首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this research, for the first time, molecular dynamics (MD) method was used to simulate aspirin and ibuprofen at various concentrations and in neutral and charged states. Effects of the concentration (dosage), charge state, and existence of an integral protein in the membrane on the diffusion rate of drug molecules into lipid bilayer membrane were investigated on 11 systems, for which the parameters indicating diffusion rate and those affecting the rate were evaluated. Considering the diffusion rate, a suitable score was assigned to each system, based on which, analysis of variance (ANOVA) was performed. By calculating the effect size of the indicative parameters and total scores, an optimum system with the highest diffusion rate was determined. Consequently, diffusion rate controlling parameters were obtained: the drug–water hydrogen bond in protein-free systems and protein–drug hydrogen bond in the systems containing protein.  相似文献   

2.
Abstract

In order to study the interaction of the anticancer agent Doxorubicin with the single-walled carbon nanotubes with different diameters as drug delivery systems, the molecular dynamics (MD) simulations have been used. Also, for design and development of intracellular Doxorubicin drug delivery systems, a series of steered MD simulations are applied to explore the possibility of encapsulated Doxorubicin–carbon nanotube penetration through a lipid bilayer in presence and absence of Nicotine molecules at different pulling rates. Our simulation results showed that in spite of the adsorption of drug molecules on the outer sidewall of the nanotubes, the spontaneous localization of one Doxorubicin molecule into the cavity of the nanovectors with larger diameters is observed. It is found that the presence of Nicotine molecules in extracellular medium increases the required force for pulling nanotube-encapsulated drug as well as the required time for penetration process, especially at higher velocity. Also, the entering process of the Nicotine molecules into the carbon nanotube causes that the encapsulated drug molecule is fully released in the hydrophobic phase of the lipid bilayer.

Communicated by Ramaswamy H. Sarma  相似文献   

3.
Phase-transition properties of glycerol-1-monopalmitate (GMP) bilayers are investigated using explicit-solvent molecular dynamics (MD) simulations, initiated from structures appropriate for the gel (GL) or liquid crystal (LC) phases, and carried out at different hydration levels and temperatures. Building up on a previous study and based on 600 ns simulations, the influence of the system size and of the force field on the equilibrium thermodynamic and dynamic parameters of the bilayers in the GL and LC phases, as well as on the temperature Tm and properties of the GL ? LC phase transition, are analysed. Qualitatively speaking, the results agree with the available experimental data for the area per lipid in the two phases and for the phase-transition temperatures at the three hydration levels irrespective of the selected model parameters. They also suggest that the total number of hydrogen bonds formed between a lipid headgroup and its environment is essentially constant, amounting to about four in both the LC and the GL phases. Quantitatively speaking, the dependence of Tm on the hydration level is found to be non-systematic across the different combinations of model parameters. This results in part from a sensitivity of the results on the system size and force-field parameters but also from the limited accuracy of the bracketing approach employed here to estimate Tm. Finally, a simple kinetic model is proposed to account for the timescales of the transitions. This model involves enthalpy and entropy increases of about 26 kJ mol? 1 and 83 J mol? 1 K? 1 per lipid, upon going from the GL to the LC phase. The transition state is associated with activation parameters corresponding to 13% and 11%, respectively, of these values along the GL → LC transition, resulting in an activation free energy of about 0.3 kJ mol? 1 per lipid at Tm.  相似文献   

4.
The G-coupled receptors seen on the cell surface are composites with a lipid bilayer. The chemokines are kind of G-coupled receptor which majorly involved in the activation and downstream signalling of the cell. In general, many G-coupled receptors lack their 3D structures which become a hurdle in the drug designing process. In this study, comparative modelling of the CXCR3 receptor was carried out, structure evaluation was done using various tools and softwares. Additionally, molecular dynamics and docking were performed to prove the structural quality and architecture. Interestingly, the studies like toggle switch mechanism, lipid dynamics, virtual screening were carried out to find the potent antagonist for the CXCR3 receptor. During virtual screening 14,303 similar molecules were retrieved among them only four compounds have an ability to interact with a crucial amino acid residue of an antagonist. Hence, these screened compounds can serve as a drug candidate for a CXCR3 receptor, but further in vitro and in vivo studies are ought to do to prove its same efficacy.  相似文献   

5.
The 2H-NMR spectra of selectively deuterated cholesterol, intercalated in egg phosphatidyl-choline, were examined. The orientation of the axis of motional averaging was calculated using the observed quadrupole splittings and the atomic coordinates. With the known orientation of the rotation axis, quadrupole splittings observed for deuterium labels on cholesterol can be related to the molecular order parameter of the sterol. In addition, knowledge of the axis orientation allows prediction of the magnitudes of quadrupole splittings for deuterium at other positions, which is useful in the choice of labelling for particular applications. Finally, preliminary relaxation time measurements yield information on the rates of anisotropic motion of cholesterol in bilayer membranes.  相似文献   

6.
Detailed molecular dynamics simulations performed to study the nature of lipid raft domains that appear in model membranes are reviewed in this paper. The described simulations were performed on hydrated bilayers containing binary mixtures of cholesterol with phospholipids and also on ternary mixtures containing cholesterol, a phospholipid with a high main transition temperature Tm, and a phospholipid with a low transition temperature Tm. These simulations provide qualitative and semi-quantitative information about cholesterol-lipid interactions and also a testing ground for major assumptions made to explain the nature of lipid rafts in model membranes.  相似文献   

7.
A model membrane with a polypeptide alpha-helix inserted has been simulated by molecular dynamics at a temperature well above the gel/liquid crystalline phase transition temperature. Order parameters of the lipids and other equilibrium and dynamic quantities have been calculated. Three systems, polyglycine constrained into an alphahelical configuration, glycophorin with similarly conformationally constrained backbone and finally glycophorin free to change its backbone conformation, have been studied. In all cases there was an ordering of the chains close to the helix. This effect was, however, much smaller for glycophorin with its rather bulky side chains than for polyglycine. The dynamics of the lipids were affected by the neighbouring helix, not drastically however. Lateral diffusion and reorientational time correlations of lipids close to the helix were slower than for the bulk ones, but not more than two or three times. Thus, we did not find any evidence of bound or frozen boundary lipids.  相似文献   

8.
Piscidin 1 (Pis‐1) has a high broad‐spectrum activity against bacteria, fungi, and viruses but it also has a moderate hemolytic activities. To improve the antibacterial activity and to reduce toxicity, mutants Pis‐1AA (G8A/G13A double mutant) and Pis‐1PG (G8P mutant) have been designed based on the crystal structure of Pis‐1. Eighteen independent molecular dynamics (MD) simulations of Pis‐1 and its mutants with membranes are conducted in this article. Furthermore, 60 independent MD simulations of three peptides in water box have also been discussed for comparison. The results indicate that the unfolding process starts at the middle of the peptide. Pis‐1 disrupts easily in the region of Val10‐Lys14. Pis‐1PG has a flexible N‐terminal region, and the interaction between N‐terminal and C‐terminal is very weak. Pis‐1AA has the most stable helical structure. In addition, percentage of native contacts and hydrogen bonds analysis are also performed. Lipid‐peptide interaction analysis suggests that Pis‐1 and Pis‐1AA has a stronger interaction with the zwitterionic dioleoylphosphatidylcholine (DOPC) lipid bilayer than Pis‐1PG. When compared with the results of peptide with membrane, peptides are unstable and unfolding quickly in water solution. Our results are applicable in examining diversities on hemolytic, antibacterial, and selectivity of antimicrobial peptides. © 2012 Wiley Periodicals, Inc. Biopolymers 97:998–1009, 2012.  相似文献   

9.
The translocation of lipids across membranes (flip-flop) is an important biological process. Slow exchange on a physiological timescale allows the creation of asymmetric distributions of lipids across cellular membranes. The location of lipids and their rate of exchange have important biological consequences, especially for lipids involved in cellular signaling. We investigated the translocation of cholesterol, ceramide, and diacylglycerol in two model bilayers using molecular dynamics simulations. We estimate half times for flip-flop for cholesterol, diacylglycerol, and ceramide of 20 μs, 30 μs, and 10 ms in a POPC bilayer, compared with approximately 30 min, 30 ms, and 30 s in a model raft bilayer (1:1:1 PSM, POPC, and cholesterol). Cholesterol has a large (54 kJ/mol) free energy of exchange between the POPC and raft bilayer, and therefore, it strongly prefers the more ordered and rigid raft bilayer over the more liquid POPC bilayer. Ceramide and diacylglycerol have relatively small free energies of exchange, suggesting nearly equal preference for both bilayers. This unexpected result may have implications for ceramide and diacylglycerol signaling and membrane localization.  相似文献   

10.
Liposomal formulation of curcumin is an important therapeutic agent for the treatment of various cancers. Despite extensive studies on the biological effects of this formulation in cancer treatment, much remains unknown about curcumin–liposome interactions. Understanding how different lipid bilayers respond to curcumin molecule may help us to design more effective liposomal curcumin. Here, we used molecular dynamics simulation method to investigate the behavior of curcumin in two lipid bilayers commonly used in preparation of liposomal curcumin, namely dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidylglycerol (DMPG). First, the free energy barriers for translocation of one curcumin molecule from water to the lipid bilayer were determined by using the potential of mean force (PMF). The computed free energy profile exhibits a global minimum at the solvent–headgroup interface (LH region) for both lipid membranes. We also evaluated the free energy difference between the equilibrium position of curcumin in the lipid bilayer and bulk water as the excess chemical potential. Our results show that curcumin has the higher affinity in DMPG compared to DPPC lipid bilayer (?8.39 vs. ?1.69 kBT) and this is related to more hydrogen bond possibility for curcumin in DMPG lipid membrane. Next, using an unconstrained molecular dynamic simulation with curcumin initially positioned at the center of lipid bilayer, we studied various properties of each lipid bilayer system in the presence of curcumin molecule that was in full agreement with PMF and experimental data. The results of these simulation studies suggest that membrane composition could have a large effect on interaction of curcumin–lipid bilayer.  相似文献   

11.
Lai YT  Cheng CS  Liu YN  Liu YJ  Lyu PC 《Proteins》2008,72(4):1189-1198
Plant nonspecific lipid transfer proteins (nsLTPs) are small, basic proteins constituted mainly of alpha-helices and stabilized by four conserved disulfide bridges. They are characterized by the presence of a tunnel-like hydrophobic cavity, capable of transferring various lipid molecules between lipid bilayers in vitro. In this study, molecular dynamics (MD) simulations were performed at room temperature to investigate the effects of lipid binding on the dynamic properties of rice nsLTP1. Rice nsLTP1, either in the free form or complexed with one or two lipids was subjected to MD simulations. The C-terminal loop was very flexible both before and after lipid binding, as revealed by calculating the root-mean-square fluctuation. After lipid binding, the flexibility of some residues that were not in direct contact with lipid molecules increased significantly, indicating an increase of entropy in the region distal from the binding site. Essential dynamics analysis revealed clear differences in motion between unliganded and liganded rice nsLTP1s. In the free form of rice nsLTP1, loop1 exhibited the largest directional motion. This specific essential motion mode diminished after binding one or two lipid molecules. To verify the origin of the essential motion observed in the free form of rice nsLTP1, we performed multiple sequence alignments to probe the intrinsic motion encoded in the primary sequence. We found that the amino acid sequence of loop1 is highly conserved among plant nsLTP1s, thus revealing its functional importance during evolution. Furthermore, the sequence of loop1 is composed mainly of amino acids with short side chains. In this study, we show that MD simulations, together with essential dynamics analysis, can be used to determine structural and dynamic differences of rice nsLTP1 upon lipid binding.  相似文献   

12.
Plasma membrane of each micro-organism has a unique set of lipid composition as a consequence of the environmental adaptation or a response to exposure to antimicrobial peptides (AMPs) as antibiotic agents. Understanding the relationship between lipid composition and action of antimicrobial peptides or considering how different lipid bilayers respond to AMPs may help us design more effective peptide drugs in the future. In this contribution, we intend to elucidate how two currently used membrane models, namely palmitoyl-oleoyl-phosphtidylglycerol (POPG) and 1-palmitoyl-oleoyl-glycero-phosphocholine (POPC), respond to antimicrobial peptide Piscidin-1 (Pis-1).The computed density profile of the peptide as it moves from the bulk solvent toward the membrane core suggests that Pis-1 penetrates into the POPG bilayer less than the POPC membrane. Furthermore, we showed that the two model membranes used in this study have different behavior in the presence of Pis-1. Hence, we suggest that membrane composition could be an important factor in determining lytic ability of peptide drugs to kill a unique bacterial species.

An animated interactive 3D complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:37  相似文献   

13.
The robust structural integrity of the epoxy plays an important role in ensuring the long-term service life of its applications, which is affected by the absorbed moisture. In order to understand the mechanism of the moisture effect, the knowledge of the interaction and dynamics of the water molecules inside the epoxy is of great interest. Molecular dynamics simulation is used in this work to investigate the structure and bonding behaviour of the water molecules in the highly cross-linked epoxy network. When the moisture concentration is low, the water molecules are well dispersed in the cross-linked structure and located in the vicinity of the epoxy functional groups, which predominantly form the hydrogen bond (H-bond) with the epoxy network, resulting in the low water mobility in the epoxy. At the high concentration, the water favourably forms the large cluster due to the predominant water–water H-bond interaction, and the water molecules diffuse primarily inside the cluster, which leads to the high water mobility and the accelerated H-bond dynamics. The variation of the bonding behaviour and dynamics of the water molecules reported here could be exploited to understand the material change and predict the long-term performance of the epoxy-based products during the intended service life.  相似文献   

14.
Abstract

The serotonin1A receptor belongs to the superfamily of G protein-coupled receptors (GPCRs) and is a potential drug target in neuropsychiatric disorders. The receptor has been shown to require membrane cholesterol for its organization, dynamics and function. Although recent work suggests a close interaction of cholesterol with the receptor, the structural integrity of the serotonin1A receptor in the presence of cholesterol has not been explored. In this work, we have carried out all atom molecular dynamics simulations, totaling to 3?μs, to analyze the effect of cholesterol on the structure and dynamics of the serotonin1A receptor. Our results show that the presence of physiologically relevant concentration of membrane cholesterol alters conformational dynamics of the serotonin1A receptor and, on an average lowers conformational fluctuations. Our results show that, in general, transmembrane helix VII is most affected by the absence of membrane cholesterol. These results are in overall agreement with experimental data showing enhancement of GPCR stability in the presence of membrane cholesterol. Our results constitute a molecular level understanding of GPCR-cholesterol interaction, and represent an important step in our overall understanding of GPCR function in health and disease.  相似文献   

15.
Bilayers prepared from sorbitan fatty acid esters (Span) have been frequently used for delivery of drugs including flavonoids. We applied molecular dynamics simulation to characterize the structure of a sorbitan monostearate (Span 60) bilayer in complex with three representative flavones, a subclass of flavonoids. At a low concentration, unsubstituted flavone, the most hydrophobic member, was able to flip over and cross the bilayer with a large diffusion coefficient. At a high concentration, it was accumulated at the bilayer center resulting in a phase separation. The leaflets of the bilayer were pushed in the opposite directions increasing the membrane thickness. Order parameter of the stearate chain of Span 60 was not affected significantly by unsubstituted flavone. In contrast, chrysin with hydroxylated ring A was lined up with the acyl chains of Span 60 with its hydroxyl group facing the membrane surface. Neither flipping nor transbilayer movement were allowed. Diffusion coefficient was only 15–25% of that of unsubstituted flavone and order parameter decreased with the concentration of chrysin. Luteolin, the most hydroxylated member, interacted mainly with the headgroup of Span 60 and assumed many different orientations without crossing the bilayer. Unlike chrysin and unsubstituted flavone the bilayer integrity was disrupted at 50?mol% luteolin. These behaviors and structures of flavones in a Span 60 bilayer can be accounted for by their hydrophobicity and sites of hydroxylation.  相似文献   

16.
Understanding the properties of interfacial water at solid–liquid interfaces is important in a wide range of applications. Molecular dynamics is becoming a widespread tool for this purpose. Unfortunately, however, the results of such studies are known to strongly depend on the selection of force fields. It is, therefore, of interest to assess the extent by which the implemented force fields can affect the predicted properties of interfacial water. Two silica surfaces, with low and high surface hydroxyl density, respectively, were simulated implementing four force fields. These force fields yield different orientation and flexibility of surface hydrogen atoms, and also different interaction potentials with water molecules. The properties for interfacial water were quantified by calculating contact angles, atomic density profiles, surface density distributions, hydrogen bond density profiles and residence times for water near the solid substrates. We found that at low surface density of hydroxyl groups, the force field strongly affects the predicted contact angle, while at high density of hydroxyl groups, water wets all surfaces considered. From a molecular-level point of view, our results show that the position and intensity of peaks observed from oxygen and hydrogen atomic density profiles are quite different when different force fields are implemented, even when the simulated contact angles are similar. Particularly, the surfaces simulated by the CLAYFF force field appear to attract water more strongly than those simulated by the Bródka and Zerda force field. It was found that the surface density distributions for water strongly depend on the orientation of surface hydrogen atoms. In all cases, we found an elevated number of hydrogen bonds formed between interfacial water molecules. The hydrogen bond density profile does not depend strongly on the force field implemented to simulate the substrate, suggesting that interfacial water assumes the necessary orientation to maximise the number of water–water hydrogen bonds irrespectively of surface properties. Conversely, the residence time for water molecules near the interface strongly depends on the force field and on the flexibility of surface hydroxyl groups. Specifically, water molecules reside for longer times at contact with rigid substrates with high density of hydroxyl groups. These results should be considered when comparisons between simulated and experimental data are attempted.  相似文献   

17.
Abstract

Brucella melitensis is a pathogenic bacterium responsible for brucellosis in mammals and humans. Its outer membrane proteins (Omp) control the diffusion of solutes through the membrane, and they consequently have a crucial role in the design of diagnostics and vaccines. Moreover, such proteins have recently revealed their potential for protein-based biomaterials. In the present contribution, the structure of the B. melitensis porin Omp2a is built using the RaptorX threading method. This is a 16-stranded β-barrel with an α-helix on the third loop folding inside the barrel and forming the constriction zone of the channel, a typical feature of general porins such as PhoE and OmpF. The preferential diffusion of cations over anions experimentally observed in anterior studies is evidenced by the presence of distinct clusters of charges in the extracellular loops and in the inner pore. Docking studies support the previously reported hypothesis of Omp2a ability to aid maltotetraose diffusion. The monomer model is then assembled into a homotrimer, stabilized by the L2 loop involved in most of the interface interactions. The stability of the trimer is evaluated in three bilayers: pure 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), pure 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and a mixture of 1:1 of POPC/POPE. All-atom molecular dynamics simulations demonstrate the β-barrel-structural stability over time even though a breathing-like motion is observed. Compared to the pure bilayers, the POPC/POPE better preserves the integrity of the protein and its channel. Overall, this work demonstrates the relevancy of the Omp2a model and will help to design new therapeutic agents and bioinspired nanomaterials.  相似文献   

18.
The conformational spaces of five oligomers of tetrahydrofuran-based carbopeptoids in chloroform and dimethyl sulfoxide were investigated through nine molecular dynamics simulations. Prompted by nuclear magnetic resonance experiments that indicated various stable folds for some but not all of these carbopeptoids, their folding behaviour was investigated as a function of stereochemistry, chain length and solvent. The conformational distributions of these molecules were analysed in terms of occurrence of hydrogen bonds, backbone torsional-angle distributions, conformational clustering and solute configurational entropy. While a cis-linkage across the tetrahydrofuran ring favours right-handed helical structures, a trans-linkage results in a larger conformational variability. Intra-solute hydrogen bonding is reduced with increasing chain length and with increasing solvent polarity. Solute configurational entropies confirm the picture obtained: they are smaller for cis- than for trans-linked peptides, for chloroform than for dimethyl sulfoxide as solvent and for shorter peptide chains. The simulations provide an atomic picture of molecular conformational variability that is consistent with the available experimental data.  相似文献   

19.
A molecular dynamics (MD) simulation with atomistic details was performed to examine the partitioning and transport behavior of moderately cytotoxic ionic liquids (ILs), namely choline bis(2-ethylhexyl) phosphate (CBEH), choline bis(2,4,4-trimethylpentyl) phosphinate (CTMP) and choline O,O-diethyl dithiophosphate (CDEP) in a fully hydrated dipalmitoylphosphatidylcholine (DPPC) bilayer in the fluid phase at 323?K. The structure of ILs was so selected to understand if the role of dipole and dispersion forces in the ILs distribution in the membrane can be possible. Several analyses including mass density, electrostatic potential, order parameter, diffusion coefficients and hydrogen bond formation, was carried out to determine the precise location of the anionic species inside the membrane. Moreover, the potential of the mean force (PMF) method was used to calculate free energy profile for transferring anionic species from the DPPC membrane into the bulk water. While less cytotoxic DEP is located within the bulk water, more cytotoxic TMP and BEH ILs were found to remain in the membrane and the energy barrier for crossing through the bilayer center of BEH was higher. Various ILs have no significant effect on P–N vector. The thickness of lipid bilayer decreased in all systems comprising ILs, while area per lipid increased.  相似文献   

20.
A molecular dynamics simulation study is reported for three polymorphic protein crystals (4PTI, 5PTI and 6PTI) of bovine pancreatic trypsin inhibitor (BPTI). The simulated lattice constants are in good agreement with experimental data, indicating the reliability of force field used. The fluctuation patterns of peptide chains in the three crystals are similar, and the protein structures are fairly well maintained during simulation. We observe that water forms a pronounced hydration layer near the protein surface. The diffusion coefficients of water in the three crystals are smaller than in bulk phase, and thus, the activation energies are higher. The porosity, fluctuation of peptide chains and solvent-accessible surface area as well as the diffusion coefficients of water and counterion in 5PTI are the largest among the three crystals. The diffusion of water and counterion is anisotropic, and the degree of anisotropy increases in the order of 4PTI < 5PTI < 6PTI. Despite a slight difference, the structural and diffusion properties in the three BPTI crystals are generally close. This simulation study reveals that crystal polymorphism does not significantly affect microscopic properties in the BPTI crystals with different morphologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号