首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 116 毫秒
1.
Complexity of functions evolving in an evolution process are expected to be limited by the time length of an evolution process among other factors. This paper outlines a general method of deriving function-complexity limitations based on mathematical statistics and independent from details of a biological or genetic mechanism of the evolution of the function. Limitations on the emergence of life are derived, these limitations indicate a possibility of a very fast evolution and are consistent with "RNA world" hypothesis. The discussed method is general and can be used to characterize evolution of more specific biological organism functions and relate functions to genetic structures. The derived general limitations indicate that a co-evolution of multiple functions and species could be a slow process, whereas an evolution of a specific function might proceed very fast, so that no trace of intermediate forms (species) is preserved in fossil records of phenotype or DNA structure; this is consistent with a picture of "punctuated equilibrium".  相似文献   

2.
The evolution of enzyme action in vivo is examined, in the light of established thermodynamic correlates of biological evolution. Adopting a “process” view of matter in the “living state,” the authors focus the analysis on the transition-state theory of reaction rates. Thus, the free-energy change associated with the transition-state barrier is seen as a primary target in the evolution of cellular metabolism. The utility and limitations of reductionistic approaches to enzyme evolution, based on the single enzyme, are explored first. Then, canvassing the wealth of evidence on the role of enzyme organization in vivo, the authors synthesize a “cytosociological” view of enzyme evolution. In this view, a composite (resultant) of individual transition-state barriers is deemed a more appropriate “potential function” for modification in the higher evolution of cell metabolism. The suggested direction of evolutionary changes in this function, dictated by the increasing “socialization” of enzyme action in vivo, stands as a novel postulate. This approach is shown to be completely consonant with current thinking on the thermodynamics of biological evolution, and to provide further insight into the nature of material transformations in the “living state”.  相似文献   

3.
The natural world demonstrates signs of spatial–temporal order, an order that appears to us through a series of recognizable, recurring and consecutive patterns, i.e. regularities in forms, functions, behaviors, events and processes. These patterns lend insight into the modes and tempos of evolution and thus into the units, levels, and mechanisms that underlie the evolutionary hierarchy. Contributors to this special issue analyze converging patterns in the biological and sociocultural realm across and beyond classic divisions between micro- and macro-evolution; horizontal/reticulate and vertical evolution; phylogeny, ontogeny and ecology; synchronic and diachronic sociocultural and linguistic research; and tree and network diagrams. Explanations are sought in complexity theory, major transitions of evolution, and process and mechanism approaches to change; and consequences for notions such as “life”, “species”, “biological individuality”, “units” and “levels” of evolution are given.  相似文献   

4.
Evolution of maximum lifespan potential (MLP) and its possible relation to the evolution of extra-brain functions are investigated in the primates. MLP is related to a species' characteristic aging rate and is considered a basic biological property of an organism. MLP may be of more importance than realized in the past in determining the evolutionary success of a species. It is related to the postnatal development rate, the length of time general vigor is maintained, the length of reproductive period, generation time and the time available for learning and teaching behavior. Three other parameters are considered to be importantly related to MLP: MLP calorie consumption (MCC), encephalization quotient (EQ) and extra number of cortical neurons (Nc). MCC is calculated as the product of MLP and specific metabolic rate (SMR) and is considered to represent total “life-capacity” of an organism. It is of potential value in studying the biological mechanisms involved in the evolution of MLP. Brain function is estimated by the Jerison EQ and Nc parameters. These parameters estimate the “extra” brain capacity involved in functions beyond normal body requirements. The rate of change in MLP and Nc per unit time occurring during an ancestral-descendant sequence is used to estimate the biological complexity of the genetic processes which have evolved in governing the rate of expression of the general aging process and increasing brain function. The average rate of change of MLP during the emergence of the primates was analyzed by the difference between MLP in closely related living primate species and the evolutionary time of appearance of a common ancestor. MLP, SMR, MCC, EQ and Nc were estimated from fossil cranial capacity and body weight measurements. The rate of change in these values was calculated according to the time of appearance of the fossil species. MLP and Nc were found to increase together and reached their highest rate of increase approximately 200,000 years ago along the hominid ancestral-descendant sequence leading to modern man. The high rate of increase of these parameters suggests that few genetic changes were responsible. The general increase in MLP during the evolution of the primate species indicates that a corresponding general decrease in mutation rate may have occurred. The high levels of MLP, MCC, EQ and Nc represented in the living primates, as compared to other mammals, are considered to represent a major characteristic determining their evolutionary success.  相似文献   

5.
ABSTRACT

The genetic diversity of isolated populations of Cytisus villosus has been studied by means of enzyme polymorphism analysis. Two types of isolated populations were studied: “terrestrial islands” in Sicily, and “true islands” in the Aeolian archipelago. In the populations of “true islands” the number of alleles and the heterozygosity are lower than in “terrestrial islands”. Isolation amongst Sicilian populations seems to be more recent than isolation of the Aeolian populations, and may be attributed to climatic changes which occurred during the Holocene and/or to human activities. The disjunction of the Aeolian populations seems much more recent than the origin of the isles themselves; the colonization of the archipelago is attributed to a single, recent dispersal event not followed by local evolution. In view of the biological structure of the Aeolian populations, C. villosus must be regarded as a locally endangered species.  相似文献   

6.
Dispersal is a fundamental component of the life history of most species. Dispersal influences fitness, population dynamics, gene flow, genetic drift and population genetic structure. Even small differences in dispersal can alter ecological interactions and trigger an evolutionary cascade. Linking such ecological processes with evolutionary patterns is difficult, but can be carried out in the proper comparative context. Here, we investigate how differences in phoretic dispersal influence the population genetic structure of two different parasites of the same host species. We focus on two species of host‐specific feather lice (Phthiraptera: Ischnocera) that co‐occur on feral rock pigeons (Columba livia). Although these lice are ecologically very similar, “wing lice” (Columbicola columbae) disperse phoretically by “hitchhiking” on pigeon flies (Diptera: Hippoboscidae), while “body lice” (Campanulotes compar) do not. Differences in the phoretic dispersal of these species are thought to underlie observed differences in host specificity, as well as the degree of host–parasite cospeciation. These ecological and macroevolutionary patterns suggest that body lice should exhibit more genetic differentiation than wing lice. We tested this prediction among lice on individual birds and among lice on birds from three pigeon flocks. We found higher levels of genetic differentiation in body lice compared to wing lice at two spatial scales. Our results indicate that differences in phoretic dispersal can explain microevolutionary differences in population genetic structure and are consistent with macroevolutionary differences in the degree of host–parasite cospeciation.  相似文献   

7.

The Atherinopsidae is the second largest group of freshwater fishes occupying central Mexico and is one of biological, cultural, and economic importance. The “humboldtianum” clade (Genus Chirostoma) is a “species flock” of nine described species that inhabit lacustrine ecosystems in central Mexico. The high morphological polymorphism within the group makes species identification difficult and thereby limits the development of research and management projects focusing on this group. In this study, we used phylogeographic and coalescent-based methods to understand the evolution of genetic variation among these species. The results revealed taxonomic inaccuracies and genetic admixture among species. Genetic variation was structured geographically, rather than taxonomically, and five closely related genetic groups were recovered. Two evolutionary pathways were found. First, a novel geographical arrangement of haplotypes was recovered that gave rise to the five recently (Pleistocene, <?1 Myr) derived genetic groups. The second pathway showed a recent intra-lacustrine genetic differentiation that could be associated with sympatric or ecological speciation. The current classification of the group is revised and includes a reduction in the number of valid species in the “humboldtianum” clade. Moreover, this study provides new insight into the biogeography and evolutionary history of this important group of fishes.

  相似文献   

8.
The multiphasic kinetics of the protein folding and unfolding processes are examined for a “cluster model” with only two thermodynamically stable macroscopic states, native (N) and denatured (D), which are essentially distributions of microscopic states. The simplest kinetic schemes consistent with the model are: N-(fast) → I-(slow) → D for unfolding and N ← (fast)-D2 ← (slow)-D1 for refolding. The fast phase during the unfolding process can be visualized as the redistribution of the native population N to I within its free energy valley. Then, this population crosses over the free energy barrier to the denatured state D in the slow phase. Therefore, the macrostate I is a kinetic intermediate which is not stable at equilibrium. For the refolding process, the initial equilibrium distribution of the denatured state D appears to be separated into D1 and D2 in the final condition because of the change in position of the free energy barrier. The fast refolding species D2 is due to the “leak” from the broadly distributed D state, while the rest is the slow refolding species D1, which must overpass the free energy barrier to reach N. At an early stage of the folding process the amino acid chain is considered to be composed of several locally ordered regions, which we call clusters, connected by random coil chain parts. Thus, the denatured state contains different sizes and distributions of clusters depending on the external condition. A later stage of the folding process is the association of smaller clusters. The native state is expressed by a maximum-size cluster with possible fluctuation sites reflecting this association. A general discussion is given of the correlation between the kinetics and thermodynamics of proteins from the overall shape of the free energy function. The cluster model provides a conceptual link between the folding kinetics and the structural patterns of globular proteins derived from the X-ray crystallographic data.  相似文献   

9.
Model organisms such as yeast, fly, and worm have played a defining role in the study of many biological systems. A significant challenge remains in translating this information to humans. Of critical importance is the ability to differentiate those components where knowledge of function and interactions may be reliably inferred from those that represent lineage‐specific innovations. To address this challenge, we use chromatin modification (CM) as a model system for exploring the evolutionary properties of their components in the context of their known functions and interactions. Collating previously identified components of CM from yeast, worm, fly, and human, we identified a “core” set of 50 CM genes displaying consistent orthologous relationships that likely retain their interactions and functions across taxa. In addition, we catalog many components that demonstrate lineage specific expansions and losses, highlighting much duplication within vertebrates that may reflect an expanded repertoire of regulatory mechanisms. Placed in the context of a high‐quality protein–protein interaction network, we find, contrary to existing views of evolutionary modularity, that CM complex components display a mosaic of evolutionary histories: a core set of highly conserved genes, together with sets displaying lineage specific innovations. Although focused on CM, this study provides a template for differentiating those genes which are likely to retain their functions and interactions across species. As such, in addition to informing on the evolution of CM as a system, this study provides a set of comparative genomic approaches that can be generally applied to any biological systems. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
This review covers data on changing patterns of DNA methylation and the regulation of gene expression in mouse embryonic development. Global demethylation occurs from the eight-cell stage to the blastocyst stage in pre-implantation embryos, and global de novo methylation begins at implantation. We have used X-chromosome inactivation in female embryos as a model system to study specific CpG sites in the X-linked Pgk-1 and Gópd housekeeping genes and in the imprinted regulatory Xist gene to elucidate the role of methylation in the initiation and maintenance of differential gene activity. Methyl-ation of the X-linked housekeeping genes occurs very close in time to their inactivation, thus raising the question as to whether methylation could be causal to inactivation, as well as being involved in its maintenance. A methylation difference between sperm and eggs in the promoter region of the Xist gene, located at the X-chromosome inactivation centre, is correlated with imprinted preferential inactivation of the paternal X chromosome in extra-embryonic tissues. Based on our data, a picture of the inheritance of methylation imprints and speculation on the significance of the Xist imprint in development is presented. On a more general level, an hypothesis of evolution by “adaptive epige-netic/genetic inheritance” is considered. This proposes modification of germ line DNA in response to a change in environment and mutation at the site of modification (e.g., of methylated cytosine to thymine). Epigenetic inheritance could function to shift patterns of gene expression to buffer the evolving system against changes in environment. If the altered patterns of gene activity and inactivity persist, the modifications may become “fixed” as mutations; alternatively, previously silenced gene networks might be recruited into function, thus appearing as if they are “acquired characteristics.” An extension of this hypothesis is “foreign gene acquisition and sorting” (selection or silencing of gene function according to use). “Kidnapping” and sorting of foreign genes in this way could explain the observation that increased complexity in evolution is associated with more “junk” DNA. Adaptive epigenetic/genetic inheritance challenges the “central dogma” that information is unidirectional from the DNA to protein and the idea that Darwinian random mutation and selection are the sole mechanisms of evolution. © 1995 Wiley-Liss, Inc.  相似文献   

11.
Many efforts have been made in predicting the subcellular localization of eukaryotic proteins, but most of the existing methods have the following two limitations: (1) their coverage scope is less than ten locations and hence many organelles in an eukaryotic cell cannot be covered, and (2) they can only be used to deal with single-label systems in which each of the constituent proteins has one and only one location. Actually, proteins with multiple locations are particularly interesting since they may have some exceptional functions very important for in-depth understanding the biological process in a cell and for selecting drug target as well. Although several predictors (such as “Euk-mPLoc”, “Euk-PLoc 2.0” and “iLoc-Euk”) can cover up to 22 different location sites, and they also have the function to treat multi-labeled proteins, further efforts are needed to improve their prediction quality, particularly in enhancing the absolute true rate and in reducing the absolute false rate. Here we propose a new predictor called “pLoc-mEuk” by extracting the key GO (Gene Ontology) information into the general PseAAC (Pseudo Amino Acid Composition). Rigorous cross-validations on a high-quality and stringent benchmark dataset have indicated that the proposed pLoc-mEuk predictor is remarkably superior to iLoc-Euk, the best of the aforementioned three predictors. To maximize the convenience of most experimental scientists, a user-friendly web-server for the new predictor has been established at http://www.jci-bioinfo.cn/pLoc-mEuk/, by which users can easily get their desired results without the need to go through the complicated mathematics involved.  相似文献   

12.
Insects produce pheromones to serve a range of ecological functions throughout their lifetime. The chemical composition, production pattern, and interspecies specificity provide information for carrying out their function and biological significance. Several species of Drosophila produce a class of volatile esters considered as “fruity smells”; however, the production pattern and ecological functions of these “fruity smell” volatiles in genus Drosophila are poorly understood. Here, using the headspace solid-phase microextraction (SPME) method, we tested the production pattern of volatile pheromones in Drosophila immigrans and factors that possibly affected pheromone production, including mating, feeding conditions, age of adult flies, and geographical distribution. We also explored the evolution and production pattern of volatile pheromones in 14 species of genus Drosophila. Our result showed that male D. immigrans adult flies produce three male-specific volatile ester pheromones, which are also considered as “fruity smell” chemicals, in a relatively stable pattern. In addition, a series of “fruity smell” ester pheromones with similar structure and chemical properties were found to appear in the species of D. virilis and D. immigrans species group, but not in the species of D. melanogaster species group. The ester volatile pheromone production of male flies has a correspondence with the female's demand for host plants. Integrating the production and evolution pattern of these volatile chemicals, we inferred the interaction between insects and host plants reflected in the Drosophila “fruity smell” pheromones.  相似文献   

13.
The question of whether “developmental bias” can influence evolution is still controversial, despite much circumstantial evidence and a good theoretical argument. Here, I will argue that the domestication of mammalian species, which took place independently more than two dozen times, provides a particularly convincing example of developmental bias in evolution. The singular finding that underlies this claim is the repeated occurrence in domesticated mammals of a set of distinctive traits, none of which were deliberately selected. This phenomenon has been termed “the domestication syndrome”. In this article, I will: (a) describe the properties of the domestication syndrome; (b) show how it can be explained in terms of the operation of a specific genetic regulatory network, that which governs neural crest cell development; and (c) discuss Dmitry Belyaev's idea of “destabilizing selection,” which holds that selecting for a new behavior often entails neuroendocrine alterations that alter many aspects of development. Finally, I will argue for the potential general significance of such destabilizing selection, in combination with developmental bias, in animal evolution.  相似文献   

14.
《Genomics》2022,114(6):110501
BackgroundThe iconic giant panda (Ailuropoda melanoleuca), as both a flagship and umbrella species endemic to China, is a world famous symbol for wildlife conservation. The giant panda has several specific biological traits and holds a relatively small place in evolution. A high-quality genome of the giant panda is key to understanding the biology of this vulnerable species.FindingsWe generated a 2.48-Gb chromosome-level genome (GPv1) of the giant panda named “Jing Jing” with a contig N50 of 28.56 Mb and scaffold N50 of 134.17 Mb, respectively. The total length of chromosomes (n = 21) was 2.39-Gb, accounting for 96.4% of the whole genome. Compared with the previously published four genomes of the giant panda, our genome is characterized by the highest completeness and the correct sequence orientation. A gap-free and 850 kb length of immunoglobulin heavy-chain gene cluster was manually annotated in close proximity to the telomere of chromosome 14. Additionally, we developed an algorithm to predict the centromere position of each chromosome. We also constructed a complete chromatin structure for “Jing Jing”, which includes inter-chromosome interaction pattern, A/B compartment, topologically associated domain (TAD), TAD-clique and promoter-enhancer interaction (PEI).ConclusionsWe presented an improved chromosome-level genome and complete chromatin structure for the giant panda. This is a valuable resource for the future genetic and genomic studies on giant panda.  相似文献   

15.
Transposable elements (TEs) are mobile genetic elements that are present in prokaryotes and eukaryotes. The ubiquity and abundance of these self-replicating entities, bereft of cellular function, had earned them the label of ‘genomic parasites’. However, the status of TEs has been revised, with ample genomic and biological evidence now portraying them as “genomic gold”. They are perceived as a major participant in the evolution of species. This review addresses the classification of TEs as well as their role and significance in the evolution of genomes, genetic diversity, gene regulation, and exaptation of contemporary species of the plant and animal kingdoms.  相似文献   

16.
The genetic resources of aquatic biomedical model organisms are the products of millions of years of evolution, decades of scientific development, and hundreds of millions of dollars of research funding investment. Genetic resources (e.g., specific alleles, transgenes, or combinations) of each model organism can be considered a form of scientific wealth that can be accumulated and exchanged, typically in the form of live animals or germplasm. Large-scale maintenance of live aquatic organisms that carry these genetic resources is inefficient, costly, and risky. In situ maintenance may be substantially enhanced and backed up by combining cryopreserved germplasm repositories and genetic information systems with live animal culture. Unfortunately, cryopreservation has not advanced much beyond the status of an exploratory research for most aquatic species, lacks widespread application, and methods for successful cryopreservation remain poorly defined. For most aquatic species biological materials other than sperm or somatic cells are not comprehensively banked to represent and preserve a broad range of genetic diversity for each species. Therefore, new approaches and standardization are needed for repository-level application to ensure reproducible recovery of cryopreserved materials. Additionally, development of new technologies is needed to address preservation of novel biological materials, such as eggs and embryos of aquatic species. To address these goals, the Office of Research Infrastructure Programs (ORIP) of the National Institutes of Health (NIH) hosted the Cryopreservation of Aquatic Biomedical Models Workshop on January 7 to 8, 2017, in conjunction with the 8th Aquatic Animal Models of Human Disease Conference in Birmingham, Alabama. The goals of the workshop were to assess the status of germplasm cryopreservation in various biomedical aquatic models and allow representatives of the scientific community to develop and prioritize a consensus of specific actionable recommendations that will move the field of cryopreservation of aquatic resources forward. This workshop included sessions devoted to new approaches for cryopreservation of aquatic species, discussion of current efforts and approaches in preservation of aquatic model germplasm, consideration of needs for standardization of methods to support reproducibility, and enhancement of repository development by establishment of scalable high-throughput technologies. The following three broad recommendations were forwarded from workshop attendees:1Establish a comprehensive, centralized unit (“hub”) to programmatically develop training for and documentation of cryopreservation methods for aquatic model systems. This would include development of species-specific protocols and approaches, outreach programs, community development and standardization, freezing services and training of the next generation of experts in aquatic cryopreservation.2Provide mechanisms to support innovative technical advancements that will increase the reliability, reproducibility, simplicity, throughput, and efficiency of the cryopreservation process, including vitrification and pipelines for sperm, oocytes, eggs, embryos, larvae, stem cells, and somatic cells of all aquatic species. This recommendation encompasses basic cryopreservation knowledge and engineering technology, such as microfluidics and automated processing technologies.3Implement mechanisms that allow the various aquatic model stock centers to increase their planning, personnel, ability to secure genetic resources and to promote interaction within an integrated, comprehensive repository network for aquatic model species repositories.  相似文献   

17.
It is well understood that genetic tumors develop in certain interspecific Nicotiana hybrids. Nicotiana species are divided into “plus” and “minus” groups and crosses between “plus” and “minus” species give rise to tumorous hybrids. However, it has been proposed that parents and hybrids derived from crosses among members within the same group do not produce tumors. In this study, genetic tumors were only obtained in Nicotiana glauca, which exhibited tumor features similar to those of N. glauca × N. langsdorffii. Our results suggest that genetic factors may control tumor formation independent of tumor induction dependent on the specific interspecific cross. Genetic tumor formation exhibited high B-type and D-type cyclin expression levels, indicating tumor cells are characterized by an uncontrolled cell cycle.  相似文献   

18.

A growing body of research posits a central role for mating signals in speciation and the reproductive isolation of species, yet there has been relatively little consideration of mating signal evolution within macroevolutionary theory. Factors that influence the divergence of fertilization systems generally, and mating signals specifically, may incidentally influence rates of speciation and patterns of species sorting. Potential key processes include: genetic drift, natural selection (differential survival), selection for mate recognition, and sexual selection. This paper explores the integration of mating signal evolution into macroevolution and hierarchy theory, arguing that speciational patterns may frequently result from “effect sorting”; in which microevolutionary processes operating at the organismal level have macroevolutionary effects at the clade level. Preliminary evidence indicates that sexual selection is a widespread and potent evolutionary force that, together with other mechanisms, may have a large, though incidental impact on species sorting. The Mate Competition Hypothesis is here proposed to account for this possibility, postulating that heritable, clade‐specific variations in the intensity of sexual selection and the potential breadth of signal‐receiver systems contribute to divergent patterns of species‐richness. Several examples from the vertebrate fossil record are consistent with this hypothesis.  相似文献   

19.
Evidence is presented that a geographically peripheral population of the annual Stephanomcria exigua ssp. coronaria (Compositae), a widespread and ecologically diverse species, has recently given rise by a process of sympatric speciation to a diploid species presently designated “Malheurensis.” The new species comprises less than 250 individuals and is found only at a single locality in eastern Oregon where it grows interspersed with its parental population. Stephanomeria exigua ssp. coronaria is an obligate outcrosser and “Malheurensis” is highly self-pollinating. Reproductive isolation is maintained by differences in breeding system, a crossability barrier that reduces seed set following cross-pollination between them, and reduction in hybrid fertility caused by chromosomal structural differences. They are very similar morphologically. Electrophoretic analyses of seven enzyme systems demonstrate that all the alleles but one at the controlling 13 gene loci in “Malheurensis” are identical to alleles in ssp. coronaria. The new species displays certain maladapted features including loss of the specific requirements for seed germination characteristic of the progenitor population of ssp. coronaria. The origin of “Malheurensis” appears to be an exception to the theory of geographical speciation because spatial isolation is not necessary at any time for the origin or establishment of its reproductive isolating barriers. The nature of these barriers plus the genetic homogeneity of the species are compatible with the hypothesis that it derives from a single progenitor individual. Very little genetic change is involved initially in this mode of speciation.  相似文献   

20.
Splenic blood storage is usually considered a characteristic restricted to Carnivora, Perissodactyla, and Ruminantia. In these mammals, the red pulp comprises the major part of the organ and – within it – the cords show a vast extension, allowing the storage of a great quantity of erythrocytes. Moreover, well-muscularized capsule and trabeculae permit a strong contractility. In this way, a significant quantity of erythrocytes can be poured into the circulation in response to an increased demand of oxygen. These spleens are usually classified as the “storing type,” in contrast to the “defensive type,” characterized by negligible quantity of blood stored. Past evolutionary interpretations have seen the former type as derived from the latter one. This explanation was based on some ontogenetic observations, thus deriving from the approach of Haeckel’s biogenetic law, and caused some contradictions that remained unsolved. An in-depth examination of the literature reveals that almost all mammalian species can store erythrocytes in their spleen. What changes is the quantity of this storage and the efficiency of its release. This means that the dichotomy between “storage” and “defensive” types is just an approximation – and not very useful. Splenic storage, indeed, is not a recently acquired character by some mammals, rather a primitive one, that underwent different quantitative and qualitative changes during the evolution of the different mammalian lineages. This review offers a new hypothesis on the evolution of this function (viewing the presence of splenic erythropoiesis as a biological constraint) and proposes it as a case of exaptation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号