首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper a coarse-grained method called elastic network interpolation (ENI) is used to generate feasible transition pathways between two given conformations of the core central domain of 16S Ribosomal RNA (16S rRNA). The two given conformations are the extremes generated by a molecular dynamics (MD) simulation, which differ from each other by 10A in root-mean-square deviation (RMSD). It takes only several hours to build an ENI pathway on a 1.5GHz Pentium with 512 MB memory, while the MD takes several weeks on high-performance multi-processor servers such as the SGI ORIGIN 2000/2100. It is shown that multiple ENI pathways capture the essential anharmonic motions of millions of timesteps in a particular MD simulation. A coarse-grained normal mode analysis (NMA) is performed on each intermediate ENI conformation, and the lowest 1% of the normal modes (representing about 40 degrees of freedom (DOF)) are used to parameterize fluctuations. This combined ENI/NMA method captures all intermediate conformations in the MD run with 1.5A RMSD on average. In addition, if we restrict attention to the time interval of the MD run between the two extreme conformations, the RMSD between the closest ENI/NMA pathway and the MD results is about 1A. These results may serve as a paradigm for reduced-DOF dynamic simulations of large biological macromolecules as well as a method for the reduced-parameter interpretation of massive amounts of MD data.  相似文献   

2.
We present a rigid-body-based technique (called rigid-cluster elastic network interpolation) to generate feasible transition pathways between two distinct conformations of a macromolecular assembly. Many biological molecules and assemblies consist of domains which act more or less as rigid bodies during large conformational changes. These collective motions are thought to be strongly related with the functions of a system. This fact encourages us to simply model a macromolecule or assembly as a set of rigid bodies which are interconnected with distance constraints. In previous articles, we developed coarse-grained elastic network interpolation (ENI) in which, for example, only Calpha atoms are selected as representatives in each residue of a protein. We interpolate distance differences of two conformations in ENI by using a simple quadratic cost function, and the feasible conformations are generated without steric conflicts. Rigid-cluster interpolation is an extension of the ENI method with rigid-clusters replacing point masses. Now the intermediate conformations in an anharmonic pathway can be determined by the translational and rotational displacements of large clusters in such a way that distance constraints are observed. We present the derivation of the rigid-cluster model and apply it to a variety of macromolecular assemblies. Rigid-cluster ENI is then modified for a hybrid model represented by a mixture of rigid clusters and point masses. Simulation results show that both rigid-cluster and hybrid ENI methods generate sterically feasible pathways of large systems in a very short time. For example, the HK97 virus capsid is an icosahedral symmetric assembly composed of 60 identical asymmetric units. Its original Hessian matrix size for a Calpha coarse-grained model is >(300,000)(2). However, it reduces to (84)(2) when we apply the rigid-cluster model with icosahedral symmetry constraints. The computational cost of the interpolation no longer scales heavily with the size of structures; instead, it depends strongly on the minimal number of rigid clusters into which the system can be decomposed.  相似文献   

3.
Atomic models of cryo electron microscopy (cryo-EM) maps of biomolecular conformations are often obtained by flexible fitting of the maps with available atomic structures of other conformations (e.g., obtained by X-ray crystallography). This article presents a new flexible fitting method, NMMD, which combines normal mode analysis (NMA) and molecular dynamics simulation (MD). Given an atomic structure and a cryo-EM map to fit, NMMD simultaneously estimates global atomic displacements based on NMA and local displacements based on MD. NMMD was implemented by modifying EMfit, a flexible fitting method using MD only, in GENESIS 1.4. As EMfit, NMMD can be run with replica exchange umbrella sampling procedure. The new method was tested using a variety of EM maps (synthetic and experimental, with different noise levels and resolutions). The results of the tests show that adding normal modes to MD-based fitting makes the fitting faster (40% in average) and, in the majority of cases, more accurate.  相似文献   

4.
The folding mechanism of the Villin headpiece (HP36) is studied by means of a novel approach which entails an initial coarse-grained Monte Carlo (MC) scheme followed by all-atom molecular dynamics (MD) simulations in explicit solvent. The MC evolution occurs in a simplified free-energy landscape and allows an efficient selection of marginally-compact structures which are taken as viable initial conformations for the MD. The coarse-grained MC structural representation is connected to the one with atomic resolution through a "fine-graining" reconstruction algorithm. This two-stage strategy is used to select and follow the dynamics of seven different unrelated conformations of HP36. In a notable case the MD trajectory rapidly evolves towards the folded state, yielding a typical root-mean-square deviation (RMSD) of the core region of only 2.4 A from the closest NMR model (the typical RMSD over the whole structure being 4.0 A). The analysis of the various MC-MD trajectories provides valuable insight into the details of the folding and mis-folding mechanisms and particularly about the delicate influence of local and nonlocal interactions in steering the folding process.  相似文献   

5.
In recent years, it has been repeatedly demonstrated that the coordinates of the main-chain atoms alone are sufficient to determine the side-chain conformations of buried residues of compact proteins. Given a perfect backbone, the side-chain packing method can predict the side-chain conformations to an accuracy as high as 1.2 Å RMS deviation (RMSD) with greater than 80% of the χ angles correct. However, similarly rigorous studies have not been conducted to determine how well these apply, if at all, to the more important problem of homology modeling per se. Specifically, if the available backbone is imperfect, as expected for practical application of homology modeling, can packing constraints alone achieve sufficiently accurate predictions to be useful? Here, by systematically applying such methods to the pairwise modeling of two repressor and two cro proteins from the closely related bacteriophages 434 and P22, we find that when the backbone RMSD is 0.8 Å, the prediction on buried side chain is accurate with an RMS error of 1.8 Å and approximately 70% of the χ angles correctly predicted. When the backbone RMSD is larger, in the range of 1.6–1.8 Å, the prediction quality is still significantly better than random, with RMS error at 2.2 Å on the buried side chains and 60% accuracy on χ angles. Together these results suggest the following rules-of-thumb for homology modeling of buried side chains. When the sequence identity between the modeled sequence and the template sequence is >50% (or, equivalently, the expected backbone RMSD is <1 Å), side-chain packing methods work well. When sequence identity is between 30–50%, reflecting a backbone RMS error of 1–2 Å, it is still valid to use side-chain packing methods to predict the buried residues, albeit with care. When sequence identity is below 30% (or backbone RMS error greater than 2 Å), the backbone constraint alone is unlikely to produce useful models. Other methods, such as those involving the use of database fragments to reconstruct a template backbone, may be necessary as a complementary guide for modeling.  相似文献   

6.
HIV-1 retroviral genomic RNA dimerization is initiated by loop-loop interactions between the SL1 stem-loops of two identical RNA molecules. The SL1-SL1 unstable resulting kissing complex (KC) then refolds irreversibly into a more stable complex called extended dimer (ED). Although the structures of both types of complex have been determined, very little is known about the conformational pathway corresponding to the transition, owing to the difficulty of observing experimentally intermediate conformations. In this study, we applied targeted molecular dynamics simulation techniques (TMD) to the phosphorus atoms for monitoring this pathway for the backbone, and a two-step strategy was adopted. In a first step, called TMD(-1), the dimer structure was constrained to progressively move away from KC without indicating the direction, until the RMSD from KC reaches 36A. A total of 20 TMD(-1) simulations were performed under different initial conditions and different simulation parameters. For RMSD ranging between 0 and 22A, the whole set of TMD(-1) simulations follows a similar pathway, then divergences are observed. None of the simulations leads to the ED structure. At RMSD=22A, the dimers look like two parallel Us, still linked by the initial loop-loop interaction, but the strands of the stems (the arms of the Us) are positioned in such a manner that they can form intramolecular as well as intermolecular Watson-Crick base-pairs. This family of structure is called UU. In a second step (TMD simulations), 18 structures were picked up along the pathways generated with TMD(-1) and were constrained to move toward ED by decreasing progressively their RMSD from ED. We found that only structures from the UU family are able to easily reach ED-like conformations of the backbones without exhibiting a large constraint energy.  相似文献   

7.
8.
Skjaerven L  Martinez A  Reuter N 《Proteins》2011,79(1):232-243
Principal component analysis (PCA) and normal mode analysis (NMA) have emerged as two invaluable tools for studying conformational changes in proteins. To compare these approaches for studying protein dynamics, we have used a subunit of the GroEL chaperone, whose dynamics is well characterized. We first show that both PCA on trajectories from molecular dynamics (MD) simulations and NMA reveal a general dynamical behavior in agreement with what has previously been described for GroEL. We thus compare the reproducibility of PCA on independent MD runs and subsequently investigate the influence of the length of the MD simulations. We show that there is a relatively poor one-to-one correspondence between eigenvectors obtained from two independent runs and conclude that caution should be taken when analyzing principal components individually. We also observe that increasing the simulation length does not improve the agreement with the experimental structural difference. In fact, relatively short MD simulations are sufficient for this purpose. We observe a rapid convergence of the eigenvectors (after ca. 6 ns). Although there is not always a clear one-to-one correspondence, there is a qualitatively good agreement between the movements described by the first five modes obtained with the three different approaches; PCA, all-atoms NMA, and coarse-grained NMA. It is particularly interesting to relate this to the computational cost of the three methods. The results we obtain on the GroEL subunit contribute to the generalization of robust and reproducible strategies for the study of protein dynamics, using either NMA or PCA of trajectories from MD simulations.  相似文献   

9.
Predicting the conformations of loops is a critical aspect of protein comparative (homology) modeling. Despite considerable advances in developing loop prediction algorithms, refining loops in homology models remains challenging. In this work, we use antibodies as a model system to investigate strategies for more robustly predicting loop conformations when the protein model contains errors in the conformations of side chains and protein backbone surrounding the loop in question. Specifically, our test system consists of partial models of antibodies in which the “scaffold” (i.e., the portion other than the complementarity determining region, CDR, loops) retains native backbone conformation, whereas the CDR loops are predicted using a combination of knowledge‐based modeling (H1, H2, L1, L2, and L3) and ab initio loop prediction (H3). H3 is the most variable of the CDRs. Using a previously published method, a test set of 10 shorter H3 loops (5–7 residues) are predicted to an average backbone (N? Cα? C? O) RMSD of 2.7 Å while 11 longer loops (8–9 residues) are predicted to 5.1 Å, thus recapitulating the difficulties in refining loops in models. By contrast, in control calculations predicting the same loops in crystal structures, the same method reconstructs the loops to an average of 0.5 and 1.4 Å for the shorter and longer loops, respectively. We modify the loop prediction method to improve the ability to sample near‐native loop conformations in the models, primarily by reducing the sensitivity of the sampling to the loop surroundings, and allowing the other CDR loops to optimize with the H3 loop. The new method improves the average accuracy significantly to 1.3 Å RMSD and 3.1 Å RMSD for the shorter and longer loops, respectively. Finally, we present results predicting 8–10 residue loops within complete comparative models of five nonantibody proteins. While anecdotal, these mixed, full‐model results suggest our approach is a promising step toward more accurately predicting loops in homology models. Furthermore, while significant challenges remain, our method is a potentially useful tool for predicting antibody structures based on a known Fv scaffold. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
Beck DA  Daggett V 《Biophysical journal》2007,93(10):3382-3391
A properly identified transition state ensemble (TSE) in a molecular dynamics (MD) simulation can reveal a tremendous amount about how a protein folds and offer a point of comparison to experimentally derived Phi(F) values, which reflect the degree of structure in these transient states. In one such method of TSE identification, dubbed P(fold), MD simulations of individual protein structures taken from an unfolding trajectory are used to directly assess an input structure's probability of folding before unfolding, and P(fold) is, by definition, 0.5 for the TSE. Other, less computationally intensive methods, such as multidimensional scaling (MDS) of the pairwise root mean-squared deviation (RMSD) matrix of the conformations sampled in a thermal unfolding trajectory, have also been used to identify the TSE. Identification of the TSE is made from the original MD simulation without the need to run further simulations. Here we present a P(fold)-like study and describe methods for identification of the TSE through the derivation of a high fidelity, bounded, one-dimensional reaction coordinate for protein folding. These methods are applied to the engrailed homeodomain. The TSE identified by this approach is essentially identical to the TSE identified previously by MDS of the pairwise RMSD matrix. However, the cost of performing P(fold), or even our reduced P(fold)-like calculations, is at least 36,000 times greater than the MDS method.  相似文献   

11.
Recently, the atomic structures of both the closed and open forms of Group 2 chaperonin protein Mm‐cpn were revealed through crystallography and cryo‐electron microscopy. This toroidal‐like chaperonin is composed of two eightfold rings that face back‐to‐back. To gain a computational advantage, we used a symmetry constrained elastic network model (SCENM), which requires only a repeated subunit structure and its symmetric connectivity to neighboring subunits to simulate the entire system. In the case of chaperonin, only six subunits (i.e., three from each ring) were used out of the eight subunits comprising each ring. A smooth and symmetric pathway between the open and closed conformations was generated by elastic network interpolation (ENI). To support this result, we also performed a symmetry‐constrained normal mode analysis (NMA), which revealed the intrinsic vibration features of the given structures. The NMA and ENI results for the representative single subunit were duplicated according to the symmetry pattern to reconstruct the entire assembly. To test the feasibility of the symmetry model, its results were also compared with those obtained from the full model. This study allowed the folding mechanism of chaperonin Mm‐cpn to be elucidated by SCENM in a timely manner.  相似文献   

12.
Low energy conformations have been generated for melittin, pancreatic polypeptide, and ribonuclease S-peptide, both in the vicinity of x-ray structures by energy refinement and by an unconstrained search over the entire conformational space. Since the structural polymorphism of these medium-sized peptides in crystal and solution is moderate, comparing the calculated conformations to x-ray and nmr data provides information on local and global behavior of potential functions. Local analysis includes standardization calculations, which show that models with standard geometry can approximate good resolution x-ray data with less than 0.5 Å rms deviation (RMSD). However, the atomic coordinates are shifted up to 2 Å RMSD by local energy minimization, and thus 2 Å is generally the smallest RMSD value one can target in a conformational search using the same energy evaluation models. The unconstrained search was performed by a buildup-type method based on dynamic programming. To accelerate the generation of structures in the conformational search, we used the ECEPP potential, defined in terms of standard polypeptide geometry. A number of low energy conformations were further refined by relaxing the assumption of standard bond lengths and bond angles through the use of the CHARMM potential, and the hydrophobic folding energies of Eisenberg and McLachlan were calculated. Each conformation is described in terms of the RMSD from the native, hydrogen-bonding structure, solvent-acessible surface area, and the ratio of surfaces corresponding to nonpolar and polar residues. The unconstrained search finds conformations that are different from the native, sometimes substantially, and in addition, have lower conformational energies than the native. The origin of deviations is different for each of the three peptides, but in all examples the refined x-ray structures have lower energies than the calculated incorrect folds when (1) the assumption of standard bond lengths and bond angles is relaxed; (2) a small and constant effective dielectric permittivity (ε < 10) is used; and (3) the hydrophobic folding energy is incorporated into the potential. © 1993 John Wiley & Sons, Inc.  相似文献   

13.
Proteins exist as conformational ensembles, exchanging between substates to perform their function. Advances in experimental techniques yield unprecedented access to structural snapshots of their conformational landscape. However, computationally modeling how proteins use collective motions to transition between substates is challenging owing to a rugged landscape and large energy barriers. Here, we present a new, robotics‐inspired motion planning procedure called dCC‐RRT that navigates the rugged landscape between substates by introducing dynamic, interatomic constraints to modulate frustration. The constraints balance non‐native contacts and flexibility, and instantaneously redirect the motion towards sterically favorable conformations. On a test set of eight proteins determined in two conformations separated by, on average, 7.5 Å root mean square deviation (RMSD), our pathways reduced the Cα atom RMSD to the goal conformation by 78%, outperforming peer methods. We then applied dCC‐RRT to examine how collective, small‐scale motions of four side‐chains in the active site of cyclophilin A propagate through the protein. dCC‐RRT uncovered a spatially contiguous network of residues linked by steric interactions and collective motion connecting the active site to a recently proposed, non‐canonical capsid binding site 25 Å away, rationalizing NMR and multi‐temperature crystallography experiments. In all, dCC‐RRT can reveal detailed, all‐atom molecular mechanisms for small and large amplitude motions. Source code and binaries are freely available at https://github.com/ExcitedStates/KGS/ .  相似文献   

14.
Abstract

Reaching the experimental time scale of millisecond is a grand challenge for protein folding simulations. The development of advanced Molecular Dynamics techniques like Replica Exchange Molecular Dynamics (REMD) makes it possible to reach these experimental timescales. In this study, an attempt has been made to reach the multi microsecond simulation time scale by carrying out folding simulations on a three helix bundle protein, Villin, by combining REMD and Amber United Atom model. Twenty replicas having different temperatures ranging from 295 K to 390 K were simulated for 1.5 μs each. The lowest Root Mean Square Deviation (RMSD) structure of 2.5 Å was obtained with respect to native structure (PDB code 1VII), with all the helices formed. The folding population landscapes were built using segment-wise RMSD and Principal Components as reaction coordinates. These analyses suggest the two-stage folding for Villin. The combination of REMD and Amber United Atom model may be useful to understand the folding mechanism of various fast folding proteins  相似文献   

15.
Chu JW  Voth GA 《Biophysical journal》2006,90(5):1572-1582
A coarse-grained (CG) procedure that incorporates the information obtained from all-atom molecular dynamics (MD) simulations is presented and applied to actin filaments (F-actin). This procedure matches the averaged values and fluctuations of the effective internal coordinates that are used to define a CG model to the values extracted from atomistic MD simulations. The fluctuations of effective internal coordinates in a CG model are computed via normal-mode analysis (NMA), and the computed fluctuations are matched with the atomistic MD results in a self-consistent manner. Each actin monomer (G-actin) is coarse-grained into four sites, and each site corresponds to one of the subdomains of G-actin. The potential energy of a CG G-actin contains three bonds, two angles, and one dihedral angle; effective harmonic bonds are used to describe the intermonomer interactions in a CG F-actin. The persistence length of a CG F-actin was found to be sensitive to the cut-off distance of assigning intermonomer bonds. Effective harmonic bonds for a monomer with its third nearest neighboring monomers are found to be necessary to reproduce the values of persistence length obtained from all-atom MD simulations. Compared to the elastic network model, incorporating the information of internal coordinate fluctuations enhances the accuracy and robustness for a CG model to describe the shapes of low-frequency vibrational modes. Combining the fluctuation-matching CG procedure and NMA, the achievable time- and length scales of modeling actin filaments can be greatly enhanced. In particular, a method is described to compute the force-extension curve using the CG model developed in this work and NMA. It was found that F-actin is easily buckled under compressive deformation, and a writhing mode is developed as a result. In addition to the bending and twisting modes, this novel writhing mode of F-actin could also play important roles in the interactions of F-actin with actin-binding proteins and in the force-generation process via polymerization.  相似文献   

16.
Langevin dynamics is used with our physics-based united-residue (UNRES) force field to study the folding pathways of the B-domain of staphylococcal protein A (1BDD (alpha; 46 residues)). With 400 trajectories of protein A started from the extended state (to gather meaningful statistics), and simulated for more than 35 ns each, 380 of them folded to the native structure. The simulations were carried out at the optimal folding temperature of protein A with this force field. To the best of our knowledge, this is the first simulation study of protein-folding kinetics with a physics-based force field in which reliable statistics can be gathered. In all the simulations, the C-terminal alpha-helix forms first. The ensemble of the native basin has an average RMSD value of 4 A from the native structure. There is a stable intermediate along the folding pathway, in which the N-terminal alpha-helix is unfolded; this intermediate appears on the way to the native structure in less than one-fourth of the folding pathways, while the remaining ones proceed directly to the native state. Non-native structures persist until the end of the simulations, but the native-like structures dominate. To express the kinetics of protein A folding quantitatively, two observables were used: (i) the average alpha-helix content (averaged over all trajectories within a given time window); and (ii) the fraction of conformations (averaged over all trajectories within a given time window) with Calpha RMSD values from the native structure less than 5 A (fraction of completely folded structures). The alpha-helix content grows quickly with time, and its variation fits well to a single-exponential term, suggesting fast two-state kinetics. On the other hand, the fraction of folded structures changes more slowly with time and fits to a sum of two exponentials, in agreement with the appearance of the intermediate, found when analyzing the folding pathways. This observation demonstrates that different qualitative and quantitative conclusions about folding kinetics can be drawn depending on which observable is monitored.  相似文献   

17.
Abstract

Several protein structures have been reported to contain intricate knots of the polypeptide backbone but the mechanism of the (un)folding process of knotted proteins remains unknown. The members of the SPOUT superfamily of RNA methyltransferases are some of the most intensely studied systems for investigation of the knot formation and function. YibK (whose biochemical function remains unknown) is the representative protein of the SPOUT superfamily. This protein exhibits a deep trefoil knot at the C-terminus.

We conducted an extensive computational analysis of the unfolding process for the monomeric form of YibK. In order to predict the (un)folding pathway of YibK, we have calculated the order of secondary structure disassembly using UNFOLD, and performed thermal unfolding simulations using classical Molecular Dynamics (MD), as well as simulations employing reduced representation of the peptide chain using either MD with the UNRES method or the Monte Carlo (MC) unfolding with the REFINER method.

Results obtained from all methods used in this work are in qualitative agreement. We found that YibK unfolds through four intermediate states. The trefoil knot in YibK disappears at the end of the unfolding process, long after the protein loses its native topology. We observed that the C-terminus leaves the knotting loop folded into a hairpin-like structure, in agreement with the results of coarse-grained simulation reported earlier. We propose that the folding pathway of YibK corresponds to the reversed sequence of events observed in the unfolding pathway elucidated in this study. Thus, we predict that the knot formation is the slowest part of the YibK folding process.  相似文献   

18.
19.
The multiconformer nature of solution nuclear magnetic resonance (NMR) structures of proteins results from the effects of intramolecular dynamics, spin diffusion and an uneven distribution of structural restraints throughout the molecule. A delineation of the former from the latter two contributions is attempted in this work for an ensemble of 15 NMR structures of the protein Escherichia coli ribonuclease HI (RNase HI). Exploration of the dynamic information content of the NMR ensemble is carried out through correlation with data from two crystal structures and a 1.7‐ns molecular dynamics (MD) trajectory of RNase HI in explicit solvent. Assessment of the consistency of the crystal and mean MD structures with nuclear Overhauser effect (NOE) data showed that the NMR ensemble is overall more compatible with the high‐resolution (1.48 Å) crystal structure than with either the lower‐resolution (2.05 Å) crystal structure or the MD simulation. Furthermore, the NMR ensemble is found to span more conformational space than the MD simulation for both the backbone and the sidechains of RNase HI. Nonetheless, the backbone conformational variability of both the NMR ensemble and the simulation is especially consistent with NMR relaxation measurements of two loop regions that are putative sites of substrate recognition. Plausible side‐chain dynamic information is extracted from the NMR ensemble on the basis of (i) rotamericity and syn‐pentane character of variable torsion angles, (ii) comparison of the magnitude of atomic mean‐square fluctuations (msf) with those deduced from crystallographic thermal factors, and (iii) comparison of torsion angle conformational behavior in the NMR ensemble and the simulation. Several heterogeneous torsion angles, while adopting non‐rotameric/syn‐pentane conformations in the NMR ensemble, exist in a unique conformation in the simulation and display low X‐ray thermal factors. These torsions are identified as sites whose variability is likely to be an artifact of the NMR structure determination procedure. A number of other torsions show a close correspondence between the conformations sampled in the NMR and MD ensembles, as well as significant correlations among crystallographic thermal factors and atomic msf calculated from the NMR ensemble and the simulation. These results indicate that a significant amount of dynamic information is contained in the NMR ensemble. The relevance of the present findings for the biological function of RNase HI, protein recognition studies, and previous investigations of the motional content of protein NMR structures are discussed. Proteins 1999;36:87–110. © 1999 Wiley‐Liss, Inc.  相似文献   

20.
Nucleocytoplasmic transport in eukaryotic cells involves many interactions between macromolecules, and has been an active area for many researchers. However, the precise mechanism still evades us and more efforts are needed to better understand it. In this study, the authors investigated exportins (Cse1p and Xpot) by elastic network interpolation (ENI) and elastic network based normal mode analysis (EN-NMA). Results of the study on Cse1p were in good agreement with the results obtained by molecular dynamics simulation in another study but with the benefit of time-efficiency. First, a formation of ring closure obtained by ENI was observed. Second, HEAT 1 to 3 and HEAT 14 to 17 had the largest values of root mean square deviation (RMSD) which indicated the flexibility of Cse1p during the transition. In the case of Xpot, a possible pathway from nuclear state to cytoplasmic state was shown, and the predicted pathway was also quantitatively analyzed in terms of RMSD. The results suggested two flexible regions of Xpot that might be important to the transporting mechanism. Moreover, the dominant mode of Xpot in the nuclear state obtained by EN-NMA not only showed the tendency to match the predicted pathway to the cytoplasmic state of Xpot, but also displayed the flexible regions of Xpot. A time-efficient computational approach was presented in this paper and the results indicated that the flexibility of tested exportins might be required to perform the biological function of transporting cargos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号