共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein folding and misfolding: mechanism and principles 总被引:1,自引:0,他引:1
Two fundamentally different views of how proteins fold are now being debated. Do proteins fold through multiple unpredictable routes directed only by the energetically downhill nature of the folding landscape or do they fold through specific intermediates in a defined pathway that systematically puts predetermined pieces of the target native protein into place? It has now become possible to determine the structure of protein folding intermediates, evaluate their equilibrium and kinetic parameters, and establish their pathway relationships. Results obtained for many proteins have serendipitously revealed a new dimension of protein structure. Cooperative structural units of the native protein, called foldons, unfold and refold repeatedly even under native conditions. Much evidence obtained by hydrogen exchange and other methods now indicates that cooperative foldon units and not individual amino acids account for the unit steps in protein folding pathways. The formation of foldons and their ordered pathway assembly systematically puts native-like foldon building blocks into place, guided by a sequential stabilization mechanism in which prior native-like structure templates the formation of incoming foldons with complementary structure. Thus the same propensities and interactions that specify the final native state, encoded in the amino-acid sequence of every protein, determine the pathway for getting there. Experimental observations that have been interpreted differently, in terms of multiple independent pathways, appear to be due to chance misfolding errors that cause different population fractions to block at different pathway points, populate different pathway intermediates, and fold at different rates. This paper summarizes the experimental basis for these three determining principles and their consequences. Cooperative native-like foldon units and the sequential stabilization process together generate predetermined stepwise pathways. Optional misfolding errors are responsible for 3-state and heterogeneous kinetic folding. 相似文献
2.
3.
Takada S 《Proteins》2001,42(1):85-98
We propose a coarse-grained model of proteins that take into account solvent effects and apply it for simulating folding of a three-helix-bundle protein. The energy functional form, refined from our previous work (Takada et al., J Chem Phys 1999;110:11616-11629), tries to closely imitate real physico-chemical interactions. In particular, the hydrogen bond that depends on local dielectric constant, the helix capping effect, and side-chain entropic effects are included. With use of the model, we simulate folding of the GA module of an albumin binding domain, 1prb(7-53), finding most trajectories reach at the native topology within 1 micros. In the simulation, helices 1 and 3 are mostly formed earlier accompanied by non-specific collapse, while second helix is intrinsically less stable and is formed with the help of tertiary contacts at later stage. We compute an analog of the transition state ensemble and compare it with those of other three-helix-bundle proteins. The transition state of 1prb(7-53) includes a few specific tertiary contacts of C terminus of helix 3 with the loop region between helices 1 and 2. This resembles, but is not equivalent to, an early formed region of fragment B of staphylococcal protein A, but is quite different from the folding transient structures of a de novo designed three-helix-bundle peptide. 相似文献
4.
The long-held views on lock-and-key versus induced fit in binding arose from the notion that a protein exists in a single, most stable conformation, dictated by its sequence. However, in solution proteins exist in a range of conformations, which may be described by statistical mechanical laws and their populations follow statistical distributions. Upon binding, the equilibrium will shift in favor of the bound conformation from the ensemble of conformations around the bottom of the folding funnel. Hence here we extend the implications and the usefulness of the folding funnel concept to explain fundamental binding mechanisms. 相似文献
5.
6.
A high resolution reduced model of proteins is used in Monte Carlo dynamics studies of the folding mechanism of a small globular protein, the B1 immunoglobulin-binding domain of streptococcal protein G. It is shown that in order to reproduce the physics of the folding transition, the united atom based model requires a set of knowledge-based potentials mimicking the short-range conformational propensities and protein-like chain stiffness, a model of directional and cooperative hydrogen bonds, and properly designed knowledge-based potentials of the long-range interactions between the side groups. The folding of the model protein is cooperative and very fast. In a single trajectory, a number of folding/unfolding cycles were observed. Typically, the folding process is initiated by assembly of a native-like structure of the C-terminal hairpin. In the next stage the rest of the four-ribbon beta-sheet folds. The slowest step of this pathway is the assembly of the central helix on the scaffold of the beta-sheet. 相似文献
7.
A common folding mechanism in the cytochrome c family 总被引:2,自引:0,他引:2
Of the globular proteins, cytochrome c (cyt c) has been used extensively as a model system for folding studies. Here we analyse the folding pathway of different cyt c proteins from prokaryotes and eukaryotes, and attempt to single out general correlations between structural determinants and folding mechanisms. Recent studies provide evidence that the folding pathway of several cyt c proteins involves the formation of a partially structured intermediate. Using state-of-the-art kinetic analysis on published data, we show that such a folding intermediate is an obligatory on-pathway species that might represent either a defined local minimum in the reaction coordinate or an unstable high-energy state. Available data also indicate that some essential structural features of the folding intermediate and transition states are highly conserved across this protein family. Thus, cyt c proteins share a consensus folding mechanism in spite of large differences in physico-chemical properties and thermodynamic stability. This novel outlook on the folding of cyt c can shed light on much published data and might offer a general scheme by which to plan new experiments. 相似文献
8.
Akella S Mitra CK 《Journal of biomolecular structure & dynamics》2011,28(4):611-4; discussion 669-674
9.
Dividing animal and plant cells maintain a constant chromosome content through temporally separated rounds of replication and segregation. Until recently, the mechanisms by which animal and plant cells maintain a constant surface area have been considered to be distinct. The prevailing view was that surface area was maintained in dividing animal cells through temporally separated rounds of membrane expansion and membrane invagination. The latter event, known as cytokinesis, produces two physically distinct daughter cells and has been thought to be primarily driven by actomyosin-based constriction. By contrast, membrane addition seems to be the primary mechanism that drives cytokinesis in plants and, thus, the two events are linked mechanistically and temporally. In this article (which is part of the Cytokinesis series), we discuss recent studies of a variety of organisms that have made a convincing case for membrane trafficking at the cleavage furrow being a key component of both animal and plant cytokinesis. 相似文献
10.
Exploring structures in protein folding funnels with free energy functionals: the denatured ensemble
We discuss the formulation of free energy functionals that describe the formation of structure in partially folded proteins. These free energy functionals take into account the inhomogeneous nature of contact energies, chain entropy and cooperative contributions reflecting the many body character of some folding forces like hydrophobicity, but do not directly account for non-native contacts because they assume the validity of the minimal frustration principle. We show how the free energy functionals can be used to interpret experiments on partially folded proteins that probe the fractional occupancy of specific local structures. In particular, we study the hydrogen protection factors in lysozyme studied in transient experiments by Gladwin and Evans and by Nash and Jonas using equilibrium pressure denaturation and the NMR order parameters measured by Dobson and Kim for the homologous protein alpha-lactalbumin. 相似文献
11.
We propose a testable general mechanism by which ligand binding energy can be used to drive a catalytic step in an enzyme catalyzed reaction or to do other forms of work involving protein molecules. This energy transduction theory is based on our finding of the widespread occurrence of ligand binding-induced protein macrostate interconversions each having a large invariant delta H0 accompanied by a small but highly variable delta G0. This phenomenon, which can be recognized by the large delta Cp0's it generates, can provide the necessary energy input step but is not in itself sufficient to constitute a workable transduction mechanism. A viable mechanism requires the additional presence of an 'energy transmission step' which is terminated to trigger the 'power' stroke at a precise location on the reaction coordinate, followed by an energetically inexpensive 'return' step to restore the machine to its initial conditions. In the model we propose here, these additional steps are provided by the existence of ligand inducible 2-state transitions in the free enzyme and in each of the enzyme complexes that occur along the reaction coordinate, and by the selective blocking of certain of these interconversions by high energetic barriers. We provide direct experimental evidence supporting the facts that these additional mechanistic components do exist and that the liver glutamate dehydrogenase reaction is indeed driven by just such machinery. We describe some aspects of the chemical nature of these transitions, and evidence for their occurrence in other systems. 相似文献
12.
Zhou HX 《Journal of molecular recognition : JMR》2004,17(5):368-375
Simple theoretical models are presented to illustrate the effects of spatial confinement and macromolecular crowding on the equilibria and rates of protein folding and binding. Confinement is expected to significantly stabilize the folded state, but for crowding only a marginal effect on protein stability is expected. In confinement the unfolded chain is restricted to a cage but in crowding the unfolded chain may explore different interstitial voids. Because confinement and crowding eliminate the more expanded conformations of the unfolded state, folding from the compact unfolded state is expected to speed up. Crowding will shift the binding equilibrium of proteins toward the bound state. The significant slowing down in protein diffusion by crowding, perhaps beneficial for chaperonin action, could result in a decrease in protein binding rates. 相似文献
13.
Many proteins in living cells require cofactors to carry out their biological functions. To reach their functional states, these proteins need to fold into their unique three-dimensional structures in the presence of their cofactors. Two processes, folding of the protein and binding of cofactors, intermingle with each other, making the direct elucidation of the folding mechanism of proteins in the presence of cofactors challenging. Here we use single-molecule atomic force microscopy to directly monitor the folding and cofactor binding dynamics of an engineered metal-binding protein G6-53 at the single-molecule level. Using the mechanical stability of different conformers of G6-53 as sensitive probes, we directly identified different G6-53 conformers (unfolded, apo- and Ni2+-bound) populated along the folding pathway of G6-53 in the presence of its cofactor Ni2+. By carrying out single-molecule atomic force microscopy refolding experiments, we monitored kinetic evolution processes of these different conformers. Our results suggested that the majority of G6-53 folds through a binding-after-folding mechanism, whereas a small fraction follows a binding-before-folding pathway. Our study opens an avenue to utilizing force spectroscopy techniques to probe the folding dynamics of proteins in the presence of cofactors at the single-molecule level, and we anticipated that this method can be used to study a wide variety of proteins requiring cofactors for their function. 相似文献
14.
Pascher T 《Biochemistry》2001,40(19):5812-5820
Utilizing the stability difference between the ferro and ferri forms of horse heart cytochrome c (cyt c), folding of reduced cyt c was triggered by laser-induced reduction of unfolded oxidized cyt c. Measurements were made of the kinetics of the main folding phase (1 ms-10 s) in which collapsed reduced cyt c transforms to the native conformation. The folding rates were studied extensively as a function of temperature (5-75 degrees C) and guanidine hydrochloride (GdnHCl) concentration (1.6-4.9 M). At constant [GdnHCl], the Arrhenius plot of the folding rate constant (k) is nonlinear. At temperatures above 40 degrees C, the decrease in protein stability counteracts the expected increase in folding rate. Introducing free energy (DeltaG), derived from protein stability data, into the Eyring and Arrhenius equations leads to: ln k = ln(k(b)T/h) + DeltaS()/R - DeltaH()/RT - theta(m)DeltaG/RT = ln A - E(a)/RT - theta(m)DeltaG/RT, where theta(m) is the ratio between the denaturant dependence of the folding rate and the stability. By using this equation at constant DeltaG [or constant equilibrium constant (K)], linear Arrhenius plots are obtained. For the main folding phase of reduced cyt c, a positive DeltaS() is obtained indicating that the transition state is less ordered than the reactant. A model is proposed in which reduced cyt c first collapses into a compact intermediate, which needs to expand to reach the transition state of the rate-limiting folding reaction. 相似文献
15.
Kloosterman WP Hoogstraat M Paling O Tavakoli-Yaraki M Renkens I Vermaat JS van Roosmalen MJ van Lieshout S Nijman IJ Roessingh W van 't Slot R van de Belt J Guryev V Koudijs M Voest E Cuppen E 《Genome biology》2011,12(10):R103-11
Background
Structural rearrangements form a major class of somatic variation in cancer genomes. Local chromosome shattering, termed chromothripsis, is a mechanism proposed to be the cause of clustered chromosomal rearrangements and was recently described to occur in a small percentage of tumors. The significance of these clusters for tumor development or metastatic spread is largely unclear.Results
We used genome-wide long mate-pair sequencing and SNP array profiling to reveal that chromothripsis is a widespread phenomenon in primary colorectal cancer and metastases. We find large and small chromothripsis events in nearly every colorectal tumor sample and show that several breakpoints of chromothripsis clusters and isolated rearrangements affect cancer genes, including NOTCH2, EXO1 and MLL3. We complemented the structural variation studies by sequencing the coding regions of a cancer exome in all colorectal tumor samples and found somatic mutations in 24 genes, including APC, KRAS, SMAD4 and PIK3CA. A pairwise comparison of somatic variations in primary and metastatic samples indicated that many chromothripsis clusters, isolated rearrangements and point mutations are exclusively present in either the primary tumor or the metastasis and may affect cancer genes in a lesion-specific manner.Conclusions
We conclude that chromothripsis is a prevalent mechanism driving structural rearrangements in colorectal cancer and show that a complex interplay between point mutations, simple copy number changes and chromothripsis events drive colorectal tumor development and metastasis. 相似文献16.
Standard building blocks of proteins--closed loops of 25-30 amino acid residues--have been recently discovered and further characterized by combined efforts of several laboratories. New challenging views on the protein structure, folding, and evolution are introduced by these studies. In particular, the role of van der Waals contacts in protein stability is better understood. They can be considered as locks closing the polypeptide chain returns and forming the loop-n-lock elements. The linearity of the arrangement of the standard loops in the proteins has important evolutionary implications. Selection pressure to maintain the loops of nearly standard size is reflected in the protein sequences as characteristic distance between hydrophobic residues, equal to the loop end-to-end distance. Further characterization of the loop-n-lock units reveals several sequence/structure prototypes, which suggests a new basis for protein classification. The following is a review of these studies. 相似文献
17.
We present a rapidly executable minimal binding energy model for molecular docking and use it to explore the energy landscape in the vicinity of the binding sites of four different enzyme inhibitor complexes. The structures of the complexes are calculated starting with the crystal structures of the free monomers, using DOCK 4.0 to generate a large number of potential configurations, and screening with the binding energy target function. In order to investigate possible correlations between energy and variation from the native structure, we introduce a new measure of similarity, which removes many of the difficulties associated with root mean square deviation. The analysis uncovers energy gradients, or funnels, near the binding site, with decreasing energy as the degree of similarity between the native and docked structures increases. Such energy funnels can increase the number of random collisions that may evolve into productive stable complex, and indicate that short-range interactions in the precomplexes can contribute to the association rate. The finding could provide an explanation for the relatively rapid association rates that are observed even in the absence of long-range electrostatic steering. 相似文献
18.
Oleg B. Ptitsyn 《Journal of Protein Chemistry》1987,6(4):273-293
The current state of the problem of protein folding is reviewed with special attention to the novel molten globule state of the protein molecule, intermediate between the native and unfolded states. Experimental evidence on the existence of this state and its role in protein folding are compared with the sequential model of protein folding proposed by the author in 1972–1973. 相似文献
19.
Chen Y Ding F Nie H Serohijos AW Sharma S Wilcox KC Yin S Dokholyan NV 《Archives of biochemistry and biophysics》2008,469(1):4-19
Over the past three decades the protein folding field has undergone monumental changes. Originally a purely academic question, how a protein folds has now become vital in understanding diseases and our abilities to rationally manipulate cellular life by engineering protein folding pathways. We review and contrast past and recent developments in the protein folding field. Specifically, we discuss the progress in our understanding of protein folding thermodynamics and kinetics, the properties of evasive intermediates, and unfolded states. We also discuss how some abnormalities in protein folding lead to protein aggregation and human diseases. 相似文献
20.
Fibrin protofibril and fibrinogen binding to ADP-stimulated platelets: evidence for a common mechanism 总被引:1,自引:0,他引:1
R R Hantgan 《Biochimica et biophysica acta》1988,968(1):24-35
The molecular basis of platelet-fibrin binding has been elucidated by studying interactions between platelets and protofibrils, soluble two-stranded polymers of fibrin which are intermediates on the fibrin assembly pathway. The fibrinogen degradation product, fragment D, has been used to block fibrin assembly, thus enabling the preparation of stable solutions of short protofibrils, composed of fewer than twenty fibrin monomer molecules per polymer. Fibrin protofibrils bound to ADP-activated platelets in a time- and concentration-dependent process which was effectively blocked by excess unlabelled fibrinogen, i.e., the binding was specific and appeared to involve a common receptor. ADP-stimulated cells bound approx. 3 micrograms of fibrin protofibrils/10(8) platelets, compared to 4 micrograms of fibrinogen/10(8) cells, following a 30-min incubation period at room temperature. Binding of both ligands was inhibited by high concentrations of fragment D, further indicating a similar mechanism. The kinetic data obtained were well described by an apparent first-order mechanism in which the rate constant for fibrin protofibril binding was found to be 5-fold slower than that measured for fibrinogen. Two monoclonal antibodies, each directed against the platelet glycoprotein IIb-IIIa complex, inhibited the binding of fibrin protofibrils and fibrinogen in a similar, concentration-dependent manner, providing strong evidence for a common receptor. Binding of GPRP-fibrin (soluble fibrin oligomers formed in the presence of 1 mM Gly-Pro-Arg-Pro) to ADP-stimulated platelets was also inhibited by a monoclonal antibody directed against the GPIIb-IIIa complex. Neither fibrin protofibrils nor fibrinogen bound to Glanzmann's thrombasthenic platelets, which lack normal quantities of functional glycoprotein IIb-IIIa complex, further supporting the hypothesis that fibrinogen and fibrin bind to a common platelet receptor present on the glycoprotein IIb-IIIa complex. 相似文献