首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Staphylococcus aureus MurE enzyme catalyzes the addition of l-lysine as third residue of the peptidoglycan peptide moiety. Due to the high substrate specificity and its ubiquitous nature among bacteria, MurE enzyme is considered as one of the potential target for the development of new therapeutic agents. In the present work, induced fit docking (IFD), binding free energy calculation, and molecular dynamics (MD) simulation were carried out to elucidate the inhibition potential of 2-thioxothiazolidin-4-one based inhibitor 1 against S. aureus MurE enzyme. The inhibitor 1 formed majority of hydrogen bonds with the central domain residues Asn151, Thr152, Ser180, Arg187, and Lys219. Binding free-energy calculation by MM-GBSA approach showed that van der Waals (ΔGvdW, ?57.30?kcal/mol) and electrostatic solvation (ΔGsolv, ?36.86?kcal/mol) energy terms are major contributors for the inhibitor binding. Further, 30-ns MD simulation was performed to validate the stability of ligand–protein complex and also to get structural insight into mode of binding. Based on the IFD and MD simulation results, we designed four new compounds D1–D4 with promising binding affinity for the S. aureus MurE enzyme. The designed compounds were subjected to the extra-precision docking and binding free energy was calculated for complexes. Further, a 30-ns MD simulation was performed for D1/4C13 complex.  相似文献   

2.
In this work, the binding mechanism of new Polyketide Synthase 13 (Pks13) inhibitors has been studied through molecular dynamics simulation and free energy calculations. The drug Tam1 and its analogs, belonging to the benzofuran class, were submitted to 100 ns simulations, and according to the results obtained for root mean square deviation, all the simulations converged from approximately 30 ns. For the analysis of backbone flotation, the root mean square fluctuations were plotted for the Cα atoms; analysis revealed that the greatest fluctuation occurred in the residues that are part of the protein lid domain. The binding free energy value (ΔGbind) obtained for the Tam16 lead molecule was of ?51.43 kcal/mol. When comparing this result with the ΔGbind values for the remaining analogs, the drug Tam16 was found to be the highest ranked: this result is in agreement with the experimental results obtained by Aggarwal and collaborators, where it was verified that the IC50 for Tam16 is the smallest necessary to inhibit the Pks13 (IC50 = 0.19 μM). The energy decomposition analysis suggested that the residues which most interact with inhibitors are: Ser1636, Tyr1637, Asn1640, Ala1667, Phe1670, and Tyr1674, from which the greatest energy contribution to Phe1670 was particularly notable. For the lead molecule Tam16, a hydrogen bond with the hydroxyl of the phenol not observed in the other analogs induced a more stable molecular structure. Aggarwal and colleagues reported this hydrogen bonding as being responsible for the stability of the molecule, optimizing its physic-chemical, toxicological, and pharmacokinetic properties.  相似文献   

3.
B-cell lymphoma 2 (Bcl-2) family proteins are the central regulators of apoptosis, functioning via mitochondrial outer membrane permeabilization. The family members are involved in several stages of apoptosis regulation. The overexpression of the anti-apoptotic proteins leads to several cancer pathological conditions. This overexpression is modulated or inhibited by heterodimerization of pro-apoptotic BH3 domain or BH3-only peptides to the hydrophobic groove present at the surface of anti-apoptotic proteins. Additionally, the heterodimerization displayed differences in binding affinity profile among the pro-apoptotic peptides binding to anti-apoptotic proteins. In light of discovering the novel peptide/drug molecules that contain the potential to inhibit specific anti-apoptotic protein, it is necessary to understand the molecular basis of recognition between the protein and its binding partner (peptide or ligand) along with its binding energies. Therefore, the present work focused on deciphering the molecular basis of recognition between pro-apoptotic Bak peptide binding to different anti-apoptotic (Bcl-xL, Bfl-1, Bcl-W, Mcl-1, and Bcl-2) proteins using advanced Molecular Dynamics (MD) approach such as Molecular Mechanics-Generalized Born Solvent Accessible. The results from our investigation revealed that the predicted binding free energies showed excellent correlation with the experimental values (r2 = .95). The electrostatic (ΔGele) contributions are the major component that drives the interaction between Bak peptides and different anti-apoptotic peptides. Additionally, van der Waals (ΔGvdw) energies also play an indispensible role in determining the binding free energy. Furthermore, the decomposition analysis highlighted the comprehensive information about the energy contributions of hotspot residues involved in stabilizing the interaction between Bak peptide and different anti-apoptotic proteins.  相似文献   

4.
Bromodomain-containing protein 9 (BRD9) has been employed as a potential target for anticancer drugs in recent years. In this work, molecular docking, molecular dynamics (MD) simulations, binding free energy calculations, and per residue energy decomposition approaches were performed to elucidate the different binding modes between four pyridinone-like scaffold inhibitors and BRD9 bromodomain. Analysis results indicate that non-polar contribution mainly deriving from van der Waals energy is a critical impact on binding affinity of inhibitors against BRD9. Some key residues Phe44, Phe47, Val49, and Ile53 (at ZA loop) enhance the binding energy of inhibitors in BRD9 by means of providing hydrophobic interactions. Moreover, it is observed that BRD9 is anchored by the formation of a stable hydrogen bond between the carbonyl of the inhibitors and the residue Asn100 (at BC loop), and a strong π–π stacking interaction formed between the residue Tyr106 (at BC loop) and the inhibitors. The existence of dimethoxyphenyl structure and the aromatic ring merged to pyridinone scaffold are useful to enhance the BRD9 binding affinity. These findings should guide the rational design of more prospective inhibitors targeting BRD9.

Communicated by Ramaswamy H. Sarma  相似文献   


5.
The interaction of pepsin with daidzein (Dai) or genistein (Gen) was investigated using spectroscopic techniques under simulated physiological conditions. Dai and Gen can quench the fluorescence of pepsin and the quenching mechanism was a static process. The binding site number n and apparent binding constant K were measured at different temperatures. The thermodynamic parameters ΔΗ, ΔG and ΔS were calculated. The results indicated that van der Waals forces and hydrogen bond formation played major roles in the interaction of Dai or Gen with pepsin. The binding distance between pepsin and Dai or Gen was calculated according to energy transfer theory. The results of synchronous fluorescence spectra showed that the microenvironment and conformation of pepsin were changed. UV absorption and 3D fluorescence spectra showed that the binding interaction disturbed the microenvironment of amino acid residues and induced conformational changes in pepsin. Molecular docking results showed that Dai and Gen entered into the hydrophobic cavity of pepsin and two hydrogen bonds formed between Dai or Gen and pepsin. The results demonstrated that the interaction behavior between Dai and Gen with pepsin was slightly different, which denoted that the 5‐hydroxyl group of Gen, to a certain extent, had an effect on ligand binding to proteins. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
3-(4-Fluorophenyl)-N-((4-fluorophenyl)sulphonyl)acrylamide (FFSA) is a potential tubulin polymerisation inhibitor. In this article, a theoretical study of the binding between FFSA and tubulin in colchicine site was carried out by molecular docking, molecular dynamics (MD) simulation and binding free energy calculations. The docking calculations preliminarily indicate that there are three possible binding modes 1, 2 and 3; MD simulations and binding free energy calculations identify that binding mode 2 is the most favourable, with the lowest binding free energy of ? 29.54 kcal/mol. Moreover, our valuable results for the binding are as follows: the inhibitor FFSA is suitably located at the colchicine site of tubulin, where it not only interacts with residues Leu248β, Lys254β, Leu255β, Lys352β, Met259β and Val181a by hydrophilic interaction, but also interacts with Val181α and Thr179α by hydrogen bond interaction. These two factors are both essential for FFSA strongly binding to tubulin. These theoretical results help understanding the action mechanism and designing new compounds with higher affinity to tubulin.  相似文献   

7.
Molecular dynamics (MD) simulations coupled with principal component (PC) analysis were carried out to study functional roles of Mg2+ binding to extracellular signal-regulated kinase 2 (ERK2). The results suggest that Mg2+ binding heavily decreases eigenvalue of the first principal component and totally inhibits motion strength of ERK2, which favors stabilization of ERK2 structure. Binding free energy predictions indicate that Mg2+ binding produces an important effect on binding ability of adenosine triphosphate (ATP) to ERK2 and strengthens the ATP binding. The calculations of residue-based free energy decomposition show that lack of Mg2+ weakens interactions between the hydrophobic rings of ATP and five residues I29, V37, A50, L105, and L154. Hydrogen bond analyses also prove that Mg2+ binding increases occupancies of hydrogen bonds formed between ATP and residues K52, Q103, D104, and M106. We expect that this study can provide a significant theoretical hint for designs of anticancer drugs targeting ERK2.  相似文献   

8.
9.
Wheat germ agglutinin (WGA) is a plant lectin, which specifically recognizes the sugars NeuNAc and GlcNAc. Mutated WGA with enhanced binding specificity can be used as biomarkers for cancer. In silico mutations are performed at the active site of WGA to enhance the binding specificity towards sialylglycans, and molecular dynamics simulations of 20 ns are carried out for wild type and mutated WGAs (WGA1, WGA2, and WGA3) in complex with sialylgalactose to examine the change in binding specificity. MD simulations reveal the change in binding specificity of wild type and mutated WGAs towards sialylgalactose and bound conformational flexibility of sialylgalactose. The mutated polar amino acid residues Asn114 (S114N), Lys118 (G118K), and Arg118 (G118R) make direct and water mediated hydrogen bonds and hydrophobic interactions with sialylgalactose. An analysis of possible hydrogen bonds, hydrophobic interactions, total pair wise interaction energy between active site residues and sialylgalactose and MM‐PBSA free energy calculation reveals the plausible binding modes and the role of water in stabilizing different binding modes. An interesting observation is that the binding specificity of mutated WGAs (cyborg lectin) towards sialylgalactose is found to be higher in double point mutation (WGA3). One of the substituted residues Arg118 plays a crucial role in sugar binding. Based on the interactions and energy calculations, it is concluded that the order of binding specificity of WGAs towards sialylgalactose is WGA3 > WGA1 > WGA2 > WGA. On comparing with the wild type, double point mutated WGA (WGA3) exhibits increased specificity towards sialylgalactose, and thus, it can be effectively used in targeted drug delivery and as biological cell marker in cancer therapeutics. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
It’s favorable to alter KRas mutation’s location to endomembrane by interfering the binding of PDEδ (the prenyl-binding protein phosphodiesterase delta) to KRas. In the present work, the binding of four inhibitors (Deltarasin, allyl analogue, pyrazolopyridazinone derivative, and Deltazinone 1) to PDEδ is investigated with all-atom Molecular Dynamic (MD) simulations. The binding free energy calculation results reveal that van der Waals (VDW) energy provides the major force for affinity binding. Moreover, the binding energy decomposition indicates that residues R61 and I129 provide important contributions to binding energies in all systems. The conserved hydrogen bonds play crucial roles in anchoring the inhibitors to the exact site for binding. The results for conformational analysis of PDEδ/free and PDEδ/inhibitors systems show that the structures are more stable after the inhibitors’ binding to the PDEδ. It is also found that the most unstable system among four complexes is PDEδ/pyrazolopyridazinone derivative system whose α3-helix formed by the residues P113-Q116 disappears. This study may provide valuable information for the design of high potency PDEδ inhibitors.

Communicated by Ramaswamy H. Sarma  相似文献   


11.
HIV-1 protease (PR) has been a significant target for design of potent inhibitors curing acquired immunodeficiency syndrome. Molecular dynamics simulations coupled with molecular mechanics Poisson–Boltzmann surface area method were performed to study interaction modes of four inhibitors MKP56, MKP73, MKP86, and MKP97 with PR. The results suggest that the main force controlling interactions of inhibitors with PR should be contributed by van der Waals interactions between inhibitors and PR. The cross-correlation analyses based on MD trajectories show that inhibitor binding produces significant effect on the flap dynamics of PR. Hydrogen bond analyses indicate that inhibitors can form stable hydrogen bonding interactions with the residues from the catalytic strands of PR. The contributions of separate residues to inhibitor bindings are evaluated by using residue-based free energy decomposition method and the results demonstrate that the CH–π and CH–CH interactions between the hydrophobic groups of inhibitors with residues drive the associations of inhibitors with PR. We expect that this study can provide a significant theoretical aid for design of potent inhibitors targeting PR.  相似文献   

12.
Molecular dynamics simulations were performed to evaluate the origin of the antimalarial effect of the lead compound P218. The simulations of the ligand in the cavities of wild-type, mutant Plasmodium falciparum Dihydrofolate Reductase (PfDHFR) and the human DHFR revealed the differences in the atomic-level interactions and also provided explanation for the specificity of this ligand toward PfDHFR. The binding free energy estimation using Molecular Mechanics Poisson-Boltzmann Surface Area method revealed that P218 has higher binding affinity (~ ?30 to ?35 kcal/mol) toward PfDHFR (both in wild-type and mutant forms) than human DHFR (~ ?22 kcal/mol), corroborating the experimental observations. Intermolecular hydrogen bonding analysis of the trajectories showed that P218 formed two stable hydrogen bonds with human DHFR (Ile7 and Glu30), wild-type and double-mutant PfDHFR’s (Asp54 and Arg122), while it formed three stable hydrogen bonds with quadruple-mutant PfDHFR (Asp54, Arg59, and Arg122). Additionally, P218 binding in PfDHFR is stabilized by hydrogen bonds with residues Ile14 and Ile164. It was found that mutant residues do not reduce the binding affinity of P218 to PfDHFR, in contrast, Cys59Arg mutation strongly favors inhibitor binding to quadruple-mutant PfDHFR. The atomistic-level details explored in this work will be highly useful for the design of non-resistant novel PfDHFR inhibitors as antimalarial agents.  相似文献   

13.
14.
Soluble epoxide hydrolase (sEH) inhibitory activity guided fractionation and isolation of two new isocucurbic acid derivatives ( 1 and 2 ) and nine known compounds ( 3 – 11 ) from the flowers of Chrysanthemum indicum L. Their structures were elucidated on the basis of spectroscopic data interpretation and comparison with those reported in previous studies. Luteolin ( 3 ), acacetin-7-O-β-D-glucopyranoside ( 6 ), and methyl 3,4-di-O-caffeoylquinate ( 10 ) displayed sEH inhibitory activities with IC50 values ranging from 13.7±3.6 to 20.8±0.4 μM. Enzyme kinetic analysis revealed that 3 , 6 , and 10 were non-competitive inhibitors with Ki values of 14.8±0.5, 31.2±0.8, and 3.9±0.2 μM, respectively. Additionally, molecular docking studies indicated compound 10 had the ability to form six hydrogen bonds at sEH active site, resulting binding energy as low as −9.58 Kcal/mol.  相似文献   

15.
Tankyrases (TNKSs), a member of human poly (ADP-ribose) polymerase (PARP) protein superfamily, plays a key role in regulation of cell proliferation. Among the representative proteins of the PARPs family, it is found that the inhibitors have high selectivity for Tankyrase1 (TNKS1). The specific binding modes are investigated between the TNKS1 protein and nicotinamide isostere (ISX) which functions as an inhibitor of TNKS1. The stabilities of ISX-TNKS1 and AVA939-TNKS1 complexes are estimated by molecular dynamics (MD) simulations and free energy calculations; a good agreement with experimental results is reached. On the basis of the calculated results of MD simulations, we found that the inhibitors influence the conformational flexibility of TNKS1 and the XAV939 binding drive the peptide Ile1228-Gly1229-Gly1230 to form a helical structure while the ISX binding drive the peptide to form a turn structure. Moreover, the formed important hydrogen bonds of Tyr1203 residue with XVA939 and WAT1551 with ISX enhance stabilities of the complexes, and the electrostatic interactions in XAV939-TNKS1 and van der Waals interactions in ISX-TNKS1 system are main driving forces for affinity. According to the results of the decomposition of binding free energy, it is obvious that the residues Try1224 and Lys1220 make the most favorable contributions to the binding in, respectively, ISX and XAV939 complexes. Taken together, the obtained results are useful for studying the binding mechanisms of TNKSs and inhibitors and for designing potent inhibitors.  相似文献   

16.
4-[3-acetyl-5-(acetylamino)-2,3-dihydro-1,3,4-thiadiazole-2-yl]phenyl benzoate from the family of thiadiazole derivative has been newly synthesized. It has good anticancer activity as well as antibacterial and less toxic in nature, its binding characteristics are therefore of huge interest for understanding pharmacokinetic mechanism of the drug. The binding of thiadiazole derivative to human serum albumin (HSA) has been investigated by studying its quenching mechanism, binding kinetics and the molecular distance, r between the donor (HSA) and acceptor (thiadiazole derivative) was estimated according to Forster’s theory of non-radiative energy transfer. The Gibbs free energy (ΔG), enthalpy (ΔH) and entropy (ΔS) changes of temperature-dependent Kb was calculated, which explains that the reaction is spontaneous and exothermic. The microenvironment of HSA have also been studied using synchronous fluorescence spectroscopy, and the feature of thiadiazole derivative-induced structural changes of HSA have been carried using Fourier transform infrared spectroscopy and the Molecular modelling simulations explore the hydrophobic and hydrogen bonding interactions.  相似文献   

17.
6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) is a promising antimicrobial target involved in the folate biosynthesis pathway. Although, the results from crystallographic studies of HPPK have attracted a great interest in the design of novel HPPK inhibitors, the mechanism of action of HPPK due to inhibitor binding remains questionable. Recently, mercaptoguanine derivatives were reported to inhibit the pyrophosphoryl transfer mechanism of Staphylococcus aureus HPPK (SaHPPK). The present study is an attempt to understand the SaHPPK-inhibitors binding mechanism and to highlight the key residues that possibly involve in the complex formation. To decipher these questions, we used the state-of-the-art advanced insilico approach such as molecular docking, molecular dynamics (MD), molecular mechanics-generalized Born surface area approach. Domain cross correlation and principle component analysis were applied to the snapshots obtained from MD revealed that the compounds with high binding affinity stabilize the conformational dynamics of SaHPPK. The binding free energy estimation showed that the van der Waals and electrostatic interactions played a vital role for the binding mechanism. Additionally, the predicted binding free energy was in good agreement with the experimental values (R2 = .78). Moreover, the free energy decomposition on per-residue confirms the key residues that significantly contribute to the complex formation. These results are expected to be useful for rational design of novel SaHPPK inhibitors.  相似文献   

18.
Although the pharmacological inhibition of cholesterol ester transport protein (CETP) has been proposed as a method of preventing and treating cardiovascular disease (CVD), the adverse effects of current inhibitors have cast doubt on the interaction mechanisms of inhibitors and CETP. In response, a molecular dynamics simulation was used to investigate their interaction and shed light on the lipid exchange mechanism of CETP. Results showed that torcetrapib, anacetrapib, and evacetrapib can induce the incremental rigidity of CETP, yet decrease the stability of Helix X and the hydrophobic tunnel of CETP, with passable binding abilities (ΔGbind, ?61.08, ?64.23, and ?61.57 kcal mol?1). During their binding processes, Van der Waals components (ΔEvdw + ΔGSA) play a dominant role, and the inhibitory effects closely correlated with residues Cys13, Val198, Gln199, Ser230, His232, and Phe263, which could reduce the flexibility of N- and C- termini and Helix X, as well as the stability of hydrophobic tunnel, into which the three inhibitors could enter and promote the formation of intramolecular H-bonds such as Thr138–Asn192 and Arg37–Glu186. Additionally, the three inhibitors could restrain the formation of an opening at the CETP N-terminal, which given the other findings suggests the tunneling mechanism of CETP transfer. The paper closes with an explanation of conceivable causes of the insufficient efficacy of the inhibitors, and puts forward the rationality in targeting the CETP distal end for CVD therapies.  相似文献   

19.
Human serotonin N-acetyltransferase (hAANAT), included in the melatonin biosynthesis, plays a pivotal role in the regulation of the biological clock and the daily rhythm. In this research, a reliable model of hAANAT was first constructed by the homology modelling method. Then the inhibition mode of two representative rhodanine-based inhibitors was explored by molecular dynamics simulations and energy analyses. The results show that the inhibitor class could share a similar inhibition mechanism in which the carboxyl moiety is positioned in the Ac-CoA binding region while the other end spans the serotonin binding pocket. The interaction between the inhibitor's carboxyl and the enzyme seems to be more important according to the decomposition of binding free energy. Based on the proposed inhibition mode, the inhibitor's improvement was carried out to obtain a more potent compound. The newly designed inhibitor, with the larger binding free energy, exhibits the stronger interaction with the related residues of the enzyme by the added chemical groups. This work will shed light on the inhibition mechanism of the rhodanine-based inhibitors and promote the development of a new drug targeting hAANAT.  相似文献   

20.
Ebola viruses (EBOVs) cause an acute and serious illness which is often fatal if untreated, and there is no effective vaccine until now. Multifunctional VP35 is critical for viral replication, RNA silencing suppression and nucleocapsid formation, and it is considered as a future target for the molecular biology technique. In the present work, the binding of inhibitor pyrrole‐based compounds (GA017) to wild‐type (WT), single (K248A, K251A, and I295A), and double (K248A/I295A) mutant VP35 were investigated by all‐atom molecular dynamic (MD) simulations and Molecular Mechanics Generalized Born surface area (MM/GBSA) energy calculation. The calculated results indicate that the binding with GA017 makes the binding pocket more stable and reduces the space of the binding pocket. Moreover, the electrostatic interactions (ΔEele) and VDW energy (ΔEvdw) provide the major forces for affinity binding, and single mutation I295A and double mutation K248A/I295A have great influence on the conformation of the VP35 binding pocket. Interestingly, the residues R300‐G301‐D302 of I295A form a new helix and the sheet formed by the residues V294‐I295‐H296‐I297 disappears in the double mutation K248A/I295A as compared with WT. Moreover, the binding free energy calculations show that I295A and K248A/I295A mutations decrease of absolute binding free energies while K248A and K251A mutations increase absolute binding free energy. Our calculated results are in good agreement with the experimental results that K248A/I295A double mutant results in near‐complete loss of compound binding. The obtained information will be useful for design effective inhibitors for treating Ebola virus. Proteins 2015; 83:2263–2278. © 2015 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号