首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Staphylococcal protein-A (SpA) is known to bind the Fc fragment of immunoglobin G in vitro and induce a myriad of immunogenic responses in vivo. The latter is ascribed to be due to the interaction of Fc and SpA. It has also been proposed that in vivo proteolytically cleaved fragments of SpA may be functioning in the same manner. One such fragment (EQQNAFYEILHLPNLNEEQR), fragment 8-27 of the B-domain (SpA-B), was recently shown to exhibit in vivo immunogenic response [Sinha, P., Sengupta, J., and Ray, P. K. (1999) Biochem. Biophys. Res. Commun. 258, 141-147]. As a first step towards understanding the mode of interaction of this peptide with the Fc fragment, we have studied the solution conformation of this isolated peptide by CD and NMR. The peptide, with 7 contact residues in the crystal structure of the SpA-B/Fc complex and comprising of mostly helixI and part of helixII of the 3-helix bundle of SpA-B, was found to be present predominantly in extended structure. However it showed nascent turn/helix like conformations around F14 & Y15. These two residues are known to play a vital role in SpA-B/Fc interaction as deciphered from crystal structure and NMR studies of SpA-B/Fc complex and mutational studies. The implications of our results, especially the nascent conformations found around F14 & Y15, in design of SpA-B mimetic small molecules are discussed.  相似文献   

2.
1H nuclear magnetic resonance experiments indicate formation of secondary structures in water solutions of a synthetic immunogenic peptide of sequence EVVPHKKMHKDFLEKIGGL corresponding to the C-helix (residues 69 to 87) of myohemerythrin. The conformational ensemble consists of a set of turn-like structures, distributed over the C-terminal half of the peptide and rapidly interconverting by way of unfolded states. These structures, termed nascent helix, are stabilized into helical structure with long-range order in water/trifluorethanol mixtures. Circular dichroism measurements confirm the presence of 50% helix in water/trifluoroethanol but show no evidence of helicity in water solutions of the peptide. It is apparent that no one member of the transient set of helical conformations which constitutes the nascent helix is sufficiently long to be detectable by circular dichroism experiments. No preferred conformations could be detected by nuclear magnetic resonance in the N-terminal half of the peptide, either in water or water/trifluoroethanol mixtures. This region of the peptide is stabilized in helix by long-range interactions in the folded protein. The possible role of nascent secondary structure in induction of antipeptide antibodies and in initiation of protein folding is discussed.  相似文献   

3.
The neonatal Fc receptor, FcRn, is responsible for the long half-life of IgG molecules in vivo and is a potential therapeutic target for the treatment of autoimmune diseases. A family of peptides comprising the consensus motif GHFGGXY, where X is preferably a hydrophobic amino acid, was shown previously to inhibit the human IgG:human FcRn protein-protein interaction (Mezo, A. R., McDonnell, K. A., Tan Hehir, C. A., Low, S. C., Palombella, V. J., Stattel, J. M., Kamphaus, G. D., Fraley, C., Zhang, Y., Dumont, J. A., and Bitonti, A. J. (2008) Proc. Natl. Acad. Sci. U.S.A., 105, 2337–2342). Herein, the x-ray crystal structure of a representative monomeric peptide in complex with human FcRn was solved to 2.6 Å resolution. The structure shows that the peptide binds to human FcRn at the same general binding site as does the Fc domain of IgG. The data correlate well with structure-activity relationship data relating to how the peptide family binds to human FcRn. In addition, the x-ray crystal structure of a representative dimeric peptide in complex with human FcRn shows how the bivalent ligand can bridge two FcRn molecules, which may be relevant to the mechanism by which the dimeric peptides inhibit FcRn and increase IgG catabolism in vivo. Modeling of the peptide:FcRn structure as compared with available structural data on Fc and FcRn suggest that the His-6 and Phe-7 (peptide) partially mimic the interaction of His-310 and Ile-253 (Fc) in binding to FcRn, but using a different backbone topology.  相似文献   

4.
Energetically favored conformations of glycopeptide 1 were calculated using the newly developed force-field program, GEGOP (geometry of glycopeptides). The three-dimensional structure of glycopeptide 1, which is part of the Fc fragment of IgG1, has been calculated. 1 contains 27 amino acid residues from Pro291 to Lys317 and a biantennary decasaccharide N-linked to Asn297. The conformations of the peptide and the carbohydrate parts are shown to be mutually dependent. Single glycosyl residues of 1 exhibit interaction energies of up to -31.8 kJ/mol with the peptide portion. Generally, only a few of the glycosyl residues of the oligosaccharide moiety express significant interaction energies with the peptide part. No easy prediction is possible of glycosyl residues which exhibit favorable interaction energies. However, in all of the calculated structures, the glycosyl residues of the 1-6-linked branches show strong attractive forces for the peptide part. 1-6-glycosidically linked branches can adopt a larger number of conformations than other linkages due to their high flexibility which allows more favorable interactions with proteins. We developed the GEGOP program in order to be able to study the preferred conformations of large glycopeptides. The program is based on the GESA (geometry of saccharides) program and utilizes the HSEA (hard sphere exo anomeric) force field for the carbohydrate part and the ECEPP/2 (empirical conformation energy program for peptides) force field [Némethy, G., Pottle, M. S. & Scheraga, H. A. (1983) J. Phys. Chem. 87, 1883-1887] for the peptide part. The GEGOP program allows the simultaneous relaxation of all rotational degrees of freedom of these glycoconjugates during the energy optimization process. Thus, mutual interactions between glycosyl and amino acid residues can be studied in detail.  相似文献   

5.
Glucose‐dependent insulinotropic polypeptide (gastric inhibitory polypeptide, or GIP), a 42‐amino acid incretin hormone, modulates insulin secretion in a glucose‐concentration‐dependent manner. Its insulinotropic action is highly dependent on glucose concentration that surmounts the hypoglycemia side effects associated with current therapy. In order to develop a GIP‐based anti‐diabetic therapy, it is essential to establish the 3D structure of the peptide and study its interaction with the GIP receptor (GIPR) in detail. This will give an insight into the GIP‐mediated insulin release process. In this article, we report the solution structure of GIP(1–42, human)NH2 deduced by NMR and the interaction of the peptide with the N‐terminus of GIPR using molecular modelling methods. The structure of GIP(1–42, human)NH2 in H2O has been investigated using 2D‐NMR (DQF‐COSY, TOCSY, NOESY, 1H‐13C HSQC) experiments, and its conformation was built by constrained MD simulations with the NMR data as constraints. The peptide in H2O exhibits an α‐helical structure between residues Ser8 and Asn39 with some discontinuity at residues Gln29 to Asp35; the helix is bent at Gln29. This bent gives the peptide an ‘L’ shape that becomes more pronounced upon binding to the receptor. The interaction of GIP with the N‐terminus of GIPR was modelled by allowing GIP to interact with the N‐terminus of GIPR under a series of decreasing constraints in a molecular dynamics simulation, culminating with energy minimization without application of any constraints on the system. The canonical ensemble obtained from the simulation was subjected to a detailed energy analysis to identify the peptide–protein interaction patterns at the individual residue level. These interaction energies shed some light on the binding of GIP with the GIPR N‐terminus in a quantitative manner. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
Moehle K  Freund A  Kubli E  Robinson JA 《FEBS letters》2011,585(8):1197-1202
The insect sex peptide (SP) elicits a variety of biological responses upon transfer to the mated female. SP contains 36 amino acids, including a tryptophan-rich N-terminal region, a central region containing five hydroxyproline (Hyp) residues, and a C-terminal region enclosed by a disulfide bridge. The solution structure of SP, studied here using NMR spectroscopy, includes a motif WPWN that adopts a type I β-turn in the N-terminal Trp-rich region. This turn region is connected to the central Hyp-rich region, which adopts extended and/or PPII-like conformations. The C-terminal disulfide-bonded loop populates helical turns or nascent helical structure. Overall, the results reveal a rather flexible peptide that lacks a compact folded structure in solution.  相似文献   

7.
Protein A of Staphylococcus aureus is a bivalent Fc receptor that can form complexes with immunoglobulin G (IgG) or Fcγ fragments that activate humoral (e.g., complement) and cellular (e.g., lymphocyte) components of the immune system both in vitro and in vivo. To obtain complexes formed between protein A of Staphylococcus aureus (SpA) and rabbit IgG or Fcγ fragments for purposes of characterizing their compositions and studying their biological activities, we have used high-performance liquid chromatography to separate complexes in 20 min. Complexes were prepared with trace amounts of 125I-SpA and 131I-IgG or 131I-Fcγ to simplify the analyses. With excess molar amounts of IgG or Fcγ the complexes have the molecular formulas [(IgG)2SpA]2 or [(Fcγ)2SpA]2. With excess SpA, complexes corresponding to (IgG)(SpA) or (Fcγ)(SpA) are formed, perhaps with other complexes that have different ratios of components. Since SpA is a rod-shaped molecule it elutes at a molecular weight corresponding to 240,000 rather than the true value of 42,000. This behavior is reflected in the elution of certain complexes at shorter retention times than expected on the basis of actual molecular weights, and facilitates separation of complexes from free IgG or Fcγ. The true molecular weights and molecular formulas of complexes isolated by HPLC were verified by ultracentrifugation. This HPLC method was used to study the interconversion and stability of complexes.  相似文献   

8.
Interaction of CC chemokine receptor 5 (CCR5) with the human immunodeficiency virus type 1 (HIV-1) gp120/CD4 complex involves its amino-terminal domain (Nt-CCR5) and requires sulfation of two to four tyrosine residues in Nt-CCR5. The conformation of a 27-residue Nt-CCR5 peptide, sulfated at Y10 and Y14, was studied both in its free form and in a ternary complex with deglycosylated gp120 and a CD4-mimic peptide. NMR experiments revealed a helical conformation at the center of Nt-CCR5(1-27), which is induced upon gp120 binding, as well as a helical propensity for the free peptide. A well-defined structure for the bound peptide was determined for residues 7-23, increasing by 2-fold the length of Nt-CCR5's known structure. Two-dimensional saturation transfer experiments and measurement of relaxation times highlighted Nt-CCR5 residues Y3, V5, P8-T16, E18, I23 and possibly D2 as the main binding determinant. A calculated docking model for Nt-CCR5(1-27) suggests that residues 2-22 of Nt-CCR5 interact with the bases of V3 and C4, while the C-terminal segment of Nt-CCR5(1-27) points toward the target cell membrane, reflecting an Nt-CCR5 orientation that differs by 180° from that of a previous model. A gp120 site that could accommodate CCR5Y3 in a sulfated form has been identified. The present model attributes a structural basis for binding interactions to all gp120 residues previously implicated in Nt-CCR5 binding. Moreover, the strong interaction of sulfated CCR5Tyr14 with gp120Arg440 revealed by the model and the previously found correlation between E322 and R440 mutations shed light on the role of these residues in HIV-1 phenotype conversion, furthering our understanding of CCR5 recognition by HIV-1.  相似文献   

9.
A water-soluble analogue F32 of the fusion peptide from influenza virus hemagglutinin was synthesized. It consisted of 32 aa residues and retained the ability to interact with lipid membranes; its N-terminal sequence 1–24 coincided with that of the fusion protein from hemagglutinin (strain A/PR/8/34), whereas residues 25–32 (GGGKKKKK) provided its solubility in water. The peptide induced the conductivity fluctuations in planar bilayer lipid membranes characteristic of active fusion peptides. Conditions were found using CD spectroscopy under which the structure of F32 inside detergent micelles, where it can be studied by high-resolution 1H NMR spectroscopy, is close to the structure of the peptide during its interaction with phospholipid liposomes.  相似文献   

10.
Aggregation of the microtubule associated protein tau (MAPT) within neurons of the brain is the leading cause of tauopathies such as Alzheimer's disease. MAPT is a phospho‐protein that is selectively phosphorylated by a number of kinases in vivo to perform its biological function. However, it may become pathogenically hyperphosphorylated, causing aggregation into paired helical filaments and neurofibrillary tangles. The phosphorylation induced conformational change on a peptide of MAPT (htau225?250) was investigated by performing molecular dynamics simulations with different phosphorylation patterns of the peptide (pThr231 and/or pSer235) in different simulation conditions to determine the effect of ionic strength and phosphate charge. All phosphorylation patterns were found to disrupt a nascent terminal β‐sheet pattern (226VAVVR230 and 244QTAPVP249), replacing it with a range of structures. The double pThr231/pSer235 phosphorylation pattern at experimental ionic strength resulted in the best agreement with NMR structural characterization, with the observation of a transient α‐helix (239AKSRLQT245). PPII helical conformations were only found sporadically throughout the simulations. Proteins 2014; 82:1907–1923. © 2014 Wiley Periodicals, Inc.  相似文献   

11.
Abstract

The solution conformations of two potent antagonists of bradykinin (Arg1-Pro2-Pro3-Gly4- Phe5-Ser6-Pro7-Phe8-Arg9), [Aca-1, DArg0, Hyp3, Thi5, DPhe7,(N-Bzl)Gly8]BK (1) and [Aaa- 1, DArg0, Hyp3, Thi5,(2-DNal)7, Thi8]BK (2), were studied by using 2D NMR spectroscopy in DMSO-dg and molecular dynamics simulations. The NMR spectra of peptide 1 reveals the existence of at least two isomers arising from isomerization across the DPhe7-(N-Bzl)Gly8peptide bond. The more populated isomer possesses the cis peptide bond at this position. The ratio of cis/trans isomers amounted to 7:3. With both antagonists, the NMR data indicate a β-turn structure for the Hyp3-Gly4 residues. In addition, for peptide 2, position 2,3 is likely to be occupied by turn-like structures. The cis peptide bond between DPhe7 and (N- Bzl)Gly8 in analogue 1 suggests type VI β-turn at position 7,8. The molecular dynamics runs were performed on both peptides in DMSO solution. The results indicate that the structure of peptide 1 is characterized by type VIb β-turn comprising residues Ser-Arg9 and the βI or βII-turn involving the Pro2-Thi5 fragment, whereas peptide 2 shows the tendency towards the formation of type I β-turn at position 2,3. The structures of both antagonists are stabilized by a salt bridge between the guanidine moiety of Arg1 and the carboxyl group of Arg9. Moreover, the side chain of DArg0 is apart of the rest of molecule and is not involved in structural elements except for a few calculated structures.  相似文献   

12.
Complement factor C5a is one of the most powerful pro-inflammatory agents involved in recruitment of leukocytes, activation of phagocytes and other inflammatory responses. C5a triggers inflammatory responses by binding to its G-protein-coupled C5a-receptor (C5aR). Excessive or erroneous activation of the C5aR has been implicated in numerous inflammatory diseases. The C5aR is therefore a key target in the development of specific anti-inflammatory compounds. A very potent natural inhibitor of the C5aR is the 121-residue chemotaxis inhibitory protein of Staphylococcus aureus (CHIPS). Although CHIPS effectively blocks C5aR activation by binding tightly to its extra-cellular N terminus, it is not suitable as a potential anti-inflammatory drug due to its immunogenic properties. As a first step in the development of an improved CHIPS mimic, we designed and synthesized a substantially shorter 50-residue adapted peptide, designated CHOPS. This peptide included all residues important for receptor binding as based on the recent structure of CHIPS in complex with the C5aR N terminus. Using isothermal titration calorimetry we demonstrate that CHOPS has micromolar affinity for a model peptide comprising residues 728 of the C5aR N terminus including two O-sulfated tyrosine residues at positions 11 and 14. CD and NMR spectroscopy showed that CHOPS is unstructured free in solution. Upon addition of the doubly sulfated model peptide, however, the NMR and CD spectra reveal the formation of structural elements in CHOPS reminiscent of native CHIPS.  相似文献   

13.
We studied the interaction of several nona-peptide mimotopes of different sequence and Staphylococcal protein A (SpA) with a recombinant human IgG1 antibody using isothermal titration calorimetry (ITC). The amino acid primary structure of the peptides was varied in order to identify the specific antibody-peptide binding sites. Additionally, the influence of temperature and salt concentration was investigated. An attempt was made to elucidate the structural changes upon complex formation using the determined thermodynamic parameters. The amino acid composition of the mimotopes determined their binding affinity. The binding constant K a of the mimotopes was in the range 1 × 104 to 1 × 106 M−1. The binding constant of SpA was on the average about three orders of magnitude higher than that of the peptides. The binding constant of the peptides and of SpA decreased with temperature and the binding process was connected with negative changes in enthalpy, entropy, and heat capacity. The binding of the mimotopes to the Fab part of the IgG1 antibody and binding of SpA to the Fc part of the IgG1 antibody were mainly driven by hydrophobic effects and associated with a relatively large change in water-accessible surface area. Determinants for a strong/reduced antibody-peptide binding were identified.  相似文献   

14.
We report the recombinant preparation from Escherichia coli cells of samples of two closely related, small, secreted cysteine‐rich plant peptides: rapid alkalinization factor 1 (RALF1) and rapid alkalinization factor 8 (RALF8). Purified samples of the native sequence of RALF8 exhibited well‐resolved nuclear magnetic resonance (NMR) spectra and also biological activity through interaction with a plant receptor kinase, cytoplasmic calcium mobilization, and in vivo root growth suppression. By contrast, RALF1 could only be isolated from inclusion bodies as a construct containing an N‐terminal His‐tag; its poorly resolved NMR spectrum was indicative of aggregation. We prepared samples of the RALF8 peptide labeled with 15N and 13C for NMR analysis and obtained near complete 1H, 13C, and 15N NMR assignments; determined the disulfide pairing of its four cysteine residues; and examined its solution structure. RALF8 is mostly disordered except for the two loops spanned by each of its two disulfide bridges.  相似文献   

15.
Jourdan M  Searle MS 《Biochemistry》2000,39(40):12355-12364
Peptide fragments corresponding to the N- and C-terminal portions of bovine ubiquitin, U(1-35) and U(36-76), are shown by NMR to associate in solution to form a complex of modest stability (Kassn approximately 1.4 x 10(5) M(-1) at pH 7.0), with NMR features characteristic of a nativelike structure. The complex undergoes cold denaturation, with temperature-dependent estimates of stability from NMR indicating a DeltaC(p) degrees for fragment complexation in good agreement with that determined for native ubiquitin, suggesting that fragment association results in the burial of a similar hydrophobic surface area. The stability of the complex shows appreciable pH dependence, suggesting that ionic interactions on the surface of the protein contribute significantly. However, denaturation studies of native ubiquitin in the presence of guanidine hydrochloride (Gdn.HCl) show little pH dependence, suggesting that ionic interactions may be "screened" by the denaturant, as recently suggested. Examination of the conformation of the isolated peptide fragments has shown evidence for a low population of nativelike structure in the N-terminal beta-hairpin (residues 1-17) and weak nascent helical propensity in the helical fragment (residues 21-35). In contrast, the C-terminal peptide (36-76) shows evidence in aqueous solution, from some Halpha chemical shifts, for nonnative phi and psi angles; nonnative alpha-helical structure is readily induced in the presence of organic cosolvents, indicating that tertiary interactions in both native ubiquitin and the folded fragment complex strongly dictate its structural preference. The data suggest that the N-terminal fragment (1-35), where interaction between the helix and hairpin requires the minimum loss of conformational entropy, may provide the nucleation site for fragment complexation.  相似文献   

16.
17.
The goal of this work is to probe the interaction between cyclic cHAVc3 peptide and the EC1 domain of human E-cadherin protein. Cyclic cHAVc3 peptide (cyclo(1,6)Ac-CSHAVC-NH2) binds to the EC1 domain as shown by chemical shift perturbations in the 2D 1H,-15N-HSQC NMR spectrum. The molecular dynamics (MD) simulations of the EC1 domain showed folding of the C-terminal tail region into the main head region of the EC1 domain. For cHAVc3 peptide, replica exchange molecular dynamics (REMD) simulations generated five structural clusters of cHAVc3 peptide. Representative structures of cHAVc3 and the EC1 structure from MD simulations were used in molecular docking experiments with NMR constraints to determine the binding site of the peptide on EC1. The results suggest that cHAVc3 binds to EC1 around residues Y36, S37, I38, I53, F77, S78, H79, and I94. The dissociation constants (Kd values) of cHAVc3 peptide to EC1 were estimated using the NMR chemical shifts data and the estimated Kds are in the range of .5 × 10?5–7.0 × 10?5 M.  相似文献   

18.
The biosynthesis of collagen on polysomes has been studied by using a newly devised method for obtaining polysomes in high yield from stationary-phase mouse fibroblast (line 3T6; Goldberg &, Green, 1967). These polysomes were completely disaggregated to monosomes by brief exposure to ribonuclease and they lost most of their radioactivity to the top of the sucrose gradients as a result of a 30-minute chase with unlabeled proline. After a ten-minute pulse with [3H]proline, nascent collagen peptides could be identified in these polysomes on sucrose gradients. Most of the proline residues susceptible to hydroxylation by collagen proline hydroxylase were found, in most cases, to be already hydroxylated in these nascent peptides. The nascent nature of these peptides was confirmed by the observation that treatment of the polysomes with RNase transferred the radioactive collagen peptides to the monosome area and these peptides could subsequently be removed to the soluble material at the top of the gradient upon treatment with puromycin. These findings therefore, show clearly that the hydroxylation of proline residues is occurring, in vivo under normal conditions, on nascent collagen chains. In no case was the degree of hydroxylation of the released collagen chains higher than that on the nascent collagen peptides. It seems likely, therefore, that the major site of proline hydroxylation is the nascent collagen peptide.  相似文献   

19.
Sequence-specific nuclear magnetic resonance (NMR) assignments have been determined for the peptide alphaS2-CN(2-20) containing the multiphosphorylated motif-8Ser(P)-Ser(P)-Ser(P)-Glu-Glu12- in the presence of molar excess Ca2+. The secondary structure of the peptide was characterized by sequential (i,i + 1), medium-range (i,i + 2/3/4) nOes and H alpha chemical shifts. Molecular modelling of the peptide based on these constraints suggests a nascent helix for residues Ser(P)9 to Glu12. The spectral data for alphaS2-CN(2-20) were compared with those of other casein phosphopeptides beta-CN(1-25) and alphaS1-CN(59-79) that also contain the multiphosphorylated motif. This comparison revealed a similar pattern of secondary amide chemical shifts in the multiphosphorylated motif. However, the patterns of medium-range nOe connectivities in the three peptides suggests they have distinctly different conformations in the presence of Ca2+ despite having a high degree of sequential similarity.  相似文献   

20.
A peptide fragment corresponding to the third helix of Staphylococcus Aureus protein A, domain B, was chosen to study the effect of the main‒chain direction upon secondary structure formation and stability, applying the retro‒enantio concept. For this purpose, two peptides consisting of the native (Ln) and reversed (Lr) sequences were synthesized and their conformational preferences analysed by CD and NMR spectroscopy. A combination of CD and NMR data, such as molar ellipcitity, NOE connectivities, Hα and NH chemical shifts, 3JαN coupling constants and amide temperature coefficients indicated the presence of nascent helices for both Ln and Lr in water, stabilized upon addition of the fluorinated solvents TFE and HFIP. Helix formation and stabilization appeared to be very similar in both normal and retro peptides, despite the unfavourable charge–macrodipole interactions and bad N-capping in the retro peptide. Thus, these helix stabilization factors are not a secondary structure as determined for this specific peptide. In general, the synthesis and confirmational analysis of peptide pairs with opposite main‒chain directions, normal and retro peptides, could be useful in the determination of secondary structure stabilization factors dependent on the direction. © 1997 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号