal of biological chemistry》2014,289(51):35397-35408
SH2D5 is a mammalian-specific, uncharacterized adaptor-like protein that contains an N-terminal phosphotyrosine-binding domain and a C-terminal Src homology 2 (SH2) domain. We show that SH2D5 is highly enriched in adult mouse brain, particularly in Purkinjie cells in the cerebellum and the cornu ammonis of the hippocampus. Despite harboring two potential phosphotyrosine (Tyr(P)) recognition domains, SH2D5 binds minimally to Tyr(P) ligands, consistent with the absence of a conserved Tyr(P)-binding arginine residue in the SH2 domain. Immunoprecipitation coupled to mass spectrometry (IP-MS) from cultured cells revealed a prominent association of SH2D5 with breakpoint cluster region protein, a RacGAP that is also highly expressed in brain. This interaction occurred between the phosphotyrosine-binding domain of SH2D5 and an NxxF motif located within the N-terminal region of the breakpoint cluster region. siRNA-mediated depletion of SH2D5 in a neuroblastoma cell line, B35, induced a cell rounding phenotype correlated with low levels of activated Rac1-GTP, suggesting that SH2D5 affects Rac1-GTP levels. Taken together, our data provide the first characterization of the SH2D5 signaling protein. 相似文献
18.
Thorsen Vidar A.T. Bruland Ove Lillehaug Johan R. Holmsen Holm 《Molecular and cellular biochemistry》1998,187(1-2):147-154
We have shown that 12-O-tetradecanoylphorbol 13-acetate (TPA) increases protein kinase C (PKC)-mediated choline transport, incorporation of choline into phosphatidylcholine (PtdCho) and PtdCho degradation by phospholipase D (PLD) in C3H10T1/2 Cl 8 cells. Dual prelabeling experiment using [3H]/[14C]choline indicated that intracellular choline generated from the PLD reaction was not directly recycled to PtdCho synthesis within the cell, and that a large fraction of the choline was transported out of the TPA-treated cells. In contrast, medium derived choline was preferably channeled to PtdCho synthesis. These results indicate that in TPA-treated cells, the choline derived from the PKC-mediated increased PLD activity and the choline newly taken up by the cell behave as two distinctly different metabolic pools. 相似文献
19.
[3 H]8-Hydroxy-2-(Di-n-Propylamino)Tetralin Binding to Pre- and Postsynaptic 5-Hydroxytryptamine Sites in Various Regions of the Rat Brain 总被引:4,自引:0,他引:4
M. D. Hall S. El Mestikawy M. B. Emerit L. Pichat M. Hamon H. Gozlan 《Journal of neurochemistry》1985,44(6):1685-1696
The specific binding of [3H]8-hydroxy-2-(di-n-propylamino)tetralin ([ 3H]8-OH-DPAT) to 5-hydroxytryptamine (5-HT)-related sites was investigated in several regions of the rat brain. Marked differences were observed in the characteristics of binding to membranes from hippocampus, striatum, and cerebral cortex. Hippocampal sites exhibited the highest affinity (KD approximately 2 nM) followed by the cerebral cortex (KD approximately 6 nM) and the striatum (KD approximately 10 nM). Ascorbic acid inhibited specific [3H]8-OH-DPAT binding in all three regions but millimolar concentrations of Ca2+, Mg2+, and Mn2+ enhanced specific binding to hippocampal membranes, whereas only Mn2+ increased it in the cerebral cortex and all three cations inhibited specific binding to striatal membranes. Guanine nucleotides (0.1 mM GDP, GTP) inhibited binding to hippocampal and cortical membranes only. As intracerebral 5,7-dihydroxytryptamine markedly decreased [3H]8-OH-DPAT binding sites in the striatum, but not in the hippocampus, the striatal sites appear to be on serotoninergic afferent fibers. In contrast, in the hippocampus the sites appear to be on postsynaptic 5-HT target cells, as local injection of kainic acid decreased their density. Both types of sites appear to be present in the cerebral cortex. The postsynaptic hippocampal [3H]8-OH-DPAT binding sites are probably identical to the 5-HT1A subsites, but the relationship between the presynaptic binding sites and the presynaptic autoreceptors controlling 5-HT release deserves further investigation. 相似文献
20.
Philip W. J. Burnet Ivan N. Mefford Craig C. Smith Philip W. Gold Esther M. Sternberg 《Journal of neurochemistry》1992,59(3):1062-1070
We have previously demonstrated that susceptibility of the Lewis rat to inflammatory disease, compared with the relatively resistant Fischer F344/N rat, is related to a hyporesponsive hypothalamopituitary-adrenal axis to inflammatory and other stress mediators. Because serotonin (5-HT) and the 5-HT1A receptor are important stimulators of this axis, we have investigated the levels of 8-[3H]-hydroxy-2,3-(di-n-propylamino)tetralin binding sites, 5-HT1A mRNA, 5-HT, and 5-hydroxyindoleacetic acid in various brain regions of Lewis, outbred Harlan Sprague Dawley, and Fischer F344/N rats. Lewis rats expressed significantly fewer hippocampal and frontal cortical 8-[3H]-hydroxy-2,3-(di-n-propylamino)tetralin binding sites and less 5-HT1A mRNA than Harlan Sprague Dawley and Fischer F344/N rats. Adrenalectomy increased the number of 8-[3H]hydroxy-2,3-(di-n-propylamino)tetralin binding sites and 5-HT1A mRNA expression in the hippocampus of all three strains. Levels of hippocampal 5-HT in Fischer F344/N rats were significantly greater than levels detected in the same regions from Lewis and Harlan Sprague Dawley rats. Hypothalamic 5-HT and 5-hydroxyindoleacetic acid levels in Harlan Sprague Dawley rats were higher than the same area from the other two strains. Adrenalectomy increased the levels of 5-hydroxyindoleacetic acid in the hypothalamus of all three strains. We conclude that hippocampal 5-HT1A receptor densities and 5-HT levels in the rat parallel the activity and responsiveness of the hypothalamopituitary-adrenal axis. 相似文献