共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular Dynamics Simulations of Micelle Formation around Dimeric Glycophorin A Transmembrane Helices 下载免费PDF全文
Insertion and formation of membrane proteins involves the interaction of protein helices with one another in lipid environments. Researchers have studied glycophorin A (GpA) transmembrane helices embedded in sodium dodecyl sulfate (SDS) micelles to identify contacts significant for helix dimerization. However, a detailed picture of the conformation and dynamics of the GpA-SDS system cannot be obtained solely through experiment. Molecular dynamics simulations of SDS and a GpA dimer can provide an atomic-level picture of SDS aggregation and helix association. We report 2.5-ns simulations of GpA wild-type and mutants in a preformed micelle as well as a 32-ns simulation showing the formation of a complete micelle around wild-type GpA from an initially random placement of SDS molecules in an aqueous environment. In the latter case, an initial instability of GpA helices in water is reversed after the helices become surrounded by SDS. The properties of the spontaneously formed micelle surrounding the GpA are indistinguishable from those of the preformed micelle surrounding the GpA dimer. 相似文献
2.
HAMP domain is a ubiquitous module of bacterial and archaeal two-component signaling systems. Considerable progress has been made recently in studies of its structure and conformational changes. However, the mechanism of signal transduction through the HAMP domain is not clear. It remains a question whether all the HAMPs have the same mechanism of action and what are the differences between the domains from different protein families. Here, we present the results of unbiased molecular dynamics simulations of the HAMP domain from the archaeal phototaxis signal transducer NpHtrII. Two distinct conformational states of the HAMP domain are observed, that differ in relative position of the helices AS1 and AS2. The longitudinal shift is roughly equal to a half of an α-helix turn, although sometimes it reaches one full turn. The states are closely related to the position of bulky hydrophobic aminoacids at the HAMP domain core. The observed features are in good agreement with recent experimental results and allow us to propose that the states detected in the simulations are the resting state and the signaling state of the NpHtrII HAMP domain. To the best of our knowledge, this is the first observation of the same HAMP domain in different conformations. The simulations also underline the difference between AMBER ff99-SB-ILDN and CHARMM22-CMAP forcefields, as the former favors the resting state and the latter favors the signaling state. 相似文献
3.
Viktor Hornak Markus Eilers Mordechai Sheves Steven O. Smith 《Journal of molecular biology》2010,396(3):510-527
Structural restraints provided by solid-state NMR measurements of the metarhodopsin II intermediate are combined with molecular dynamics simulations to help visualize structural changes in the light activation of rhodopsin. Since the timescale for the formation of the metarhodopsin II intermediate (> 1 ms) is beyond that readily accessible by molecular dynamics, we use NMR distance restraints derived from 13C dipolar recoupling measurements to guide the simulations. The simulations yield a working model for how photoisomerization of the 11-cis retinylidene chromophore bound within the interior of rhodopsin is coupled to transmembrane helix motion and receptor activation. The mechanism of activation that emerges is that multiple switches on the extracellular (or intradiscal) side of rhodopsin trigger structural changes that converge to disrupt the ionic lock between helices H3 and H6 on the intracellular side of the receptor. 相似文献
4.
Tarsis F. Gesteira Laércio Pol-Fachin Vivien Jane Coulson-Thomas Marcelo A. Lima Hugo Verli Helena B. Nader 《PloS one》2013,8(8)
Sulfation patterns along glycosaminoglycan (GAG) chains dictate their functional role. The N-deacetylase N-sulfotransferase family (NDST) catalyzes the initial downstream modification of heparan sulfate and heparin chains by removing acetyl groups from subsets of N-acetylglucosamine units and, subsequently, sulfating the residual free amino groups. These enzymes transfer the sulfuryl group from 3′-phosphoadenosine-5′-phosphosulfate (PAPS), yielding sulfated sugar chains and 3′-phosphoadenosine-5′-phosphate (PAP). For the N-sulfotransferase domain of NDST1, Lys833 has been implicated to play a role in holding the substrate glycan moiety close to the PAPS cofactor. Additionally, Lys833 together with His716 interact with the sulfonate group, stabilizing the transition state. Such a role seems to be shared by Lys614 through donation of a proton to the bridging oxygen of the cofactor, thereby acting as a catalytic acid. However, the relevance of these boundary residues at the hydrophobic cleft is still unclear. Moreover, whether Lys833, His716 and Lys614 play a role in both glycan recognition and glycan sulfation remains elusive. In this study we evaluate the contribution of NDST mutants (Lys833, His716 and Lys614) to dynamical effects during sulfate transfer using comprehensive combined docking and essential dynamics. In addition, the binding location of the glycan moiety, PAPS and PAP within the active site of NDST1 throughout the sulfate transfer were determined by intermediate state analysis. Furthermore, NDST1 mutants unveiled Lys833 as vital for both the glycan binding and subsequent N-sulfotransferase activity of NDST1. 相似文献
5.
Jean-Pierre Duneau Norbert Garnier Monique Genest 《Journal of biomolecular structure & dynamics》2013,31(3):555-572
Abstract The hypothesis of structural alteration in transmembrane helices for signal transduction process is viewed by molecular dynamics simulation techniques. For the c-erbB-2 transmembrane domain involved in oncogenicity, the occurrence of conformational changes has been previously described as transition from the α to π helix. This dynamical feature is thoroughly analyzed for the wild phenotype and oncogenic sequences from a series of 18 simulations carried out on one nanosecond time scale. We show that these structural events do not depend upon the conditions of simulations like force field or starting helix coordinates. We demonstrate that the oncogenic mutations Val659 Glu, Gin and Asp do not prevent the transition. Furthermore, we show that β branched residues, in conjunction with Gly residues in the c-erbB-2 sequence, act as destabilizers for the α helix structure, π deformations are tightly related to other local structural motifs found in soluble and membrane proteins. These structural alterations are discussed in term of structure-activity relationships for the c-erbB-2 activating mechanism mediated by transmembrane domain dimerization. 相似文献
6.
7.
Ping Huang Juan J. Perez Gilda H. Loew 《Journal of biomolecular structure & dynamics》2013,31(5):927-956
Abstract Molecular dynamics (MD) simulations at 37°C have been performed on three phospholipid bilayer systems composed of the lipids DLPE, DOPE, and DOPC. The model used included 24 explicit lipid molecules and explicit waters of solvation in the polar head group regions, together with constant-pressure periodic boundary conditions in three dimensions. Using this model, a MD simulation samples part of an infinite planar lipid bilayer. The lipid dynamics and packing behavior were characterized. Furthermore, using the results of the simulations, a number of diverse properties including bilayer structural parameters, hydrocarbon chain order parameters, dihedral conformations, electron density profile, hydration per lipid, and water distribution along the bilayer normal were calculated. Many of these properties are available for the three lipid systems chosen, making them well suited for evaluating the model and protocols used in these simulations by direct comparisons with experimental data. The calculated MD behavior, chain disorder, and lipid packing parameter, i.e. the ratio of the effective areas of hydrocarbon tails and head group per lipid (at/ah), correctly predict the aggregation preferences of the three lipids observed experimentally at 37°C, namely: a gel bilayer for DLPE, a hexagonal tube for DOPE, and a liquid crystalline bilayer for DOPC. In addition, the model and conditions used in the MD simulations led to good agreement of the calculated properties of the bilayers with available experimental results, demonstrating the reliability of the simulations. The effects of the cis unsaturation in the hydrocarbon chains of DOPE and DOPC, compared to the fully saturated one in DLPE, as well as the effects of the different polar head groups of PC and PE with the same unsaturated chains on the lipid packing and bilayer structure have been investigated. The results of these studies indicate the ability of MD methods to provide molecular-level insights into the structure and dynamics of lipid assemblies. 相似文献
8.
Abstract A simple classical model is used for the study of the structural transformations of ice under high pressures, such as ice VIII to VII and X, via classical molecular dynamics (MD) simulation. In the present MD simulation, pair potentials of a simple form between pair of atoms and a thee-body potential representing the H-O-H angle dependence, originally developed by Kawamura et al., were used. Starting with a stable ice VIII at low pressure and low temperature, we have carried out two different MD runs, one with increasing pressure keeping the temperature constant (simulation I) and the other with increasing temperature under constant pressure (simulation II). From these MD simulations we have obtained the structural transformations from ice VIII to VII for both simulations; the former was finally transformed into ice X for the simulation I. The present results are compatible with recent experiments on high pressure ices. 相似文献
9.
Molecular Dynamics Simulations of Lipid Membrane Electroporation 总被引:1,自引:0,他引:1
The permeability of cell membranes can be transiently increased following the application of external electric fields. Theoretical approaches such as molecular modeling provide a significant insight into the processes affecting, at the molecular level, the integrity of lipid cell membranes when these are subject to voltage gradients under similar conditions as those used in experiments. This article reports on the progress made so far using such simulations to model membrane—lipid bilayer—electroporation. We first describe the methods devised to perform in silico experiments of membranes subject to nanosecond, megavolt-per-meter pulsed electric fields and of membranes subject to charge imbalance, mimicking therefore the application of low-voltage, long-duration pulses. We show then that, at the molecular level, the two types of pulses produce similar effects: provided the TM voltage these pulses create are higher than a certain threshold, hydrophilic pores stabilized by the membrane lipid headgroups form within the nanosecond time scale across the lipid core. Similarly, when the pulses are switched off, the pores collapse (close) within similar time scales. It is shown that for similar TM voltages applied, both methods induce similar electric field distributions within the membrane core. The cascade of events following the application of the pulses, and taking place at the membrane, is a direct consequence of such an electric field distribution. 相似文献
10.
11.
Jesse Ziebarth 《Biophysical journal》2009,97(7):1971-1983
Complexes formed from DNA and polycations are of interest because of their potential use in gene therapy; however, there remains a lack of understanding of the structure and formation of DNA-polycation complexes at atomic scale. In this work, molecular dynamics simulations of the DNA duplex d(CGCGAATTCGCG) in the presence of polycation chains are carried out to shed light on the specific atomic interaction that result in complex formation. The structures of complexes formed from DNA with polyethylenimine, which is considered one of the most promising DNA vector candidates, and a second polycation, poly-L-lysine, are compared. After an initial separation of ∼50 Å, the DNA and polycation come together and form a stable complex within 10 ns. The DNA does not undergo any major structural changes on complexation and remains in the B-form. In the formed complex, the charged amine groups of the polycation mainly interact with DNA phosphate groups, with polycation intrusion into the major and minor grooves dependent on the identity and charge state of the polycation. The ability of the polycation to effectively neutralize the charge of the DNA phosphate groups and the resulting influence on the DNA helix interaction are discussed. 相似文献
12.
Abstract A two step strategy is proposed to study dynamical properties of a physical system much slower than the time scales accessible by molecular dynamics simulations. The strategy is applied to investigate the slow dynamics of supercooled liquids. 相似文献
13.
Song Hi Lee 《Molecular simulation》2013,39(4-5):271-284
Abstract In recent papers, we reported non-equilibrium molecular dynamics (NEMD) simulations of planar Couette flow for liquid n- and i-butane, and liquid n-decane and 4-propyl heptane, using two collapsed atom models and an atomistically detailed model. It was found that the collapsed atom models predict the viscosities of the n-butane and n-decane quite well, and that the atomistically detailed model does not yield quantitative agreement with the viscosity of the n-alkanes or the branched alkanes, but it does have the one positive feature that the calculated viscosities of the branched alkanes are higher than these of the n-alkanes. In the present paper, we report results of NEMD simulations of planar Couette flow for liquid 6-propyl duodecane and 5-dibutyl nonane at 296 K and 0.782 g/cc, using an expanded collapsed atom model for simplicity. The strain rate dependent viscosity shows three different regions—two shear thinning ones and a Newtonian one. The slopes of the log-log plot for the branched-chain alkanes at high strain rate are different from those at intermediate strain rate, which is characterized as a rheological behavior of branched-chain alkanes. The Newtonian viscosity of the branched-chain alkanes can be extrapolated from the plateau value of the strain rate dependent viscosity at low strain rate as for straight-chain alkanes [J. Chem. Phys., 105, 1214 (1996)]. The results indicate that more-branched alkanes have a larger viscosity than less-branched C17 alkanes. 相似文献
14.
Abstract Isobaric molecular dynamics simulations were carried out for diatomic systems using different algorithms available in the literature. Two-centered Lennard-Jones potentials with and without quadrupolar interactions were used. Thermodynamic properties obtained from the isobaric algorithms compared very well with those of an equivalent simulation in the microcanonical ensemble; however, some differences were observed when similar comparisons were carried out for dynamic properties. More specifically, the constant pressure constraint affects the translational dynamics of the system because of the non-negligible differences between the momenta and the instantaneous velocities of the molecules. Furthermore, the following studies were carried out using isobaric MD simulations: 1. Low temperature spontaneous FCC-orthorhombic (and vice versa) transition of a diatomic system with quadrupolar interactions as a function of the molecular bond length. 2. Effect of quadrupolar interaction on isobaric melting of a model diatomic system. 3. Effect of pressure on melting properties of a model diatomic system with quadrupolar interactions. 相似文献
15.
16.
Holger Gohlke Daniel Schlieper Georg Groth 《The Journal of biological chemistry》2012,287(43):36536-36543
The rotation of F1Fo-ATP synthase is powered by the proton motive force across the energy-transducing membrane. The protein complex functions like a turbine; the proton flow drives the rotation of the c-ring of the transmembrane Fo domain, which is coupled to the ATP-producing F1 domain. The hairpin-structured c-protomers transport the protons by reversible protonation/deprotonation of a conserved Asp/Glu at the outer transmembrane helix (TMH). An open question is the proton transfer pathway through the membrane at atomic resolution. The protons are thought to be transferred via two half-channels to and from the conserved cAsp/Glu in the middle of the membrane. By molecular dynamics simulations of c-ring structures in a lipid bilayer, we mapped a water channel as one of the half-channels. We also analyzed the suppressor mutant cP24D/E61G in which the functional carboxylate is shifted to the inner TMH of the c-protomers. Current models concentrating on the “locked” and “open” conformations of the conserved carboxylate side chain are unable to explain the molecular function of this mutant. Our molecular dynamics simulations revealed an extended water channel with additional water molecules bridging the distance of the outer to the inner TMH. We suggest that the geometry of the water channel is an important feature for the molecular function of the membrane part of F1Fo-ATP synthase. The inclination of the proton pathway isolates the two half-channels and may contribute to a favorable clockwise rotation in ATP synthesis mode. 相似文献
17.
Using implicit solvent molecular dynamics and replica exchange simulations, we study the impact of ibuprofen on the growth of wild-type Aβ fibrils. We show that binding of ibuprofen to Aβ destabilizes the interactions between incoming peptides and the fibril. As a result, ibuprofen interference modifies the free energy landscape of fibril growth and reduces the free energy gain of Aβ peptide binding to the fibril by ≃2.5 RT at 360 K. Furthermore, ibuprofen interactions shift the thermodynamic equilibrium from fibril-like locked states to disordered docked states. Ibuprofen''s anti-aggregation effect is explained by its competition with incoming Aβ peptides for the same binding site located on the fibril edge. Although ibuprofen impedes fibril growth, it does not significantly change the mechanism of fibril elongation or the structure of Aβ peptides bound to the fibril. 相似文献
18.
Thomas C. Bishop 《Journal of biomolecular structure & dynamics》2013,31(6):673-685
Abstract All atom molecular dynamics simulations (10ns) of a nucleosome and of its 146 basepairs of DNA free in solution have been conducted. DNA helical parameters (Roll, Tilt, Twist, Shift, Slide, Rise) were extracted from each trajectory to compare the conformation, effective force constants, persistence length measures, and fluctuations of nucleosomal DNA to free DNA. The conformation of DNA in the nucleosome, as determined by helical parameters, is found to be largely within the range of thermally accessible values obtained for free DNA. DNA is found to be less flexible on the nucleosome than when free in solution, however such measures are length scale dependent. A method for disassembling and reconstructing the conformation and dynamics of the nucleosome using Fourier analysis is presented. Long length variations in the conformation of nucleosomal DNA are identified other than those associated with helix repeat. These variations are required to create a proposed tetrasome conformation or to qualitatively reconstruct the 1.75 turns of the nucleosome's superhelix. Reconstruction of free DNA using selected long wavelength variations in conformation can produce either a left-handed or a right-handed superhelix. The long wavelength variations suggest 146 basepairs is a natural length of DNA to wrap around the histone core. 相似文献
19.
Abstract Free energy differences between different conformers of D-ribofuranose, L-malic acid and meso-tartaric acid in solution were calculated using Molecular Dynamics simulations. In case of ribose the α → β transition was studied. For the acids attention was focussed on the transitions between the three possible staggered conformers with respect to the central C-C bond. In all cases a thermodynamic integration method was employed to evaluate the free energy difference. The use of an alternative technique, umbrella sampling, for ribose did not give promising results. It was shown that one needs a fairly accurate picture of the accessible conformational space in case of flexible molecules like the ones considered here before one can determine meaningful free energy differences. Large hysteresis effects between forward and reverse simulated transitions were observed, but contrary to the general belief they are no direct measure of the accuracy of the calculated ΔG values. In all cases the ΔG values resulting from the simulations and from NMR experiments agree within the, considerable, error limits and for the different forms of D-ribose, L-malic acid and L-tartaric acid the relative order of their populations is also correctly reproduced. 相似文献
20.
Abstract A 4-ns molecular dynamics simulation of calcium-free calmodulin in solution has been performed, using Ewald summation to treat electrostatic interactions. Our simulation results were mostly consistent with solution experimental studies, including NMR, fluorescence and x-ray scattering. The secondary structures within the N- and C-terminal domains were conserved in the simulation, with trajectory structures similar to the NMR-derived model structure 1CFD. However, the relative orientations of the domains, for which there are no NMR restraints, differed in details between the simulation and the 1CFD model. The most interesting information provided by the simulations is that the dynamics of calcium-free calmod- ulin in solution is dominated by slow rigid body reorientations of the domains. The interdomain distance fluctuated between 29 and 39 Å, and interdomain orientation angle, defined as the pseudo-dihedral formed by the four calcium binding sites, varied between ?2° and 108°. Similarly, the domain linker region also exhibited significant fluctuations, with its length varying in the 34–45 Å range and its bend angle in the 10–100° range. The simulations are in accord with fluorescence results suggesting that calcium-free calmodulin is more compact and more flexible than the calcium activated form. Surprisingly, quite similar solvent accessibilities of the hydrophobic patches were seen in the calcium-free trajectory described in this work and previously generated calcium-loaded calmodulin simulations. Thus, our simulations suggest a reexamination of the standard model of the structural change of calmodulin upon calcium binding, involving exposure of the hydrophobic patches to solvent. 相似文献