首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The binding of naturally occurring methylxanthines such as theophylline, theobromine and caffeine to nucleic acids are reckoned to be pivotal as they are able to modulate the cellular activities. We explore the interaction of yeast RNA binding efficacy of the above xanthine derivatives by using UV absorption differential spectroscopy and Fourier Transform Infrared (FTIR) spectroscopy. Both the analyses show discrimination in their binding affinity to RNA. The differential UV-spectrum at P/D 3.3 reveals the greater RNA binding activity for theophylline (85 +/- 5%), whereas moderate and comparatively less binding activity for theobromine (45 +/- 5%) and caffeine (30 +/- 5%) and the binding activity was found to depend on concentration of the drugs. In FTIR analysis we observed changes in the amino group (NH) of RNA complexed by drugs, where the NH band is found to become very broad, indicating hydrogen bonding (H-bonding) with theophylline (3343.4 cm(-1)), theobromine (3379.8 cm(-1)) and caffeine (3343 cm(-1)) as compared to the free RNA (3341.6 cm(-1)). Furthermore in RNA-theophylline complex, it is observed that the carbonyl (C=O) vibration frequency (nu(C=O)) of both drug (nu(C=O)=1718, 1666 cm(-1)) as well as RNA (nu(C=O)=1699, 1658 cm(-1)) disappeared and a new vibration band appeared around 1703 cm(-1), indicating that the C=O and NH groups of drug and RNA are effectively involved in H-bonding. Whereas in RNA-theobromine and RNA-caffeine complexes, we found very little changes in C=O frequency and only broadening of the NH band of RNA due to complexation is observed in these groups. The changes in the vibrations of G-C/A-U bands and other bending frequencies are discussed. Thus the discrimination in the binding affinity of methylxanthines with RNA molecule shows that strong RNA binding drugs like theophylline can selectively be delivered to RNA targets of microbial pathogens having the mechanism of RNA catalysis.  相似文献   

2.
Nucleic acids exist in a dynamic equilibrium with a number of molecules that constantly interact with them and regulate the cellular activities. The inherent nature of the structure and conformational integrity of these macromolecules can lead to altered biological activity through proper targeting of nucleic acids binding ligands or drug molecules. We studied the interaction of naturally occurring methylxanthines such as theophylline, theobromine and caffeine with DNA, using UV absorption and Fourier transform infrared (FTIR) spectroscopic methods, and especially monitored their binding affinity in the presence of Mg2+ and during helix-coil transitions of DNA by temperature (Tm) or pH melting profiles. The study indicates that all these molecules effectively bind to DNA in a dose dependent manner. The overall binding constants of DNA-theophylline = 3.5×103 M−1, DNA-theobromine = 1.1×103 M−1, and DNA-Caffeine = 3.8×103 M−1. On the other hand Tm/pH melting profiles showed 24–35% of enhanced binding activity of methylxanthines during helix-coil transitions of DNA rather than to its native double helical structure. The FTIR analysis divulged that theophylline, theobromine and caffeine interact with all the base pairs of DNA (A-T; G-C) and phosphate group through hydrogen bond (H-bond) interaction. In the presence of Mg2+, methylxanthines altered the structure of DNA from B to A-family. However, the B-family structure of DNA remained unaltered in DNA-methylxanthines complexes or in the absence of Mg2+. The spectral analyses indicated the order of binding affinity as “caffeine≥theophylline>theobromine” to the native double helical DNA, and “theophylline≥theobromine>caffeine to the denatured form of DNA and in the presence of divalent metal ions.  相似文献   

3.
T Nakatsuka  S Hanada  T Fujii 《Teratology》1983,28(2):243-247
A previous study demonstrated that caffeine strongly potentiated the teratogenic action of mitomycin C in mice. In the present study the effect of methylxanthines including caffeine, theophylline, theobromine (theobromine sodium salicylate), paraxanthine, and 1-methylxanthine was compared in order to analyze the structure-activity relationship. Jcl:ICR mice were injected IP with 3 mg/kg of mitomycin C, immediately followed by SC injection of each methylxanthine on day 11 of gestation. The doses of methylxanthines were calculated so that the mice received 50 mg/kg of caffeine or the equimolecular amount of the other methylxanthines. Fetuses were examined for external malformations on day 18 of gestation. Mitomycin C at 3 mg/kg and the methylxanthines at the doses used were not teratogenic. Combined administration of caffeine or theophylline with mitomycin C produced more than 80% of malformed fetuses. Although less effective than caffeine or theophylline, paraxanthine also significantly increased the incidence of malformed fetuses. Theobromine and 1-methylxanthine were virtually ineffective. From these findings, it is suggested that the methyl group at N-1 position of the xanthines is important for the enhancement but the N-1 methylation alone is ineffective unless accompanied with the substitution of the methyl moiety at the other position(s).  相似文献   

4.
Coherent anti-Stokes Raman scattering spectra, in resonance with the isoalloxazine visible electronic transition, have been obtained down to 300 cm?1 for flavin adenine dinucleotide, riboflavin binding protein and glucose oxidase, in H2O and D2O. Several isoalloxazine vibrational modes can be identified by analogy with those of uracil. Of particular interest is a band at ~1255 cm?1 in H2O, which is replaced by another at ~1295 cm?1, in D2O. The H2O band appears to be a sensitive monitor of H-bonding of the N3 isoalloxazine proton to a protein acceptor group. It shifts down by 10 cm?1 in riboflavin binding protein, and disappears altogether in glucose oxidase. Other band shifts, of 3–5 cm?1, are similar for the two flavoproteins, and may reflect environmental changes between aqueous solution and the protein binding pockets.  相似文献   

5.
A strain of Serratia marcescens showing the ability to degrade caffeine and other methylxanthines was isolated from soil under coffee cultivation. Growth was observed only with xanthines methylated at the 7 position (caffeine, 1,3,7-dimethylxanthine; paraxanthine, 1,7-dimethylxanthine; theobromine, 3,7-dimethylxanthine and 7-methylxanthine). Paraxanthine and theobromine were released in liquid medium when caffeine was used as the sole source of carbon and nitrogen. When paraxanthine or theobromine were used, 3-methylxanthine, 7-methylxanthine, and xanthine were detected in the liquid medium. Serratia marcescens did not grow with theophylline (1,3-dimethylxanthine), 1-methylxanthine, and 3-methylxanthine, and poor growth was observed with xanthine. Methyluric acid formation from methylxanthines was tested in cell-free extracts by measuring dehydrogenase reduction of tetrazolium salt in native-polyacrylamide gel electrophoresis gel. Activity was observed for all methylxanthines, even those with which no bacterial growth was observed. Our results suggest that in this strain of S. marcescens caffeine is degraded to theobromine (3,7-dimethylxanthine) and/or paraxanthine (1,7-dimethylxanthine), and subsequently to 7-methylxanthine and xanthine. Methyluric acid formation could not be confirmed. Correspondence to: Paulo Mazzafera.  相似文献   

6.
The incorporation of radioactivity from L-[14CH3]-methionine into caffeine by coffee fruits was enhanced by additions of theobromine and paraxanthine but was reduced by additions of theophylline and caffeine. Cell-free extracts prepared from seedlings, partially ripe and unripe coffee fruits showed that only the unripe green fruits contained significant methyltransferase and 7-methyl-N9-nucleoside hydrolase activity. The cell-free extracts catalysed the transfer of methyl groups fromS-adenosyl-L-[14CH3]-methionine to 7-methylxanthine, and 7-methylxanthosine, producing theobromine and to theobromine producing caffeine. The two enzymic methylations exhibited a sharp pH max at 8.5 and a similar pattern of effects with metal chelators, thiol reagents and Mg2+ ions, which were slightly stimulating though not essential to enzyme activity. Paraxanthine (1,7-dimethylxanthine) was sh own to be the most active among methylxanthines as methyl acceptors; however its formation from 1-methylxanthine and 7-methylxanthine was not detectable, and biosynthesis from paraxanthine in the intact plant would therefore appear not to occur. The apparent Km values are as follows: 7-methylxanthine 0.2 mM, theobromine 0.2 mM, paraxanthine 0.07 mM and S-adenosyl-L-methionine with each substrate 0.01 mM. The results suggest the pathway for caffeine biosynthesis in Coffea arabica is: 7-methylxanthosine → 7-methylxanthine → theobromine → caffeine.  相似文献   

7.
Pseudomonas putida CBB5 was isolated from soil by enrichment on caffeine. This strain used not only caffeine, theobromine, paraxanthine, and 7-methylxanthine as sole carbon and nitrogen sources but also theophylline and 3-methylxanthine. Analyses of metabolites in spent media and resting cell suspensions confirmed that CBB5 initially N demethylated theophylline via a hitherto unreported pathway to 1- and 3-methylxanthines. NAD(P)H-dependent conversion of theophylline to 1- and 3-methylxanthines was also detected in the crude cell extracts of theophylline-grown CBB5. 1-Methylxanthine and 3-methylxanthine were subsequently N demethylated to xanthine. CBB5 also oxidized theophylline and 1- and 3-methylxanthines to 1,3-dimethyluric acid and 1- and 3-methyluric acids, respectively. However, these methyluric acids were not metabolized further. A broad-substrate-range xanthine-oxidizing enzyme was responsible for the formation of these methyluric acids. In contrast, CBB5 metabolized caffeine to theobromine (major metabolite) and paraxanthine (minor metabolite). These dimethylxanthines were further N demethylated to xanthine via 7-methylxanthine. Theobromine-, paraxanthine-, and 7-methylxanthine-grown cells also metabolized all of the methylxanthines mentioned above via the same pathway. Thus, the theophylline and caffeine N-demethylation pathways converged at xanthine via different methylxanthine intermediates. Xanthine was eventually oxidized to uric acid. Enzymes involved in theophylline and caffeine degradation were coexpressed when CBB5 was grown on theophylline or on caffeine or its metabolites. However, 3-methylxanthine-grown CBB5 cells did not metabolize caffeine, whereas theophylline was metabolized at much reduced levels to only methyluric acids. To our knowledge, this is the first report of theophylline N demethylation and coexpression of distinct pathways for caffeine and theophylline degradation in bacteria.Caffeine (1,3,7-trimethylxanthine) and related methylxanthines are widely distributed in many plant species. Caffeine is also a major human dietary ingredient that can be found in common beverages and food products, such as coffee, tea, and chocolates. In pharmaceuticals, caffeine is used generally as a cardiac, neurological, and respiratory stimulant, as well as a diuretic (3). Hence, caffeine and related methylxanthines enter soil and water easily through decomposed plant materials and other means, such as effluents from coffee- and tea-processing facilities. Therefore, it is not surprising that microorganisms capable of degrading caffeine have been isolated from various natural environments, with or without enrichment procedures (3, 10). Bacteria use oxidative and N-demethylating pathways for catabolism of caffeine. Oxidation of caffeine by a Rhodococcus sp.-Klebsiella sp. mixed-culture consortium at the C-8 position to form 1,3,7-trimethyluric acid (TMU) has been reported (8). An 85-kDa, flavin-containing caffeine oxidase was purified from this consortium (9). Also, Mohapatra et al. (12) purified a 65-kDa caffeine oxidase from Alcaligenes sp. strain CF8. Cells of a caffeine-degrading Pseudomonas putida strain (ATCC 700097) isolated from domestic wastewater (13) showed a fourfold increase in a cytochrome P450 absorption spectrum signal compared to cells grown on glucose. Recently, we reported a novel non-NAD(P)+-dependent heterotrimeric caffeine dehydrogenase from Pseudomonas sp. strain CBB1 (20). This enzyme oxidized caffeine to TMU stoichiometrically and hydrolytically, without producing hydrogen peroxide. Further metabolism of TMU has not been elucidated.Several caffeine-degrading bacteria metabolize caffeine via the N-demethylating pathway and produce theobromine (3,7-dimethylxanthine) or paraxanthine (1,7-dimethylxanthine) as the initial product. Theophylline (1,3-dimethylxanthine) has not been reported to be a metabolite in bacterial degradation of caffeine. Subsequent N demethylation of theobromine or paraxanthine to xanthine is via 7-methyxanthine. Xanthine is further oxidized to uric acid by xanthine dehydrogenase/oxidase (3, 10). Although the identities of metabolites and the sequence of metabolite formation for caffeine N demethylation are well established, there is very little information on the number and nature of N-demethylases involved in this pathway.The lack of adequate information on the metabolism and enzymology of theophylline, caffeine, and related methylxanthines prompted us to investigate the degradation of these compounds in detail. We isolated a unique caffeine-degrading bacterium, P. putida CBB5, from soil via enrichment with caffeine as the sole source of carbon and nitrogen. Here we describe a detailed study of the metabolism of theophylline, caffeine, and related di- and monomethylxanthines by CBB5. Our results indicate that CBB5 initially N demethylated caffeine to produce theobromine (major product) and paraxanthine (minor product) before the pathways converged to 7-methylxanthine and xanthine. Surprisingly, CBB5 was also capable of utilizing theophylline as a sole carbon and nitrogen source. CBB5 N demethylated theophylline to 1-methylxanthine and 3-methylxanthine, which were further N demethylated to xanthine. Theophylline N-demethylase activity was detected in cell extracts prepared from theophylline-grown CBB5 cells. 1-Methylxanthine and 3-methylxanthine were detected as products of this NAD(P)H-dependent reaction. To our knowledge, this is the first report of a theophylline degradation pathway in bacteria and coexpression of distinct caffeine and theophylline degradation pathways.  相似文献   

8.
The in vitro and in vivo effects of three methylxanthines caffeine, theophylline and theobromine on the activity of the enzyme xanthine oxidase (EC 1.2.3.2.) was investigated with a view to understand their biochemical action. The studies revealed all the three methylxanthines to be inhibitors of the milk xanthine oxidase activity and the inhibition was found to be competitive in nature. The preincubation studies indicated a greater inhibition of the enzyme with the methylxanthines. Excessive amount of the substrate (2.5 × 10?4M) resulted in progressive inhibition of the enzyme activity. Low concentrations of methylxanthines exerted a definite inhibitory effect on the xanthine oxidase activity at lower substrate concentrations. At higher concentrations of the substrate, the inhibitory effect due to the same concentration of methylxanthines did not produce any added inhibition of the enzyme activity to that produced by the substrate alone. However, added inhibition by high concentrations of methylxanthines was detectable even when the enzyme activity was markedly inhibited by higher concentrations of the substrate. The in vivo administration of methylxanthines caused a significant inhibition of the xanthine oxidase activity in lungs, kidneys, heart and brain of rats. Consequently, the level of uric acid in the tissues of the drug treated animals was also found to be reduced.  相似文献   

9.
Abstract

The interaction of DNA and RNA with Cu(II), Mg(II), [Co(NH3)6]3+ [Co(NH3)5Cl]2+ chlorides and, cis- and trans-Pt(NH3)2Cl2 (CIS-DDP, trans-DDP) has been studied by Fourier Transform Infrared (FT-IR) spectroscopy and a correlation between metal-base binding and conformational transitions in the sugar pucker has been established. It has been found that RNA did not change from A-form on complexation with metals, whereas DNA exhibited a B to Z transition. The marker bands for the A-form (C′3-endo-anti conformation) were found to be near 810–816 cm?1, while the bands at 825 and 690 cm?1 are marker bands for the B- conformation (C′2-endo, anti), The B to Z (C3-endo, syn conformation) transition is characterized by the shift of the band at 825 cm?1 to 810–816 cm?1 and the shift of the guanine band at 690 cm?1 to about 600–624 cm?1.  相似文献   

10.
—Rat brain 5′-nucleotidase (EC 3.1.3.5) is inhibited by methylxanthines such as theophylline. Inhibition of the 5′-nucleotidase by theophylline appears more efficient than the inhibition of cAMP phosphodiesterase by this drug. A similar inhibition is observed with caffeine, theobromine, 7′-methyl-xanthine and 1-methylxanthine.  相似文献   

11.
Engineered microbial biosynthesis of plant natural products can support manufacturing of complex bioactive molecules and enable discovery of non-naturally occurring derivatives. Purine alkaloids, including caffeine (coffee), theophylline (antiasthma drug), theobromine (chocolate), and other methylxanthines, play a significant role in pharmacology and food chemistry. Here, we engineered the eukaryotic microbial host Saccharomyces cerevisiae for the de novo biosynthesis of methylxanthines. We constructed a xanthine-to-xanthosine conversion pathway in native yeast central metabolism to increase endogenous purine flux for the production of 7-methylxanthine, a key intermediate in caffeine biosynthesis. Yeast strains were further engineered to produce caffeine through expression of several enzymes from the coffee plant. By expressing combinations of different N-methyltransferases, we were able to demonstrate re-direction of flux to an alternate pathway and develop strains that support the production of diverse methylxanthines. We achieved production of 270 μg/L, 61 μg/L, and 3700 μg/L of caffeine, theophylline, and 3-methylxanthine, respectively, in 0.3-L bench-scale batch fermentations. The constructed strains provide an early platform for de novo production of methylxanthines and with further development will advance the discovery and synthesis of xanthine derivatives.  相似文献   

12.
Abstract

Ascorbic acid and divalent iron salts have been widely used to investigate the effects of reactive oxygen species in different biological targets such as nucleic acids, proteins and lipids. This study was designed to examine the interaction of yeast RNA with vitamin C in aqueous solution at physiological pH with drug/RNA(P)(P=phosphate) molar ratios of r= 1/80, 1/40, 1/20, 1/10, 1/4 and 1/2. Absorption spectra and Fourier transform infrared (FTIR) difference spectroscopy were used to determine the ascorbate binding mode, binding constant, sequence selectivity and RNA secondary structure in aqueous solution.

Spectroscopic evidence showed that at low drug concentration (r=1/80 and 1/40), no major ascorbate-RNA interaction occurs, while at higher drug concentrations (r>1/40), a major drug-RNA complexation was observed through both G-C and A-U base pairs and the backbone phosphate groups with k=31.80 M?1. Evidence for this comes from large perturbations of the G-C vibrations at 1698 and 1488 cm?1 and the A-U bands at 1654 and 1608 cm?1 as well as the phosphate antisymmetric stretch at 1244 cm?1. At r>1/10, minor structural changes occur for the ribose-phosphate backbone geometry with RNA remaining in the A- family structure. The drug distributions around double helix were about 55% with G-C, 33% A-U and 12% with PO2 groups. A comparison between ascorbate-RNA and ascorbate-DNA complexes showed minor differences. The ascorbate binding (H-bonding) is via anion CO and OH groups.  相似文献   

13.
N-Nitrosodimethylamine (NDMA) is an emerging contaminant of concern. N-nitrodimethylamine (DMNA) is a structural analog to NDMA. NDMA and DMNA have been found in drinking water, groundwater, and other media and are of concern due their toxicity. The authors evaluated biotransformation of NDMA and DMNA by cultures enriched from contaminated groundwater growing on benzene, butane, methane, propane, or toluene. Maximum specific growth rates of enriched cultures on butane (μmax = 1.1 h?1) and propane (μmax = 0.65 h?1) were 1 to 2 orders of magnitude higher than those presented in the literature. Growth rates of mixed cultures grown on benzene (μmax = 1.3 h?1), methane (μmax = 0.09 h?1), and toluene (μmax = 0.99 h?1) in these studies were similar to those presented in the literature. NDMA biotransformation rates for methane oxidizers (υmax = 1.4 ng min?1 mg?1) and toluene oxidizers (υmax = 2.3 ng min?1 mg?1) were comparable to those presented in the literature, whereas the biotransformation rate for propane oxidizers (υmax = 0.37 ng min?1 mg?1) was lower. NDMA biotransformation rates for benzene oxidizers (υmax = 1.02 ng min?1 mg?1) and butane oxidizers (υmax = 1.2 ng min?1 mg?1) were comparable to those reported for other primary substrates. These studies showed that DMNA biotransformation rates for benzene (υmax = 0.79 ng min?1 mg?1), butane (υmax = 1.0 ng min?1 mg?1), methane (υmax = 2.1 ng min?1 mg?1), propane (υmax = 1.46 ng min?1 mg?1), and toluene (υmax = 0.52 ng min?1 mg?1) oxidizers were all comparable. These studies highlight potential bioremediation methods for NDMA and DMNA in contaminated groundwater.  相似文献   

14.

Purpose

To assess the capacity of methylxanthines (caffeine, theophylline, theobromine and paraxanthine) to inhibit uric acid crystallization, and to evaluate their potential application in the treatment of uric acid nephrolithiasis.

Materials and Methods

The ability of methylxathines to inhibit uric acid nucleation was assayed turbidimetrically. Crystal morphology and its modification due to the effect of theobromine were evaluated by scanning electron microscopy (SEM). The ability of theobromine to inhibit uric acid crystal growth on calculi fragments resulting from extracorporeal shock wave lithotripsy (ESWL) was evaluated using a flow system.

Results

The turbidimetric assay showed that among the studied methylxanthines, theobromine could markedly inhibit uric acid nucleation. SEM images showed that the presence of theobromine resulted in thinner uric acid crystals. Furthermore, in a flow system theobromine blocked the regrowth of post-ESWL uric acid calculi fragments.

Conclusions

Theobromine, a natural dimethylxanthine present in high amounts in cocoa, acts as an inhibitor of nucleation and crystal growth of uric acid. Therefore, theobromine may be clinically useful in the treatment of uric acid nephrolithiasis.  相似文献   

15.
Self-association of Nα-protected peptides related to C-terminal sequences of substance P in methylene chloride was disrupted by adding increasing amounts of various polar organic solvents. This process was monitored by the disappearance of the amide I C?O stretching band (1630 cm?1) of strongly intermolecularly H-bonded molecules in the irabsorption spectra. The effects induced by main-chain length, incorporation at position 9 of a residue promoting folding (α-aminoisobutyric acid), the nature of solvent, and peptide concentration were established. A corollary 1H-nmr investigation provided detailed information on the NH protons involved in the self-association process as H-bonding donors. The increasing propensity to aggregate exhibited by these peptides is paralleled by a decrease in their solubility. The impact of these results on the synthesis of substance P short sequences is briefly outlined.  相似文献   

16.
The biosynthesis and metabolism of purine alkaloids in leaves ofCamellia ptilophylla (cocoa tea), a new tea resource in China, have been investigated. The major purine alkaloid was theobromine, with theophylline also being present as a minor component. Caffeine was not accumulated in detectable quantities. Theobromine was synthesized from [8-14C] adenine and the rate of its biosynthesis in the segments from young and mature leaves from flush shoots was approximately 10 times higher than that from aged leaves from 1-year old shoots. Neither cellfree extracts nor segments fromC. ptilophylla leaves could convert theobromine to caffeine. A large quantity of [2-14C] xanthine taken up by the leaf segments was degraded to14CO2 via the conventional purine catabolic pathway that includes allantoin as an intermediate. However, small amounts of [2-14C] xanthine were also converted to theobromine. Considerable amounts of [8-14C] caffeine exogenously supplied to the leaf segments ofC. ptilophylla was changed to theobromine. These results indicate that leaves ofC. ptilophylla exhibit unusual purine alkaloid metabolism as i) they have the capacity to synthesize theobromine from adenine nucleotides, but they lack adequate methyltransferase activity to convert of theobromine to caffeine in detectable quantities, ii) the leaves have a capacity to convert xanthine to theobromine, probably via 3-methylxanthine.  相似文献   

17.
In this study, the kinetics of degradation of caffeine and related methylxanthines by induced cells of Pseudomonas sp. was performed. The kinetics data showed that degradation of caffeine, theobromine, and 7-methylxanthine followed Michealis–Menten kinetics. The values of K m are low for caffeine and 7-methylxanthine and high for theobromine. Degradation of caffeine and theobromine was enhanced in the presence of NADH and NADPH, whereas the degradation of 7-methylxanthine was unaffected. Among the various metal ions tested, Fe2+ was found to enhance the rate of degradation for all three substrates, whereas Zn2+ and Cu2+ inhibited the degradation of caffeine and theobromine but not 7-methylxanthine. The differences in kinetic parameters and cofactor requirement suggest the possibility of the involvement of more than one N-demethylases in the caffeine catabolic pathway in Pseudomonas sp. The induced cells can serve as effective biocatalysts for the development of biodecaffeination techniques.  相似文献   

18.
The i.r. spectra for aqueous solutions of sulfated glycosaminoglycans and model compounds in the transmittance “window” region of the solvent (1400-950 cm?1) are dominated by the strong and complex absorption centered at ~1230 cm?1 and associated with the antisymmetric stretching vibrations of the SO groups. Primary and secondary O-sulfate groups absorb at somewhat higher frequencies (1260-1200 cm?1) than N-sulfates (~1185 cm?1). Each sulfate band lends itself to quantitative applications, especially within a given class of sulfated polysaccharide. Laser-Raman spectra of heparin and model compounds have been obtained in aqueous solution and in the solid state. The most-prominent Raman peak (at ~1060 cm?1) is attributable to the symmetrical vibration of the SO groups, with N-sulfates emitting at somewhat lower frequencies (~1040 cm?1) than O-sulfates. The Raman pattern in the 950-800 cm?1 region (currently used in the i.r. for distinguishing between types of sulfate groups) also involves vibrations that are not localized only in the COS bonds.  相似文献   

19.
E W Small  W L Peticolas 《Biopolymers》1971,10(8):1377-1418
Raman spectra are presented on ordered and presumably helical structures of DNA and RNA as well as the poly A·poly U helical complex, polydAT, and the helical aggregates of 5′-GMP and 3′-GMP. The changes in the frequency and the intensity of the Raman bands as these structures undergo order-disorder transitions have been measured. In general the changes we have found can be placed into three categories: (1) A reduction in the intensities of certain ring vibrations of the polynucleotide bases is observed when stacking or ordering occurs (Raman hypochromism). Since the ring vibrational frequencies are different for each type of base, we have been able to obtain some estimate of average amount of order of each type of base in partially ordered helical systems. (2) A very large increase in the intensity of a sharp, strongly polarized band at about 815 cm?1 is observed when polyriboA and polyriboU are formed into a helical complex. Although this band is not present in the separated chains at high temperature, a broad diffuse band at about 800 cm?1 is present. The 815 cm?1 band undoubtedly arises from the vibrations of the phosphate-sugar portions of the molecule and provides a sensitive handle to the back-bone conformation of the polymer. This band also appears upon ordering of RNA, formation of the helical aggregate of 5′-riboGMP, and to some extent in the selfstacking of the polyribonucleotides polyA, polyU in the presence of Mg++, PolyC, and polyG. No such intense, polarized band is found, however, in ordered DNA, polydAT, or the 3′-riboGMP aggregate, although there is a conformationally independent band at about 795 cm?1 in DNA and polydAT. (3) Numerous frequency changes occur during Conformational changes. In particular the 1600–1700 cm?1 region in D2O shows significant conformationally dependent changes in the C?O stretching region analogous to the changes in this region which have been observed in these substances in the infrared. Thus, Raman scattering appears to provide a technique for simultaneously observing the effects of base stacking, backbone conformation and carbonyl hydrogen bonding in nucleic acids in moderately dilute (10–25 mg/ml) aqueous solutions.  相似文献   

20.
Abstract

We report the interaction of calf-thymus DNA with D-glucose, D-fructose, D-galactose and sucrose in aqueous solution at physiological pH with sugar/DNA(P)(P=phosphate) molar ratios (r) of 1/10,1/5,1,5 and 10. FTIR difference spectroscopy was used to characterize the nature of sugar-DNA interaction and correlations between spectral changes and structural variations for both sugar and DNA complexes have been established.

FTIR difference spectroscopic results showed major sugar interaction (H-bonding) with the P02 groups of the backbone at low sugar concentrations (r= 1/10 and 1/5). Such interaction was characterized by the shift and the intensity variations of the backbone P02 antisymmetric stretch at 1222 cm?1, which resulted in a major helical stability of DNA duplex. As sugar concentration increased, carbohydrate binding to DNA bases occurred. Evidence for this comes from major shiftings of the sugar O-H stretching vibrations at 3500–3200 cm?1, and sugar C-O stretches and OH bending modes at 1450–1000 cm”. Similarly, shifting and intensity variations of several DNA in-plane vibrations at 1717 (G,T), 1663 (T,G,A,C) and 1492 cm?1 (C,G) were observed, that are characterized by the presence of sugar-base interaction (via H20). The shiftings and the intensity changes of the sugar OH stretching modes at 35003200 cm?1 are also indicative of the rearrangements of the sugar intermolecular H-bonding network, on DNA complex formation. A partial B to A conformational transition was observed for DNA molecule on sugar complexation, whereas carbohydrate binding occurred via both a- and β-anomeric structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号