首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Mammalian mitochondria have their own dedicated protein synthesis system, which produces 13 essential subunits of the oxidative phosphorylation complexes. We have reconstituted an in vitro translation system from mammalian mitochondria, utilizing purified recombinant mitochondrial translation factors, 55S ribosomes from pig liver mitochondria, and a tRNA mixture from either Escherichia coli or yeast. The system is capable of translating leaderless mRNAs encoding model proteins (DHFR and nanoLuciferase) or some mtDNA-encoded proteins. We show that a leaderless mRNA, encoding nanoLuciferase, is faithfully initiated without the need for any auxiliary factors other than IF-2mt and IF-3mt. We found that the ribosome-dependent GTPase activities of both the translocase EF-G1mt and the recycling factor EF-G2mt are insensitive to fusidic acid (FA), the translation inhibitor that targets bacterial EF-G homologs, and consequently the system is resistant to FA. Moreover, we demonstrate that a polyproline sequence in the protein causes 55S mitochondrial ribosome stalling, yielding ribosome nascent chain complexes. Analyses of the effects of the Mg concentration on the polyproline-mediated ribosome stalling suggested the unique regulation of peptide elongation by the mitoribosome. This system will be useful for analyzing the mechanism of translation initiation, and the interactions between the nascent peptide chain and the mitochondrial ribosome.  相似文献   

2.
蛋白质合成过程一般被归纳为由合成的起始、肽链的延伸和合成的终止组成的三步曲 . 然而,随着对核糖体再循环因子 (ribosome recycling factor , RRF) 在蛋白质合成过程中作用的深入研究,人们提出了蛋白质生物合成应是四步曲, 这第四步就是翻译终止后核糖体复合物的解体 , 也就是通常说的核糖体循环再利用 . 简要地介绍了翻译终止后复合物解体的可能机制:核糖体再循环因子和蛋白质合成延伸因子 G 在核糖体上协同作用催化这一过程的完成 .  相似文献   

3.
Protein synthesis requires the involvement of numerous accessory factors that assist the ribosome in translation initiation, elongation, and termination. Extensive protein-protein and protein-RNA interactions are required to bring together the accessory factors, tRNAs, ribosomes, and mRNA into a productive complex and these interactions undergo dynamic alterations during each step of the translation initiation process. Initiation represents the most complex aspect of translation, requiring more accessory proteins, called initiation factors, than either elongation or termination. Not surprisingly, initiation is most often the rate-limiting step of translation and, as such, most (but not all) examples of translational regulation involve the regulation of protein-protein or protein-RNA interactions of the initiation complex. In this review, we focus on those interactions required for efficient translation initiation and how such interactions are regulated by developmental or environmental signals.  相似文献   

4.
We present a model for calculating the protein production rate as a function of the translation rate. The model takes into account that the elongation rate along an mRNA molecule is non-uniform as a result of different tRNA availabilities for different codons. Initiation of ribosomes on an mRNA is normally the rate-limiting step in the translation process, and blocking of the initiation site can be avoided if the codons closest to this site allow fast translation by the ribosome. Hence, different selective forces may act on the choice of synonymous codons in the initiation region than elsewhere on a given mRNA. We show that the elongation rate along the whole mRNA influences the production rate of abundant proteins, whereas only the elongation rate in the initiation region is of importance for the production rate of rare proteins. We also present an analysis of the codon distribution along known mRNAs coding for abundant and rare proteins.  相似文献   

5.
During translation, the nucleic acid language employed by genes is translated into the amino acid language used by proteins. The translator is the ribosome, while the dictionary employed is known as the genetic code. The genetic information is presented to the ribosome in the form of a mRNA, and tRNAs connect the two languages. Translation takes place in three steps: initiation, elongation, and termination. After a protein has been synthesized, the components of the translation apparatus are recycled. During each phase of translation, the ribosome collaborates with specific translation factors, which secure a proper balance between speed and fidelity. Notably, initiation, termination, and ribosomal recycling occur only once per protein produced during normal translation, while the elongation step is repeated a large number of times, corresponding to the number of amino acids constituting the protein of interest. In bacteria, elongation factor Tu plays a central role during the selection of the correct amino acids throughout the elongation phase of translation. Elongation factor Tu is the main subject of this review.  相似文献   

6.
Ribosome recycling factor (RRF) catalyzes the fourth step of protein synthesis in vitro: disassembly of the post-termination complex of ribosomes, mRNA and tRNA. We now report the first in vivo evidence of RRF function using 12 temperature-sensitive Escherichia coli mutants which we isolated in this study. At non-permissive temperatures, most of the ribosomes remain on mRNA, scan downstream from the termination codon, and re-initiate translation at various sites in all frames without the presence of an initiation codon. Re-initiation does not occur upstream from the termination codon nor beyond a downstream initiation signal. RRF inactivation was bacteriostatic in the growing phase and bactericidal during the transition between the stationary and growing phase, confirming the essential nature of the fourth step of protein synthesis in vivo.  相似文献   

7.
8.
Translation is divided into initiation, elongation, termination and ribosome recycling. Earlier work implicated several eukaryotic initiation factors (eIFs) in ribosomal recycling in vitro. Here, we uncover roles for HCR1 and eIF3 in translation termination in vivo. A substantial proportion of eIF3, HCR1 and eukaryotic release factor 3 (eRF3) but not eIF5 (a well-defined “initiation-specific” binding partner of eIF3) specifically co-sediments with 80S couples isolated from RNase-treated heavy polysomes in an eRF1-dependent manner, indicating the presence of eIF3 and HCR1 on terminating ribosomes. eIF3 and HCR1 also occur in ribosome- and RNA-free complexes with both eRFs and the recycling factor ABCE1/RLI1. Several eIF3 mutations reduce rates of stop codon read-through and genetically interact with mutant eRFs. In contrast, a slow growing deletion of hcr1 increases read-through and accumulates eRF3 in heavy polysomes in a manner suppressible by overexpressed ABCE1/RLI1. Based on these and other findings we propose that upon stop codon recognition, HCR1 promotes eRF3·GDP ejection from the post-termination complexes to allow binding of its interacting partner ABCE1/RLI1. Furthermore, the fact that high dosage of ABCE1/RLI1 fully suppresses the slow growth phenotype of hcr1Δ as well as its termination but not initiation defects implies that the termination function of HCR1 is more critical for optimal proliferation than its function in translation initiation. Based on these and other observations we suggest that the assignment of HCR1 as a bona fide eIF3 subunit should be reconsidered. Together our work characterizes novel roles of eIF3 and HCR1 in stop codon recognition, defining a communication bridge between the initiation and termination/recycling phases of translation.  相似文献   

9.
Translation of the upstream open reading frame (uORF) in the 5′ leader segment of the Neurospora crassa arg-2 mRNA causes reduced initiation at a downstream start codon when arginine is plentiful. Previous examination of this translational attenuation mechanism using a primer-extension inhibition (toeprint) assay in a homologous N. crassa cell-free translation system showed that arginine causes ribosomes to stall at the uORF termination codon. This stalling apparently regulates translation by preventing trailing scanning ribosomes from reaching the downstream start codon. Here we provide evidence that neither the distance between the uORF stop codon and the downstream initiation codon nor the nature of the stop codon used to terminate translation of the uORF-encoded arginine attenuator peptide (AAP) is important for regulation. Furthermore, translation of the AAP coding region regulates synthesis of the firefly luciferase polypeptide when it is fused directly at the N terminus of that polypeptide. In this case, the elongating ribosome stalls in response to Arg soon after it translates the AAP coding region. Regulation by this eukaryotic leader peptide thus appears to be exerted through a novel mechanism of cis-acting translational control.  相似文献   

10.
11.
During translation, ribosomes stall on mRNA when the aminoacyl-tRNA to be read is not readily available. The stalled ribosomes are deleterious to the cell and should be rescued to maintain its viability. To investigate the contribution of some of the cellular translation factors on ribosome rescuing, we provoked stalling at AGA codons in mutants that affected the factors and then analyzed the accumulation of oligopeptidyl (peptides of up to 6 amino acid residues, oligopep-)-tRNA or polypeptidyl (peptides of more than 300 amino acids in length, polypep-)-tRNA associated with ribosomes. Stalling was achieved by starvation for aminoacyl-tRNA(Arg4) upon induced expression of engineered lacZ (β-galactosidase) reporter gene harboring contiguous AGA codons close to the initiation codon or at internal codon positions together with minigene ATGAGATAA accompanied by reduced peptidyl-tRNA hydrolase (Pth). Our results showed accumulations of peptidyl-tRNA associated with ribosomes in mutants for release factors (RF1, RF2, and RF3), ribosome recycling factor (RRF), Pth, and transfer-messenger RNA (tmRNA), implying that each of these factors cooperate in rescuing stalled ribosomes. The role of these factors in ribosome releasing from the stalled complex may vary depending on the length of the peptide in the peptidyl-tRNA. RF3 and RRF rescue stalled ribosomes by "drop-off" of peptidyl-tRNA, while RF1, RF2 (in the absence of termination codon), or Pth may rescue by hydrolyzing the associated peptidyl-tRNA. This is followed by the disassembly of the ribosomal complex of tRNA and mRNA by RRF and elongation factor G.  相似文献   

12.
The fate of ribosomes between termination and initiation during protein synthesis is very basic, yet poorly understood. Here we found that translational reinitiation of the alkaline phosphatase gene occurs in Escherichia coli from an internal methionine codon when the authentic translation is prematurely terminated at a nonsense codon that is within seven codons upstream of the reinitiation codon (which we refer to as "reinitiation window"). Changing the reading frame downstream of the stop codon did not abolish the reinitiation, while inactivating the upstream initiation codon abolished the reinitiation. Moreover, depletion of the ribosome recycling factor (RRF), which disassembles posttermination ribosomes in conjunction with elongation factor G, did not influence the observed reinitiation. These findings suggest that posttermination ribosomes can undergo a transient idling state ready to reinitiate protein synthesis even in the absence of the Shine-Dalgarno (SD) sequence within the reinitiation window by evading disengagement from the mRNA.  相似文献   

13.
This work summarizes our current understanding of the elongation and termination/recycling phases of eukaryotic protein synthesis. We focus here on recent advances in the field. In addition to an overview of translation elongation, we discuss unique aspects of eukaryotic translation elongation including eEF1 recycling, eEF2 modification, and eEF3 and eIF5A function. Likewise, we highlight the function of the eukaryotic release factors eRF1 and eRF3 in translation termination, and the functions of ABCE1/Rli1, the Dom34:Hbs1 complex, and Ligatin (eIF2D) in ribosome recycling. Finally, we present some of the key questions in translation elongation, termination, and recycling that remain to be answered.  相似文献   

14.
We have shown recently that a stable hairpin preceded by a short upstream open reading frame (uORF) promotes nonlinear ribosome migration or ribosome shunt on a synthetic mRNA leader (M. Hemmings-Mieszczak and T. Hohn, RNA 5:1149-1157, 1999). We have now used the model mRNA leader to study further the mechanism of shunting in vivo and in vitro. We show that a full cycle of translation of the uORF, including initiation, elongation, and termination, is a precondition for the ribosome shunt across the stem structure to initiate translation downstream. Specifically, AUG recognition and the proper release of the nascent peptide are necessary and sufficient for shunting. Furthermore, the stop codon context must not impede downstream reinitiation. Translation of the main ORF was inhibited by replacement of the uORF by coding sequences repressing reinitiation but stimulated by the presence of the virus-specific translational transactivator of reinitiation (cauliflower mosaic virus pVI). Our results indicate reinitiation as the mechanism of translation initiation on the synthetic shunt-competent mRNA leader and suggest that uORF-dependent shunting is more prevalent than previously anticipated. Within the above constraints, uORF-dependent shunting is quite tolerant of uORF and stem sequences and operates in systems as diverse as plants and fungi.  相似文献   

15.
All mechanisms of protein synthesis can be considered in four stages: initiation, elongation, termination, and ribosome recycling. Remarkable progress has been made in understanding how these processes are mediated in the cytosol of many species; however, details of organellar protein synthesis remain sketchy. This is an important omission, as defects in human mitochondrial translation are known to cause disease and may contribute to the aging process itself. In this minireview, we focus on the recent advances that have been made in understanding how one of these processes, translation termination, occurs in the human mitochondrion.  相似文献   

16.
An UGA stop codon context which is inefficient because of the 3'-flanking context and the last two amino acids in the gene protein product has a negative effect on gene expression, as shown using a model protein A' gene. This is particularly true at low mRNA levels, corresponding to a high intracellular ribosome/mRNA ratio. The negative effect is smaller if this ratio is decreased, or if the distance between the initiation and termination signals is increased. The results suggest that an inefficient termination codon can cause ribosomal pausing and queuing along the upstream mRNA region, thus blocking translation initiation of short genes. This cis control effect is dependent on the stop codon context, including the C-terminal amino acids in the gene product, the translation initiation signal strength, the ribosome/mRNA ratio and the size of the mRNA coding region. A large proportion of poorly expressed natural Escherichia coli genes are small, and the weak termination codon UGA is under-represented in small, highly expressed E.coli genes as compared with the efficient stop codon UAA.  相似文献   

17.
18.
19.
The post-termination ribosomal complex is disassembled by ribosome recycling factor (RRF) and elongation factor G. Without RRF, the ribosome is not released from mRNA at the termination codon and reinitiates translation downstream. This is called unscheduled translation. Here, we show that at the non-permissive temperature of a temperature-sensitive RRF strain, RRF is lost quickly, and some ribosomes reach the 3' end of mRNA. However, instead of accumulating at the 3' end of mRNA, ribosomes are released as monosomes. Some ribosomes are transferred to transfer-messenger RNA from the 3' end of mRNA. The monosomes thus produced are able to translate synthetic homopolymer but not natural mRNA with leader and canonical initiation signal. The pellet containing ribosomes appears to be responsible for rapid but reversible inhibition of most but not all of protein synthesis in vivo closely followed by decrease of cellular RNA and DNA synthesis.  相似文献   

20.
The ability to reconstitute different stages of eukaryotic translation process in vitro is a prerequisite for detailed biochemical analysis of their mechanisms. Reconstitution of elongation and subsequent processes such as termination and recycling on natural mRNAs translated by the cap-dependent mechanism is very complicated, and has not so far been done because of the necessity to first reconstitute the process of translation initiation, which is the most complex stage of eukaryotic translation, which requires at least nine initiation factors. The recent discovery of internal ribosomal entry sites (IRESs) in the intergenic region (IGR) of the genomes of dicistroviruses such as cricket paralysis virus (CrPV) and Plautia stali intestine virus (PSIV) that mediate initiation of translation by a mechanism that does not involve aminoacylated initiator tRNA (Met-tRNA(i)Met) or any initiation factors has provided a simple means to assemble active ribosomes on an mRNA that can be used to investigate these downstream stages in the translation process. Here we describe the methods for the assembly of active mammalian ribosomes on the CrPV IGR IRES and for reconstitution and analysis of subsequent steps in the elongation process. The composition of the reconstituted in vitro translation system can be fully controlled, and we therefore suggest that the methods described here could in future be adapted to permit template-dependent synthesis of peptidomimetics by eukaryotic ribosomes, by reassigning individual codons in an mRNA to non-natural amino acids using tRNAs that have been appropriately mischarged either chemically or enzymatically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号