共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
The proton-coupled uptake of di- and tri-peptides is the major route of dietary nitrogen absorption in the intestine and of
reabsorption of filtered protein in the kidney. In addition, the transporters involved, PepT1 (SLC15a1) and PepT2 (SLC15a2),
are responsible for the uptake and tissue distribution of a wide range of pharmaceutically important compounds, including
β-lactam antibiotics, angiotensin-converting enzyme inhibitors, anti-cancer and anti-viral drugs. PepT1 and PepT2 are large
proteins, with over 700 amino acids, and to date there are no reports of their crystal structures, nor of those of related
proteins from lower organisms. Therefore there is virtually no information about the protein 3-D structure, although computer-based
approaches have been used to both model the transmembrane domain (TM) layout and to produce a substrate binding template.
These models will be discussed, and a new one proposed from homology modeling rabbit PepT1 to the recently crystallized bacterial
transporters LacY and GlpT. Understanding the mechanism by which PepT1 and PepT2 bind and transport their substrates is of
great interest to researchers, both in academia and in the pharmaceutical industries. 相似文献
3.
Pui S. Ho Christin A. Frederick Daniel Saal Andrew H.-J. Wang Alexander Rich 《Journal of biomolecular structure & dynamics》2013,31(4):521-534
Abstract Acrystalofd(CGCGCG)in the Z-DNA lattice was soaked with ruthenium(III) hexaammine and its structure refined at 1.2 Å resolution. Three unique metal complexes were found adsorbed to each hexamer duplex. In addition, two symmetry-related binding sites were located, yielding a total of five ruthenium complexes bound to each d(CGCGCG) duplex. One unique site and its symmetry related site are nearly identical to the binding site of cobalt(III) hexaammine on Z-DNA. At that position, the metal complex bridges the convex surfaces of two adjacent Z-DNA strands by hydrogen bonds to the N7 and 06 functional groups of the guanine bases. The remaining three ruthenium(III) hexaammine binding sites are not present in the cobalt(III) hexaammine Z-DNA structure. Of these, two are related by symmetry and span the gap between the convex outer surface of one Z-DNA strand and the helical groove crevice of a neighboring strand. The third ruthenium site has no symmetry mate and involves interactions with only the deep groove. In this interaction, the metal complex hydrogen bonds to both the phosphate backbone and to a set of primary shell water molecules that extend the hydrogen bonding potential of the deep groove crevice out to the surface of the molecule. Solution studies comparing the circular dichroism spectra of low salt poly(dG-dC) · poly(dG-dC) samples in the presence of ruthenium(III) and cobalt(III) hexaammine show that the ruthenium complex does stabilize Z-DNA in solution, but not as effectively as the cobalt analogue. This suggests that some of the interactions available for the larger ruthenium complex may not be important for stabilization of the left-handed DNA conformation. 相似文献
4.
Erwin J. De Genst Tim Guilliams Joke Wellens Elizabeth M. O'Day Christopher A. Waudby Sarah Meehan Shang-Te Danny Hsu Koen H.G. Verschueren Els Pardon Lode Wyns Jan Steyaert John Christodoulou Christopher M. Dobson 《Journal of molecular biology》2010,402(2):326-746
The aggregation of the intrinsically disordered protein α-synuclein to form fibrillar amyloid structures is intimately associated with a variety of neurological disorders, most notably Parkinson's disease. The molecular mechanism of α-synuclein aggregation and toxicity is not yet understood in any detail, not least because of the paucity of structural probes through which to study the behavior of such a disordered system. Here, we describe an investigation involving a single-domain camelid antibody, NbSyn2, selected by phage display techniques to bind to α-synuclein, including the exploration of its effects on the in vitro aggregation of the protein under a variety of conditions. We show using isothermal calorimetric methods that NbSyn2 binds specifically to monomeric α-synuclein with nanomolar affinity and by means of NMR spectroscopy that it interacts with the four C-terminal residues of the protein. This latter finding is confirmed by the determination of a crystal structure of NbSyn2 bound to a peptide encompassing the nine C-terminal residues of α-synuclein. The NbSyn2:α-synuclein interaction is mediated mainly by side-chain interactions while water molecules cross-link the main-chain atoms of α-synuclein to atoms of NbSyn2, a feature we believe could be important in intrinsically disordered protein interactions more generally. The aggregation behavior of α-synuclein at physiological pH, including the morphology of the resulting fibrillar structures, is remarkably unaffected by the presence of NbSyn2 and indeed we show that NbSyn2 binds strongly to the aggregated as well as to the soluble forms of α-synuclein. These results give strong support to the conjecture that the C-terminal region of the protein is not directly involved in the mechanism of aggregation and suggest that binding of NbSyn2 could be a useful probe for the identification of α-synuclein aggregation in vitro and possibly in vivo. 相似文献
5.
T. D. Sakore K. K. Bhandary Henry M. Sobell 《Journal of biomolecular structure & dynamics》2013,31(5):1219-1227
Abstract N,N-dimethylproflavine forms a crystalline complex with deoxycytidylyl(3′-5′)deoxyguanosine (d-CpG), space group P21,212, with a = 21.37 Å, b = 34.05 Å, c = 13.63 Å. The structure has been solved to atomic resolution and refined by Fourier and least squares methods to a residual of 0.18 on 2,032 observed reflections. The structure consists of two N,N- dimethylproflavine molecules, two deoxycytidylyl (3′-5′)deoxyguanosine molecules and 16 water molecules, a total of 128 nonhydrogen atoms. As with other structures of this type, N,N-dimethylproflavine molecules intercalate between base-paired d-CpG dimers. In addition, dimethylproflavine molecules stack on either side of the intercalated duplex, being related by a unit cell translation along the c axis. Both sugar-phosphate chains demonstrate the mixed sugar puckering geometry: C3′ endo (3′-5′) C2′ endo. This same intercalative geometry has been seen in two other complexes containing N,N-dimethylproflavine and iodoCpG, described in the accompanying paper. Taken together, these studies indicate a common intercalative geometry present in both RNA- and DNA- model systems. Again, N,N-dimethylproflavine behaves as a simple intercalator, intercalating asymmetrically between guanine-cytosine base-pairs. The free amino- group on the intercalated dimethylproflavine molecule does not hydrogen bond directly to the phosphate oxygen. Other aspects of the structure will be presented. 相似文献
6.
All-atom molecular dynamics (MD) computer simulations have been applied successfully to duplex DNA structures in solution for some years and found to give close accord with observed results. However, the MD force fields have generally not been parameterized against unusual DNA structures, and their use to obtain dynamical models for this class of systems needs to be independently validated. The four-way junction (4WJ), or Holliday junction, is a dynamic DNA structure involved in central cellular processes of homologous replication and double strand break repair. Two conformations are observed in solution: a planar open-X form (OPN) with a mobile center and four duplex arms, and an immobile stacked-X (STX) form with two continuous strands and two crossover strands, stabilized by high salt conditions. To characterize the accuracy of MD modeling on 4WJ, we report a set of explicit solvent MD simulations of ~100 ns on the repeat sequence d(CCGGTACCGG)4 starting from the STX structure (PDB code 1dcw), and an OPN structure built for the same sequence. All 4WJ MD simulations converged to a stable STX structure in close accord with the crystal structure. Our MD beginning in the OPN form converts to the STX form spontaneously at both high and low salt conditions, providing a model for the conformational transition. Thus, these simulations provide a successful account of the dynamical structure of the STX form of d(CCGGTACCGG)4 in solution, and provide new, to our knowledge, information on the conformational stability of the junction and distribution of counterions in the junction interior. 相似文献
7.
8.
L. Van Meervelt M. H. Moore P. Kong Thoo Lin D. M. Brown O. Kennard 《Nucleosides, nucleotides & nucleic acids》2013,32(3):467-469
Abstract The base analogue N4?methoxycytosine (mo4C) is ambivalent in its hydrogen-bonding potential. In d(CGCGmo4CG) it is in the imino form and so mimics thymine when wobble base pairing with guanine. 相似文献
9.
10.
《The Journal of biological chemistry》2014,289(37):25404
11.
12.
Cellular membranes must undergo remodeling to facilitate critical functions including membrane trafficking, organelle biogenesis, and cell division. An essential step in membrane remodeling is membrane fission, in which an initially continuous membrane surface is divided into multiple, separate compartments. The established view has been that membrane fission requires proteins with conserved structural features such as helical scaffolds, hydrophobic insertions, and polymerized assemblies. In this review, we discuss these structure-based fission mechanisms and highlight recent findings from several groups that support an alternative, structure-independent mechanism of membrane fission. This mechanism relies on lateral collisions among crowded, membrane-bound proteins to generate sufficient steric pressure to drive membrane vesiculation. As a stochastic process, this mechanism contrasts with the paradigm that deterministic protein structures are required to drive fission, raising the prospect that many more proteins may participate in fission than previously thought. Paradoxically, our recent work suggests that intrinsically disordered domains may be among the most potent drivers of membrane fission, owing to their large hydrodynamic radii and substantial chain entropy. This stochastic view of fission also suggests new roles for the structure-based fission proteins. Specifically, we hypothesize that in addition to driving fission directly, the canonical fission machines may facilitate the enrichment and organization of bulky disordered protein domains in order to promote membrane fission by locally amplifying protein crowding. 相似文献
13.
Abstract The structure of 2′,3′-didehydro-2′,3′-dideoxyguanosine was determined by X-ray crystallographic analysis of the complex with pyridine. The two independent nucleoside molecules have similar, commonly observed glycosyl link (x = -102.3° and -94.2°) and 5′-hydroxyl (y = 54.0° and 47.6°) conformations. The five-membered rings are very planar with r.m.s. deviations from planarity of less than 0.015 A. 2′,3′-Didehydro-2′,3′-dideoxyadenosine has a similar glycosyl link conformation but a different 5′-hydroxyl group orientation and a slightly less planar 5-membered ring. 相似文献
14.
Jiří Šponer Judit E. Šponer Jerzy Leszczynski 《Journal of biomolecular structure & dynamics》2013,31(6):1087-1096
Abstract Cation—π interactions between cytosine and hexahydrated cations have been characterized using ab initio method with inclusion of electron correlation effects, assuming idealized and crystal geometries of the interacting species. Hydrated metal cations can interact with nucleobases in a cation—π manner. The stabilization energy of such complexes would be large and comparable to the one for cation—π complex with benzene. Further, polarized water molecules belonging to the hydration shell of the cation are capable to form a strong hydrogen bond interaction with the nitrogen lone electron pair of the amino groups of bases and enforce a pronounced sp3 pyramidalization of the nucleobase amino groups. However, in contrast to the benzene—cation complexes, the cation—π configurations are highly unstable for a nucleobase since the conventional in plane binding of hydrated cations to the acceptor sites on the nucleobase is strongly preferred. Thus, a cation—π interaction with a nucle-obase can occur only if the position of the cation is locked above the nucleobase plane by another strong interaction. This indeed can occur in biopolymers and may have an effect on the local DNA architecture. Nevertheless, nucleobases have no intrinsic propensity to form cation—π interactions. 相似文献
15.
Ricardo Sánchez David Pantoja-Uceda Jesús Prieto Tammo Diercks María J. Marcaida Guillermo Montoya Ramón Campos-Olivas Francisco J. Blanco 《The Journal of biological chemistry》2010,285(29):22196-22201
Gadd45α is a nuclear protein encoded by a DNA damage-inducible gene. Through its interactions with other proteins, Gadd45α participates in the regulation of DNA repair, cell cycle, cell proliferation, and apoptosis. The NMR structure of human Gadd45α has been determined and shows an α/β fold with two long disordered and flexible regions at the N terminus and one of the loops. Human Gadd45α is predominantly monomeric in solution but exists in equilibrium with dimers and other oligomers whose population increases with protein concentration. NMR analysis shows that Aurora A interacts through its N-terminal domain with a region of human Gadd45α encompassing the site of dimerization, suggesting that the oligomerization of Gadd45α could be a regulatory mechanism to modulate its interactions with Aurora A, and possibly with other proteins too. However, Gadd45α appears to interact only weakly with PCNA through its flexible loop, in contrast with previous and contradictory reports. 相似文献
16.
The physico-chemical properties of the DNA released from bacteriophage G (active on Bacillus megatherium) are described. Phage G, an unusually large bacteriophage, has a nucleic acid content of 4 to 6 × 108 daltons.Sedimentation velocity analysis at low angular speed and examination by electron microscopy, indicate that a single DNA molecule, sedimenting with s20, w0 = 125 ± 1.5 S and at least 200 ± 20 μm long, is released upon thermal or osmotic shock. Melting temperature data and chromatographic analysis indicate a mean base composition of 70% A + T. CsCl and Cs2SO4 buoyant density data, circular dichroism spectra and sensitivity to specific nucleases indicate that phage G DNA is similar to the DNAs from T-even phages and is more glucosylated than phage T6 DNA. Direct glucose determination indicates a 185% molar ratio of glucose to cytosine. Linear density extrapolated from literature data and contour length measurement yield a lower limit for the molecular weight of phage G DNA of 4.9 × 108. Comparison of this value with the s20,w0 measured with the analytical ultracentrifuge seems to confirm the validity of the empirical relationship proposed by Freifelder (1970), between s20, w0 and molecular weight, over a larger range than that previously known. A possible systematic error in defect in length determination, however, prevents a discrimination between this and other empirical formulae proposed by various authors, which predict a molecular weight that is 20 to 25% higher. 相似文献
17.
18.
19.