首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The conformation of d(C-Br8G-C-G-C-Br8G) in aqueous solution was studied by CD and 1H-NMR spectroscopy and in condensed phase by IR spectroscopy. Whether in 0.1 M or 3 M NaCl solution or in film the only double helical structure adopted by brominated d(C-G)3 oligomer is the Z form. The IR spectrum of the film presents all the characteristic absorptions of the Z conformation and in particular is indicative of a syn conformation for the central guanosine as well as for the brominated one. Imino proton resonances of d(C-Br8G-C-G-C-Br8G) demonstrating the duplex formation were observed up to 60 degrees C. It is interesting to note that the significant highfield shifts of the dC H5" exocyclic sugar protons characteristic of the non exchangeable proton spectra of d(C-G)3 containing 5-methyl dC residues in the Z form were also detected in the proton spectrum of brominated oligomer. Whereas formation of the Z helix of methylated d(C-G)3 oligomers dependent on the salt concentration was found to occur via the preliminary formation of a B helix even in 4 M NaCl solution, the Z helix of d(C-Br8G-C-G-C-Br8G) is obtained directly from the coil form. However, IR data suggest that in the Z form of d(C-Br8G-C-G-C-Br8G), the overlapping of the base planes should be slightly different in comparison with the stacking observed in d(C-G)3 crystals. The kinetic data (activation energy and lifetime) of the Z helix-coil transition of brominated d(C-G)3 are compared to those of the B helix-coil transition observed for methylated d(C-G)3 in 0.1 M NaCl solution while the thermodynamic data of these two reactions (enthalpy and midpoint temperature) are slightly different.  相似文献   

2.
The B and the Z forms of the DNA hexamers d(m5C-G)3 and d(br5C-G)3 were investigated by means of NMR spectroscopy. It is demonstrated that the low-salt form of d(m5C-G)3 is a B DNA structure. The form, which becomes increasingly predominant when increasing amounts of MgCl2 and/or methanol are added to the solution, has Z DNA characteristics. It is shown that the major geometrical features of the Z form of d(m5C-G)3 in the crystal structure are maintained in solution, with the dC residues S sugar conformation, gamma + and the base in the anti orientation and the dG residues N (except the 3'-terminal residue), gamma t and syn. Neither the Z form of the methylated nor that of the brominated compound resembles the Z' form, in which the deoxy guanosine sugar rings adopt a C1'-exo conformation. Substitution of m5C by br5C causes no perceptible conformational changes in either the B or in the Z forms.  相似文献   

3.
The structure and thermal stability of a hetero chiral decaoligodeoxyribonucleotide duplex d(C1m8 G2C3G4C5LG6LC7G8C9G10)d(C11m8G12C13G14C15LG16LC17G18C19G20) (O1) with two contiguous pairs of enantiomeric 2'-deoxy-L-ribonucleotides (C5LG6L/C15LG16L) at its centre and an 8-methylguanine at position 2/12 was analysed by circular dichroism, NMR and molecular modelling. O1 resolves in a left-handed helical structure already at low salt concentration (0.1 M NaCl). The central L2-sugar portion assumes a B* left-handed conformation (mirror-image of right-handed B-DNA) while its flanking D4-sugar portions adopt the known Z left-handed conformation. The resulting Z4-B2*-Z4 structure (left-handed helix) is the reverse of that of B4-Z2*-B4 (right-handed helix) displayed by the nearly related decaoligodeoxyribonucleotide d(mC1G2mC3G4C5L G6LmC7G8mC9G10)2, at the same low salt concentration (0.1 M NaCl). In the same experimental conditions, d(C1m8G2C3G4C5G6C7G8C9G10)2 (O2), the stereoregular version of O1, resolves into a right-handed B-DNA helix. Thus, both the 8-methylguanine and the enantiomeric step CLpGL at the centre of the molecule are needed to induce left-handed helicity. Remarkably, in the various heterochiral decaoligodeoxyribonucleotides so far analysed by us, when the central CLpGL adopts the B* (respectively Z*) conformation, then the adjacent steps automatically resolves in the Z (respectively B) conformation. This allows a good optimisation of the base-base stackings and base-sugar van der Waals interactions at the ZB*/B*Z (respectively BZ*/Z*B) junctions so that the Z4-B2*-Z4 (respectively B4-Z2*-B4) helix displays a Tm (approximately 65 degrees C) that is only 5 degrees C lower than the one of its homochiral counterpart. Here we anticipate that a large variety of DNA helices can be generated at low salt concentration by manipulating internal factors such as sugar configuration, duplex length, nucleotide composition and base methylation. These helices can constitute powerful tools for structural and biological investigations, especially as they can be used in physiological conditions.  相似文献   

4.
Abstract

DNA oligonucleotides with appropriately designed complementary sequences can form a duplex in which the two strands are paired in a parallel orientation and not in the conventional antiparallel double helix of B-DNA. All parallel stranded (ps) molecules reported to date have consisted exclusively of dA · dT base pairs. We have substituted four dA · dT base pairs of a 25-nt parallel stranded linear duplex (ps-D1 · D2) with dG · dC base pairs. The two strands still adopt a duplex structure with the characteristic spectroscopic properties of the ps conformation but with a reduced thermodynamic stability. Thus, the melting temperature of the ps duplex with four dG · dC base pairs (ps-D5 · D6) is 10-16°C lower and the van't Hoff enthalpy difference ΔvH for the helix-coil transition is reduced by 20% (in NaCl) and 10% (in MgCl2) compared to that of ps-Dl · D2. Based on energy minimizations of a ps-[d(T5GA5) · d(A5CT5)] duplex using force field calculations we propose a model for the conformation of a trans dG · dC base pair in a ps helix.  相似文献   

5.
Abstract

We have determined the 1H→3H exchange rate constants between water and C8H groups of purinic residues of alternating polynucleotides poly(dA-dT)·poly(dA-dT), poly(dG-dC)·poly(dG- dC) and poly(dA-dC)·poly(dG-dT) as well as homopolynucleotides poly(dA)·poly(dT) and poly(dG)·poly(dC) in aqueous solutions with high-salt concentrations (3 M NaCl and 4–6 M CsF), in water-ethanol (60%) solution and in 0.15 M NaCl at 25°C. The rate constants for adenine (kA) and guanine (kG) of polynucleotides were compared with corresponding constants for E.coli DNA, dGMP nd dAMP at the same conditions. The relation between exchange rates and conformations of polynucleotides permits the study of their conformational peculiarities in solution.

Of three alternating polynucleotides examined in 0.15 M NaCl the exchange retardation was observed only for poly(dA-dT)·poly(dA-dT) as compared with that in B-DNA, which is in good agreement with the B-alternating “wrinkled” DNA model. The conformations of poly(dG-dC)·poly(dG-dC) and poly(dA-dC)·poly(dG-dT), according to the exchange data obtained, are within the B form. For homopolynucleotides in 0.15 M NaCl, the kA value for poly(dA)·poly(dT) is nearly the same as kA for B-DNA, which indicates the similarity of their conformations, whereas the kG value for poly(dG)·poly(dC) is 1.7-fold lower in comparison with the kG value in B-DNA. This seems to be connected with the existence of B? A conformation equilibrium for poly(dG)·poly(dC) in solution.

The increase of NaCl concentration to 3 M results in a B→Z transition in the case of poly(dG-dC)·poly(dG-dC) and in the shift of B?A equilibrium towards the A-form in the case of poly(dG)·poly(dC), as is evidenced by alterations of their KG values. Poly(dA-dT)·poly(dA-dT) in 6 M CsF and poly(dA-dC)·poly(dG-dT) in 4.3 M CsF maintain their inherent conformations in 0.15 M NaCl in spite of the fact that they are characterised by the “X-type” CD-spectrum at these conditions. According to the exchange data the conformation of poly(dA)·poly(dT) in 6 M CsF corresponds to the “heteronomous” DNA model or some other structure with lower accessibility of C8H groups of adenylic residues.  相似文献   

6.
Abstract

The helical structures of d(C-G-m5C-G-C-G) were studied in aqueous solution at various salt concentrations and temperatures by CD and 1H-NMR spectroscopy. At room temperature only the B form is observed in 0.1 M NaCl whereas the B and Z forms are simultaneously present in 1.8 M NaCl. At high salt concentration (4 M NaCl) the Z form is largely predominant (> 95%). The Z form proton resonances were assigned by using the polarisation transfer method (between B and Z at 1.8 M NaCl) and by proton-proton decoupling (at high salt concentration).

The Z-B-Coil transitions were studied as a function of temperature with the 1.8 M NaCl solution. At high temperature (95°C) only the coil form (S) is present. Below 55°C the coil proportion is negligible, and the B-Z exchange is slow. The disappearance of the coil gives rise at first to the B form and on lowering the temperature the Z proportion increases to the detriment of the B form. Proton linewidth, relaxation and polarisation transfer studies confirm the conclusion in the previous report on d(m5C-G-C-G-m5C-G) (Tran-Dinh et al Biochemistry 1984 in the press) that Z exchanges only with B whereas the latter also exchanges with S,Z ? B ? S. The present data show that even at high salt concentration where only the Z form of d(C-G-m5C-G-C-G) is observed the Z-S transition also passes through the B form as an intermediate stage. The B-Z transition takes place when the Watson-Crick hydrogen bonds are firmly maintained and is greatly favoured when there are three hydrogen bonds between the base-pairs.  相似文献   

7.
Abstract

The oligonucleotides d(m5CGGCm5CG), d(CBr8GGCCBr8G) and d(CGCGGC) have been prepared and studied by infrared spectroscopy. The three sequences contain two GC pairs which are out of purine-pyrimidine alternation with the rest of the sequence. From the IR data of the dlm5CGGCmCG) hexamer, it is shown that all of the dG residues adopt a syn conformation. The marker IR bands for the C3′ endo syn conformation are at 1410, 1354, 1320 and 925 cm?1 whereas those for the C2′ endo and conformation at 1420, 1374 and 890 cm?1 are clearly absent. This result implies that the two adjacent guanines of the d(m5CGGCm5CG) sequence are in syn conformation. It is suggested that duplex formation occurs in d(CGCGGC) films and that all of the guanines are in syn conformation. In contrast, the central non-brominated guanine of the dlCBr8GGCCBr8G) hexamer is found in ami conformation, as expected in a Z type structure of the non-alternating region.  相似文献   

8.
The Helical structures of d(C-G-C-A-m5C-G-T-G-m5C-G), d(m5C-G-C-A-m5C-G-T-G-C-G) and d(C-2aminoA-C-G-T-G) were studied in aqueous solution at various salt concentrations and temperatures by 1H-NMR spectroscopy. In 0.1 M NaCl solution only the B form was evidenced for these DNA fragments whereas in 4 M NaCl both B and Z forms, in slow exchange on the NMR time scale, were observed. Under these conditions the Z form accounted for less than 60% of the decamer conformation; conversely d(C-G)3 hexamers containing methylated cytidines were predominantly in the Z form (greater than 90%) [Tran-Dinh et al. (1984) Biochemistry 23, 1362; Cavaillès et al. (1984) J. Biomol. Struct. Dyn. 1, 1347-1371]. On the other hand, d(C-2aminoA-C-G-T-G) in which the d(2aminoA) X dT base pair forms three hydrogen bonds, was found to adopt the Z conformation in 4M NaCl solution which was not the case for d(C-A-C-G-T-G) (unpublished results). The present study shows that the B in equilibrium Z transition in solution is highly sequence-dependent and that correlation exists between the stability of the duplexes (essentially governed by the number of hydrogen bonds between complementary bases) and their ability to adopt the Z conformation.  相似文献   

9.
The double-helical conformations of d(m5-C-G-C-G-m5-C-G) in aqueous solution were studied by circular dichroism and 1H NMR spectroscopy. In 0.1 M NaCl, only the B form is detected whereas the Z form is strongly predominant in 3 M NaCl. In the presence of 2 M NaCl, two resonance signals corresponding to the B and Z duplexes were observed for each proton below 50 degrees C, indicating a slow exchange between B and Z. However, the B-Z exchange becomes intermediate or fast in the 55-80 degrees C temperature interval. By contrast the exchange between B helix and single-stranded (or coil) forms is much faster for the same temperature conditions. The Z form is only detectable when the coil form is practically absent. With decreasing temperature the B form decreases in favor of the Z form. From proton line-width measurements under various experimental conditions, it was also shown that Z exchanges only with B, while the latter also exchanges with the single-stranded form (S): Z in equilibrium B in equilibrium S. The enthalpy value is about 8 +/- 1 kcal/mol for the B-Z transition and about 40 +/- 2 kcal/mol for the B-S dissociation (2 M NaCl solution). The activation energy is about 47 +/- 2 kcal/mol for the Z----B and 39 +/- 2 kcal/mol for the B----Z reaction. Very good agreement between the experimental results and computed data (based on the above kinetic reaction model) was found for the B, Z, and coil proportions. The B-Z transition of methylated d(C-G)n oligomers is only possible when the Watson-Crick hydrogen bonds between the CG base pairs are firmly maintained; otherwise, the transformation from B to Z would not occur, and B-S dissociation would take place instead.  相似文献   

10.
Various oligonucleotides containing 8-methylguanine (m8G) have been synthesized and their structures and thermodynamic properties investigated. Introduction Of M8G into DNA sequences markedly stabilizes the Z conformation under low salt conditions. The hexamer d(CGC[M8G]CG)2 exhibits a CD spectrum characteristic of the Z conformation under physiological salt conditions. The NOE-restrained refinement unequivocally demonstrated that d(CGC[m8G]CG)2 adopts a Z structure with all guanines in the syn conformation. The refined NMR structure is very similar to the Z form crystal structure of d(CGCGCG)2, with a root mean square deviation of 0.6 between the two structures. The contribution of m8G to the stabilization of Z-DNA has been estimated from the mid-point NaCl concentrations for the B-Z transition of various m8G-containing oligomers. The presence of m8G in d(CGC[m8G]CG)2 stabilizes the Z conformation by at least deltaG = -0.8 kcal/mol relative to the unmodified hexamer. The Z conformation was further stabilized by increasing the number of m8Gs incorporated and destabilized by incorporating syn-A or syn-T, found respectively in the (A,T)-containing alternating and non-alternating pyrimidine-purine sequences. The results suggest that the chemically less reactive m8G base is a useful agent for studying molecular interactions of Z-DNA or other DNA structures that incorporate syn-G conformation.  相似文献   

11.
Limited chemical bromination of poly[r(C-G)] (32% br8G, 26% br5C) results in partial modification of guanine C8 and cytosine C5, producing a mixture of A- and Z-RNA forms. The Z conformation in the brominated polynucleotide is stabilized at much lower ionic strength than in the unmodified polynucleotide. More extensive bromination of poly[r(C-G)] (greater than 49% br8G, 43% br5C) results in stabilization of a form of RNA having a Z-DNA-like (ZD) CD spectrum in low-salt, pH 7.0-7.5 buffers. Raising the ionic strength to 6 M NaBr or NaClO4 results in a transition in Br-poly[r(C-G)] to a Z-RNA (ZR) conformation as judged by CD spectroscopy. At lower ionic strength Z-DNA-like (ZD) and A-RNA conformations are also present. 1H NMR data demonstrate a 1/1 mixture of A- and Z-RNAs in 110 mM NaBr buffer at 37 degrees C. Nuclear Overhauser effect (NOE) experiments permit complete assignments of GH8, CH6, CH5, GH1', and CH1' resonances in both the A- and Z-forms. GH8----GH1' NOEs demonstrate the presence of both A- and Z-form GH8 resonances in slow exchange on the NMR time scale. The NMR results indicate that unbrominated guanine residues undergo transition to the syn conformation (Z-form). Raman scattering data are consistent with a mixture of A- and Z-RNAs in 110 mM NaCl buffer at 37 degrees C. Comparison with the spectrum of Z-DNA indicates that there may be different glycosidic torsion angles in Z-RNA and Z-DNA [Tinoco, I., Jr., Cruz, P., Davis, P., Hall, K., Hardin, C. C., Mathies, R. A., Puglisi, J. D., Trulson, M. O., Johnson, W. C., & Neilson, T. (1986) in Structure and Dynamics of RNA, pp 55-68, Plenum, New York].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Relaxation measurements on the kinetics of the double helix to coil transition for the self-complementary ribo-oligonucleotide A7U7 are reported over a concentration range of 6.9 μM to 19.6 μM in single strand in 1 M NaCl. The rate constants for helix formation are about 2 × 106 M?1 s?1 and decrease with increasing temperature yielding an activation enthalpy of ?6 kcalmole. The rate constants for helix dissociation range from 3 to 250 s?1 and increase with increasing temperature yielding an activation enthalpy of +45 kcalmole. The kinetic data reported here for 1 M NaCl is compared with previously published results obtained at lower salt concentrations. These data are discussed in terms of the quantitative effect of ionic strength on the kinetics of helix-coil transitions in oligo- and polynucleotides.  相似文献   

13.
A parallel stranded linear DNA duplex incorporating dG.dC base pairs   总被引:3,自引:0,他引:3  
DNA oligonucleotides with appropriately designed complementary sequences can form a duplex in which the two strands are paired in a parallel orientation and not in the conventional antiparallel double helix of B-DNA. All parallel stranded (ps) molecules reported to date have consisted exclusively of dA.dT base pairs. We have substituted four dA.dT base pairs of a 25-nt parallel stranded linear duplex (ps-D1.D2) with dG.dC base pairs. The two strands still adopt a duplex structure with the characteristic spectroscopic properties of the ps conformation but with a reduced thermodynamic stability. Thus, the melting temperature of the ps duplex with four dG.dC base pairs (ps-D5.D6) is 10-16 degrees C lower and the van't Hoff enthalpy difference delta HvH for the helix-coil transition is reduced by 20% (in NaCl) and 10% (in MgCl2) compared to that of ps-D1.D2. Based on energy minimizations of a ps-[d(T5GA5).d(A5CT5)] duplex using force field calculations we propose a model for the conformation of a trans dG.dC base pair in a ps helix.  相似文献   

14.
Helix-coil dynamics of a Z-helix hairpin   总被引:1,自引:0,他引:1  
The helix–coil transition of a Z-helix hairpin formed from d(C-G)5T4(C-G)5 has been characterized by equilibrium melting and temperature jump experiments in 5M NaClO4 and 10 mM Na2HPO4, pH 7.0. The melting curve can be represented by a simple all-or-none transition with a midpoint at 81.6 ± 0.4°C and an enthalpy change of 287 ± 15 kJ/mole. The temperature jump relaxation can be described by single exponentials at a reasonable accuracy. Amplitudes measured as a function of temperature provide equilibrium parameters consistent with those derived from equilibrium melting curves. The rate constants of Z-helix formation are found in the range from 1800 s?1 at 70°C to 800 s?1 at 90°C and are associated with an activation enthalpy of ?(50 ± 10) kJ/mole, whereas the rate constants of helix dissociation are found in the range from 200 s?1 at 70°C to 4500 s?1 at 90°C with an activation enthalpy +235 kJ/mole. These parameters are consistent with a requirement of 3–4 base pairs for helix nucleation. Apparently nucleation occurs in the Z-helix conformation, because a separate slow step corresponding to a B to Z transition has not been observed. In summary, the dynamics of the Z-helix–coil transition is very similar to that of previously investigated right-handed double helices.  相似文献   

15.
Poly(dG-m5dC)·poly(dG-m5dC) was modified by treatment with N-acetoxy-N-2-acetylaminofluorene (N-Aco-AAF) and its conformation examined by circular dichroism (CD) and susceptibility to S1 nuclease digestion. A sample with a modification level of 10% shows a CD spectrum characteristic of the Z form and is resistant to digestion by S1 nuclease. The relative reactivity of several polymers with N-Aco-AAF was shown to follow the order of ease of formation of Z DNA: poly(dG-m5dC)·poly(dG-m5dC) > poly(dG-dC)·poly(dG-dC) > poly(dG)·poly(dC). This suggests that AAF reacts more readily with Z DNA than B DNA.  相似文献   

16.
Chemically brominated poly[r(C-G)] [Br-poly[r(C-G)]] containing 32% br8G and 26% br5C was recently shown to contain a 1:1 mixture of A- and Z-form unmodified nucleotides under physiological conditions of temperature, pH, and ionic strength [Hardin, C. C., Zarling, D. A., Puglisi, J. D., Trulson, M. O., Davis, P. W., & Tinoco, I., Jr. (1987) Biochemistry 26, 5191-5199]. Proton NMR results show that more extensive bromination of poly[r(C-G)] (49% br8G, 43% br5C) produces polynucleotides containing greater than 80% unmodified Z-form nucleotides. Using these polynucleotides as antigens, polyclonal antibodies were elicited in rabbits and mice specific for the Z-form of RNA. IgG fractions were purified from rabbit anti-Br-poly[r(C-G)] sera and characterized by immunoprecipitation, nitrocellulose filter binding, and ELISA. Two different anti-Z-RNA IgG specificities were observed. Decreased levels of brominated nucleotides in the immunogen correlated with an increased extent of specific cross-reactivity with Z-DNA. Inoculation of rabbits with polynucleotide immunogens containing 49% br8G and 43% of br5C produced specific anti-Z-RNA IgGs that do not recognize Z-DNA determinants. This suggests that the 2'-OH group is part of the anti-Z-RNA IgG determinant. In contrast, Br-poly[r(C-G)] immunogens containing 32% br8G and 26% br5C produced IgGs that specifically recognize both Z-RNA and Z-DNA. These results show that the bromine atoms are not required for recognition of the Z conformation by the antibodies. The affinity of these anti-Z-RNA IgGs for Z-RNA is about 10-fold higher than for Z-DNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The non-exchangeable proton resonances of the hexadeoxynucleoside pentakisphosphates d(m5C-G)3 and d(br5C-G)3 in the B form as well as in the Z form were assigned by means of two-dimensional correlated spectroscopy and two-dimensional nuclear Overhauser enhancement spectroscopy. The complete proton NMR spectrum of the B form of the methylated compound was assigned in a pure 2H2O solution as well as in a 2H2O/C2H3O2H mixed solvent, containing 5 mM MgCl2. In the latter solvent the B form occurs in slow equilibrium (on the NMR time scale) with the Z form, the resonances of which also were fully assigned. The proton resonances of the B and Z forms of the brominated fragment were assigned in a 2H2O/C2H3O2H solution containing 5 mM MgCl2. A new and general method is described for the sequential assignment of the non-exchangeable proton resonances of oligonucleotides in the Z form.  相似文献   

18.
Abstract

It is demonstrated that poly(dG-ethyl5dC) adopts Z form in low-salt solution like poly(dGmethyl5dC). Its existence is, however, not contingent on the presence of divalent cations in the polynucleotide solution. The Z form is transformed into B form below room temperature. The arising B form cannot be transformed back into Z form by millimolar MgCl2 concentrations. On the contrary, the addition of MgCl2 at room temperature converts the low-salt Z form of poly(dG-ethyl5dC) into B form. It follows from the results that Z form is a stable DNA conformation not only at high but even at low ionic strengths.  相似文献   

19.
Abstract

The importance of the base composition and of the conformation of nucleic acids in the reaction with the drug cis-diamminedichloroplatinum(II) has been studied by competition experiments between the drug and several double-stranded polydeoxyribonucleotides. Binding to poly(dG)·poly(dC) is larger than to poly (dG-dC)·poly(dG-dC). There is no preferential binding in the competition between poly(dG-dC) ·poly(dG-dC), poly(dA-dC) ·poly(dG-dT) and poly(dA-dG)·poly(dC-dT). In the competition between poly(dG-dC) ·poly (dG-dC) (B conformation) and poly(dG-br5dC) ·poly(dG-br5dC) (Z conformation), the drug binds equally well to both polynucleotides. In natural DNA, modification of guanine residues in (GC)n·(GC)nsequences by the drug has been revealed by the inhibition of cleavage of these sequences by the restriction enzyme BssHII. By means of antibodies to platinated poly(dG-dC), it is shown that some of the adducts formed in platinated poly(dG-dC) are also formed in platinated pBR322 DNA. The type of adducts recognized by the antibodies is not known. Thin layer chromatography of the products after chemical and enzymatic hydrolysis of platinated poly(dG-dC) suggests that interstrand cross-links are formed. Finally, the conformations of poly(dG-m5dC) modified either by cis-diamminedichloroplatinum(II) or by trans-diammine- dichloroplatinum(II) have been compared by circular dichroism. Both the cis-isomer and the trans-isomer stabilize the Z conformation when they bind to poly(dG-m5dC) in the Z conformation. When they bind to poly(dG-m5dC) in the B conformation, the conformations of poly(dG-m5dC) modified by the cis or the trans-isomer are different. Moreover, the cis-isomer facilitates the B form-Z form transition of the unplatinated regions while the trans-isomer makes it more difficult.  相似文献   

20.
The kinetics of the hydrogen-deuterium exchange reactions of deoxyguanosine (dG), deoxycytidine (dC), double-helical poly[d(G-C)] X poly[d(G-C], and double-helical poly(dG) X poly(dC) have been examined at 20 degrees C, pH 7.0, and in low-salt (0.15 M NaCl) medium by stopped-flow ultraviolet spectrophotometry, in the spectral region of 260 to 320 nm. The rate constant was found to be 78.9 s-1 for dG-NH, 2.2 s-1 for dG-NH2, 39.3 s-1 for dC-NH2, 2.4 s-1 (fast) and 0.94 s-1 (slow) for poly[d(G-C)] X poly[d(G-C)], and 2.2 s-1 (fast) and 0.92 s-1 (slow) for poly(dG) X poly(dC). From these values, the probability of base-pair opening of the G X C containing B-form double helix is estimated to be (3 +/- 1) X 10(-3). This is much greater than what is expected from an extrapolation of the van't Hoff plot at the helix-coil transition region, i.e. at about 110 degrees C. The mechanism of these base-pair openings at 20 degrees C (as well as the mechanism of base-pair reformation) is suggested to be totally different from those in the melting temperature range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号