首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structures of functional peptides corresponding to the predicted channel-lining M2 segment of the nicotinic acetylcholine (AChR) were determined using solution NMR experiments on micelle samples, and solid-state NMR experiments on bilayer samples. The AChR M2 peptide forms a straight transmembrane α-helix, with no kinks. M2 inserts in the lipid bilayer at an angle of 12° relative to the bilayer normal, with a rotation about the helix long axis such that the polar residues face the N-terminus of the peptide, which is assigned to be intracellular. A molecular model of the AChR channel pore, constructed from the solid-state NMR 3-D structure of the AChR M2 helix in the membrane assuming a pentameric organization, results in a funnel-like architecture for the channel with the wide opening on the N-terminal intracellular side. A central narrow pore has a diameter ranging from about 3.0 Å at its narrowest, to 8.6 Å at its widest. Nonpolar residues are predominantly on the exterior of the bundle, while polar residues line the pore. This arrangement is in fair agreement with evidence collected from permeation, mutagenesis, affinity labeling and cysteine accessibility measurements. A pentameric M2 helical bundle may, therefore, represent the structural blueprint for the inner bundle that lines the channel of the nicotinic AChR.  相似文献   

2.
The insulin receptor (IR) binds insulin and plays important roles in glucose homeostasis by regulating the tyrosine kinase activity at its C-terminus. Its transmembrane domain (TMD) is shown to be important for transferring conformational changes induced by insulin across the cell membrane to regulate kinase activity. In this study, a construct IR940–988 containing the TMD was expressed and purified for structural studies. Its solution structure in dodecylphosphocholine (DPC) micelles was determined. The sequence containing residues L962 to Y976 of the TMD of the IR in micelles adopts a well-defined helical structure with a kink formed by glycine and proline residues present at its N-terminus, which might be important for its function. Paramagnetic relaxation enhancement (PRE) and relaxation experimental results suggest that residues following the TMD are flexible and expose to aqueous solution. Although purified IR940–988 in micelles existed mainly as a monomeric form verified by gel filtration and relaxation analysis, cross-linking study suggests that it may form a dimer or oligomers under micelle conditions.  相似文献   

3.
Previous work has established the presence of an unbalanced chromosome abnormality [+der(1),t(1;7)(p11;p11)] in some therapy-associated myelodysplastic disorders. Recently the EGF receptor has been found to reside at 7p11. Using a probe specific for erb B oncogene, which encodes a truncated form of the EGF receptor, we examined RNA and DNA derived from bone marrow and peripheral blood mononuclear cells from three patients with myelodysplastic syndromes (MDS) and one with acute lymphocytic leukemia (ALL), all bearing an abnormal clone in their bone marrow with a similar unbalanced 1;7 translocation. DNA-excess slot blot hybridization to 5'-32p-labeled cellular RNA revealed from ten- to thirtyfold enhancement in accumulation of mRNA specific for erb B in both peripheral blood and bone marrow cells of the three MDS patients when compared to normal controls. In addition, enhancement of H-ras mRNA accumulation was detected in some, though expression of other genes such as actin, N-ras, myc, src, B-lym, and 20 other genes was not found to be enhanced. Increased erb B expression was not apparent in mononuclear cells from patients with other hematologic disorders such as chronic lymphocytic leukemia, Hodgkin's disease, or lymphoma. Southern blot analysis of restriction-enzyme-cleaved DNA from three MDS patients with an unbalanced 1;7 translocation revealed that erb B gene was amplified at least twentyfold in peripheral blood white blood cells, while levels of actin hybridization were comparable to those of the controls. No such amplification was evident in the ALL patient. Our data suggest that +der(1),t(1;7)(p11;p11) chromosomal anomalies can be specifically associated with amplification of erb B DNA and RNA sequences.  相似文献   

4.
Because DNA damage is so rare, DNA glycosylases interact for the most part with undamaged DNA. Whereas the structural basis for recognition of DNA lesions by glycosylases has been studied extensively, less is known about the nature of the interaction between these proteins and undamaged DNA. Here we report the crystal structures of the DNA glycosylase AlkA in complex with undamaged DNA. The structures revealed a recognition mode in which the DNA is nearly straight, with no amino acid side chains inserted into the duplex, and the target base pair is fully intrahelical. A comparison of the present structures with that of AlkA recognizing an extrahelical lesion revealed conformational changes in both the DNA and protein as the glycosylase transitions from the interrogation of undamaged DNA to catalysis of nucleobase excision. Modeling studies with the cytotoxic lesion 3-methyladenine and accompanying biochemical experiments suggested that AlkA actively interrogates the minor groove of the DNA while probing for the presence of lesions.  相似文献   

5.
Pseudomonas aeruginosa is a major nosocomial pathogen that infects cystic fibrosis and immunocompromised patients. The impermeability of the P. aeruginosa outer membrane contributes substantially to the notorious antibiotic resistance of this human pathogen. This impermeability is partially imparted by the outer membrane protein H (OprH). Here we have solved the structure of OprH in a lipid environment by solution NMR. The structure reveals an eight-stranded β-barrel protein with four extracellular loops of unequal size. Fast time-scale dynamics measurements show that the extracellular loops are disordered and unstructured. It was previously suggested that the function of OprH is to provide increased stability to the outer membranes of P. aeruginosa by directly interacting with lipopolysaccharide (LPS) molecules. Using in vivo and in vitro biochemical assays, we show that OprH indeed interacts with LPS in P. aeruginosa outer membranes. Based upon NMR chemical shift perturbations observed upon the addition of LPS to OprH in lipid micelles, we conclude that the interaction is predominantly electrostatic and localized to charged regions near both rims of the barrel, but also through two conspicuous tyrosines in the middle of the bilayer. These results provide the first molecular structure of OprH and offer evidence for multiple interactions between OprH and LPS that likely contribute to the antibiotic resistance of P. aeruginosa.  相似文献   

6.
The human peroxins PEX3 and PEX19 play a central role in peroxisomal membrane biogenesis. The membrane-anchored PEX3 serves as the receptor for cytosolic PEX19, which in turn recognizes newly synthesized peroxisomal membrane proteins. After delivering these proteins to the peroxisomal membrane, PEX19 is recycled to the cytosol. The molecular mechanisms underlying these processes are not well understood. Here, we report the crystal structure of the cytosolic domain of PEX3 in complex with a PEX19-derived peptide. PEX3 adopts a novel fold that is best described as a large helical bundle. A hydrophobic groove at the membrane-distal end of PEX3 engages the PEX19 peptide with nanomolar affinity. Mutagenesis experiments identify phenylalanine 29 in PEX19 as critical for this interaction. Because key PEX3 residues involved in complex formation are highly conserved across species, the observed binding mechanism is of general biological relevance.  相似文献   

7.
Dipolar waves are distinct hallmarks of both the secondary and tertiary structures of alpha-helical proteins that are immobilized in membrane bilayers or embedded in anisotropic media. We present a simple, semi-empirical approach that exploits the modulation of the amplitude and average of dipolar waves to determine the topology of alpha-helical proteins. Moreover, we describe the application of this method for the structural determination of a detergent solubilized membrane protein, phospholamban (PLB) that is involved in calcium regulation of cardiac muscle. When combined with high-resolution solid-state NMR data, this method can serve as a fast route for determining the topology of helical membrane proteins solubilized in detergent micelles.  相似文献   

8.
Two methods are currently available to solve high resolution protein structures—X-ray crystallography and nuclear magnetic resonance (NMR). Both methods usually produce highly similar structures, but small differences between both solutions are always observed. Here the raw NMR data as well as the solved NMR structure were compared to the multiple crystal structures solved for the WT 60 residue three helix bundle engrailed homeodomain (EnHD) and single point mutants. There was excellent agreement between TALOS-predicted and crystal structure-observed dihedral angles and a good agreement for the 3 J(H N H α ) couplings for the multiple crystal structures. Around 1% of NOEs were violated for any crystal structure, but no NOE was inconsistent with all of the crystal structures. Violations usually occurred for surface residues or for residues for which multiple discreet conformations were observed between the crystal structures. Comparison of the disorder shown in the multiple crystal structures shows little correlation with dynamics under native conditions for this protein.  相似文献   

9.
While most nuclear receptors bind DNA as homo or heterodimers, the human estrogen related receptors (hERRs) are members of a subfamily of orphan receptors that bind DNA as monomers. We have determined the solution structure of the DNA binding domain (DBD) of hERR2 bound to its cognate DNA. The structure and base interactions of the core DBD are similar to those of other nuclear receptors. However, high-affinity, sequence-specific DNA binding as a monomer necessitates formation of additional base contacts outside the core DBD. This is accomplished using a modified guanosine-binding "AT-hook" within the C-terminal extension (CTE) flanking the DBD, which makes base-specific minor groove interactions. The structure of the CTE is stabilized both by interactions with the DNA and by packing against a region of the core DBD normally reserved for dimerization. This pseudo-dimer interface provides a basis for the expansion of DNA recognition and suggests a mechanism through which dimerization may have evolved from an ancestral monomeric receptor.  相似文献   

10.
Abstract

It follows from previous studies that changes in the base pair vertical separation (BPVS) influence the architecture of DNA much more than any other conformational parameter. This inspired us to compare BPVS in the available oligonucleotide crystal structures with the optimum values provided by nine different empirical potentials employed in the theoretical studies of DNA conformation. This comparison shows that BPVS is reproduced by three fields in all steps of the highly resolved o] i go nucleoli de crystal structures while the remaining six empirical potentials, including AMBER, GROMOS and CHARMM, provide systematic deviations. We further find that the base pairs are poorly stacked (mostly compressed) in some other refined DNA crystal structures. Our analysis indicates that this poor stacking originates from improperly determined positions of the bases. The approach described in the present communication can be used to identify DNA structures which are not accurate enough for studies of the relationships between the base sequence and DNA conformation.  相似文献   

11.
Abstract

We investigated protein/DNA interactions, using molecular dynamics simulations computed between a 10 Angstom water layer model of the estrogen receptor (ER) protein DNA binding domain (DBD) amino acids and DNA of a non-consensus estrogen response element (ERE) consisting of 29 nucleotide base pairs. This ERE nucleotide sequence occurs naturally upstream of the Xenopus laevis Vitelligenin AI gene. The ER DBD is encoded by three exons. Namely, exons 2 and 3 which encode the two zinc binding motifs and a sequence of exon 4 which encodes a predicted alpha helix. We generated a computer model of the ER DBD using atomic coordinates derived from the average of 30 nuclear magnetic resonance (NMR) spectroscopy coordinate sets. Amino acids on the carboxyl end of the ER DBD were disordered in both X-ray crystallography and NMR determinations and no coordinates were reported. This disordered region includes 10 amino acids of a predicted alpha helix encoded in exon 4 at the exon 3/4 splice junction. These amino acids are known to be important in DNA binding and are also believed to function as a nuclear translocation signal sequence for the ER protein. We generated a computer model of the predicted alpha helix consisting of the 10 amino acids encoded in exon 4 and attached this helix to the carboxyl end of the ER DBD at the exon 3/4 splice junction site. We docked the ER DBD model within the DNA major groove halfsites of the 29 base pair non-consensus ERE and flanking nucleotides. We constructed a solvated model with the ER DBD/ERE complex surrounded by a ten Angstrom water layer and conducted molecular dynamics simulations. Hydrogen bonding interactions were monitored. In addition, van der Waals and electrostatic interaction energies were calculated. Amino acids of the ER DBD DNA recognition helix formed both direct and water mediated hydrogen bonds at cognate codon-anticodon nucleotide base and backbone sites within the ERE DNA right major groove halfsite. Amino acids of the ER DBD exon 4 encoded predicted alpha helix formed direct and water mediated H-bonds with base and backbone sites of their cognate codon-anticodon nucleotides within the minor grooves flanking the ERE DNA major groove halfsites. These interactions together induced bending of the DNA into the protein.  相似文献   

12.
13.
G protein-coupled receptors (GPCRs) are remarkably versatile signaling systems that are activated by a large number of different agonists on the outside of the cell. However, the inside surface of the receptors that couple to G proteins has not yet been effectively modulated for activity or treatment of diseases. Pepducins are cell-penetrating lipopeptides that have enabled chemical and physical access to the intracellular face of GPCRs. The structure of a third intracellular (i3) loop agonist, pepducin, based on protease-activated receptor-1 (PAR1) was solved by NMR and found to closely resemble the i3 loop structure predicted for the intact receptor in the on-state. Mechanistic studies revealed that the pepducin directly interacts with the intracellular H8 helix region of PAR1 and allosterically activates the receptor through the adjacent (D/N)PXXYYY motif through a dimer-like mechanism. The i3 pepducin enhances PAR1/Gα subunit interactions and induces a conformational change in fluorescently labeled PAR1 in a very similar manner to that induced by thrombin. As pepducins can potentially be made to target any GPCR, these data provide insight into the identification of allosteric modulators to this major drug target class.  相似文献   

14.
Based on the importance of the design and synthesis of transition metal complexes with noncovalent DNA/protein‐binding abilities in the field of metallo pharmaceuticals, a new mononuclear ternary copper(II) complex with mixed ligands of diethylenetriamine (dien) and picrate anion (pic), identified as [Cu(dien)(pic)](pic), was synthesized and characterized by elemental analysis, molar conductivity measurement, infrared spectrum, electronic spectral studies, and single‐crystal X‐ray diffractometry. The structure analysis reveals that the copper(II) complex crystallizes in the monoclinic space group P21/c, and the copper(II) ion has a distorted square pyramidal coordination geometry. A two‐dimensional supramolecular structure is formed through hydrogen bonds. The DNA/bovine serum albumin (BSA)‐binding properties of the complex are explored, indicating that the complex can interact with herring sperm DNA via intercalation mode and bind to BSA responsible for quenching of tryptophan fluorescence by static quenching mechanism. The in vitro anticancer activity shows that the copper(II) complex is active against the selected tumor cell lines.  相似文献   

15.
Clinical features characterizing Angelman syndrome, previously shown to be caused by disruption of UBE3A, were recently also described in neurologically disabled patients with mutations in SLC9A6, which encodes the Na+/H+ exchanger NHE6. In the present work we have focused on NHE6Δ255-256, the protein product of a specific 6-bp patient deletion in SLC9A6. To resolve the molecular mechanism causing the cellular dysfunction associated with this mutant, we have characterized its intracellular behaviour in comparison to wild type NHE6. Our study demonstrates that NHE6Δ255-256 is much less stable than the wild type protein. Whereas wild type NHE6 is transported to the plasma membrane and early endosomes and remains stable, NHE6Δ255-256 is degraded via two independent pathways mediated by proteasomes and lysosomes, respectively. Depletion of NHE6 had no detectable effect on endosomal pH, but co-depletion of NHE6 and the closely related NHE9 caused enhanced acidification of early endosomes. Our results suggest that NHE6 participates in regulation of endosomal pH and provides a cellular basis for understanding the loss of NHE6 function leading to a neurological phenotype resembling Angelman syndrome.  相似文献   

16.
Invadopodia are dynamic actin structures at the cell surface that degrade extracellular matrix and act as sites of signal transduction. The biogenesis of invadopodia, including the mechanisms regulating their formation, composition, and turnover is not entirely understood. Here, we demonstrate that antibody ligation of ADAM12, a transmembrane disintegrin and metalloprotease, resulted in the rapid accumulation of invadopodia with extracellular matrix-degrading capacity in epithelial cells expressing the αvβ3 integrin and active c-Src kinase. The induction of invadopodia clusters required an intact c-Src interaction site in the ADAM12 cytoplasmic domain, but was independent of the catalytic activity of ADAM12. Caveolin-1 and transmembrane protease MMP14/MT1-MMP were both present in the ADAM12-induced clusters of invadopodia, and cholesterol depletion prevented their formation, suggesting that lipid-raft microdomains are involved in the process. Importantly, our data demonstrate that ADAM12-mediated ectodomain shedding of epidermal growth factor receptor ligands can occur within these invadopodia. Such localized growth factor signalling offers an interesting novel biological concept highly relevant to the properties of carcinoma cells, which often show upregulated ADAM12 and β3 integrin expression, together with high levels of c-Src kinase activity.  相似文献   

17.
Cell signaling pathways are essentially organized through the distribution of various types of binding domains in signaling proteins, with each domain binding to specific target molecules. Although identification of these targets is crucial for mapping the pathways, affinity-based or copurification methods are insufficient to distinguish between direct and indirect interactions in a cellular context. In the present study, we developed another approach involving the genetic encoding of a photo-crosslinkable amino acid. p-Trifluoromethyl-diazirinyl-l-phenylalanine was thus incorporated at a defined site in the Src homology 2 (SH2) domain of the adaptor protein GRB2 in human embryonic kidney cells. These cells were exposed to 365-nm light after an epidermal growth factor stimulus, and the crosslinkable GRB2-SH2 domain exclusively formed covalent bonds with directly interacting proteins. Proteomic mass spectrometry analysis identified these direct binders of GRB2-SH2 separately from the proteins noncovalently bound to the Src homology 3 domains of GRB2. In addition to two signaling-associated proteins (GIT1 and AF6), the heterogeneous nuclear ribonucleoproteins F, H1, and H2 were thus identified as novel direct binders. The results revealed a connection between the cell signaling protein and the nuclear machinery involved in mRNA processing, and demonstrated the usefulness of genetically encoded photo-crosslinkers for mapping protein-protein interactions in cells.  相似文献   

18.
Signal peptides (SP) are short peptides located in the N-terminal of proteins, carrying information for protein secretion. They are ubiquitous to all prokaryotes and eukaryotes. SPs have been of special interest in several scientific and industrial fields, including recombinant protein production, disease diagnosis, immunization, and laboratory techniques. Recently, the role of SPs in recombinant protein production has gained too much attention. Herein, several studies have been reviewed to elucidate the precise structure and function of SPs, particularly the optimized ones for recombinant protein production. However, some features of SPs still have remained obscure. In this review, some approaches concerning elucidation and optimization of SPs are discussed, and pragmatic conclusions and suggestions for future studies are also proposed. Moreover, a summary of secretory pathways, evolutionary changes, functions, applications, and different types of SPs is mentioned. At last, current limitations and prospects are discussed.  相似文献   

19.
Tight junctions (TJs) regulate the passage of ions and molecules through the paracellular pathway in epithelial and endothelial cells. TJs are highly dynamic structures whose degree of sealing varies according to external stimuli, physiological and pathological conditions. In this review we analyze how the crosstalk of protein kinase C, protein kinase A, myosin light chain kinase, mitogen-activated protein kinases, phosphoinositide 3-kinase and Rho signaling pathways is involved in TJ regulation triggered by diverse stimuli. We also report how the phosphorylation of the main TJ components, claudins, occludin and ZO proteins, impacts epithelial and endothelial cell function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号