首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SPKK, a new nucleic acid-binding unit of protein found in histone.   总被引:30,自引:6,他引:24       下载免费PDF全文
M Suzuki 《The EMBO journal》1989,8(3):797-804
A new DNA-binding unit of a protein different from the alpha-helix, the beta-sheet and the Zn-finger is proposed based on the analysis of the structure of the N-terminus of sea urchin spermatogenous histone H1. DNA-binding arms of the sea urchin spermatogenous histones, H1 and H2B, are composed of repeats of Ser-Pro-Lys(Arg)-Lys(Arg) (SPKK) residues. A six-times repeat of SPKK (S6 peptide) was isolated from H1 and the competition of S6 for DNA binding with a DNA-binding dye, Hoechst 33258, was analysed. The S6 peptide is shown to be a competitive inhibitor of Hoechst 33258, and it is concluded that the SPKK repeat binds to DNA in its minor groove with a binding constant, KS6 = 1.67 X 10(10) M-1. The circular dichroism (CD) spectrum of a synthetic peptide, SPRKSPRK (S2 peptide), is quite different from those of both the alpha-helix and the beta-sheet and resembles that of a random coil. From statistical consideration of protein structures it is proposed that SPKK forms a compact beta-turn stabilized by an additional hydrogen bond. Since a repeated chain of such turn of SPKK offers a repeat of amides of Ser residues at a distance similar to that of DNA-binding amides of the drugs, Hoechst 33258 and netropsin, and since the amides of these drugs bind to DNA replacing the spine of hydration in a minor groove, it is proposed that a repeat of SPKK binds to DNA in the minor groove using similar hydrogen bonds.  相似文献   

2.
The sequence selectivity of binding to DNA by an acridine-linked peptide ligand has been investigated by means of footprinting methodologies. The ligand conjugates an anilino-acridine intercalating chromophore with the potentially minor groove binder octapeptide SPKKSPKK. This basic peptide corresponds to a highly conserved DNA recognition motif found in histone H1 and several other nonhistone proteins. Three complementary techniques using DNase I, hydroxyl radicals and osmium tetroxide as sequencing probes have been employed to evaluate both the sequence specificity of binding and the drug-induced conformational changes in DNA. The results converge to demonstrate the AT-selectivity and support a model in which the peptide moiety lies in the minor groove. DNA-binding sites of the conjugate are restricted to a few alternating AT-sequences proximal to GC-rich regions. Binding to homooligomeric runs of A and T is clearly disfavoured by the hybrid whereas such sequences represent preferred binding sites for the unsubstituted basic peptide. These differences reflect the influence of the anilino-acridine chromophore, which evidently contributes to the DNA recognition process allowing the peptide only to contact defined DNA sequences.  相似文献   

3.
A bifunctional molecule in which an ellipticine chromophore is attached to a distamycin residue via a diaminopropyl tether has been designed and synthesized in the expectation of creating a hybrid molecule capable of bidentate binding to DNA by both intercalation and minor-groove interactions. The strength and mode of binding to DNA of this conjugate have been studied by means of circular and linear dichroism as well as by stopped-flow kinetics and measurements of reactivity toward a chemical probe. The results converge to reveal that the ellipticine moiety of the hybrid largely dominates the binding reaction with DNA. In the presence of chromatin, the hybrid molecule binds preferentially to the internucleosomal DNA, a preference dictated by its intercalating chromophore. Theoretical computations were performed on the comparative complexation energies of distamycin, the ellipticine derivative, and the hybrid ligand with a B-representative octanucleotide, d(GCATATGC)2. The best binding configuration of the ellipticine derivative locates its aminoalkyl side chain in the minor groove where distamycin is also present. The molecular modeling analysis fully supports the involvement of a bimodal binding process for the hybrid and reveals that the binding of the conjugate to DNA favors a pronounced bending toward the minor groove. This effect is attributed to intercalation of the ellipticine chromophore. An interesting link is established between the DEPC reactivity experiments and the theoretical computations, suggesting that DEPC can be used as a probe for drug-induced DNA bending. On the basis of these results, we propose the design of a new hybrid ligand bearing an additional positively-charged amidine side chain to confer higher DNA-binding affinity.  相似文献   

4.
We report the synthesis, DNA-binding and cleaving properties, and cytotoxic activities of R-128, a hybrid molecule in which a bis-pyrrolecarboxamide-amidine element related to the antibiotic netropsin is covalently tethered to a phenazine-di-N-oxide chromophore. The affinity and mode of interaction of the conjugate with DNA were investigated by a combination of absorption spectroscopy, circular dichroism, and electric linear dichroism. This hybrid molecule binds to AT-rich sequences of DNA via a bimodal process involving minor groove binding of the netropsin moiety and intercalation of the phenazine moiety. The bidentate mode of binding was evidenced by linear dichroism using calf thymus DNA and poly(dA-dT).(dA-dT). In contrast, the drug fails to bind to poly(dG-dC).poly(dG-dC), because of the obstructive effect of the guanine 2-amino group exposed in the minor groove of this polynucleotide. DNase I footprinting studies indicated that the conjugate interacts preferentially with AT-rich sequences, but the cleavage of DNA in the presence of a reducing agent can occur at different sequences not restricted to the AT sites. The main cleavage sites were detected with a periodicity of about 10 base pairs corresponding to approximately one turn of the double helix. This suggests that the cleavage may be dictated by the structure of the double helix rather than the primary nucleotide sequence. The conjugate which is moderately toxic to cancer cells complements the tool box of reagents which can be utilized to produce DNA strand scission. The DNA cleaving properties of R-128 entreat further exploration into the use of phenazine-di-N-oxides as tools for investigating DNA structure.  相似文献   

5.
We report the DNA binding properties of two hybrid molecules which result from the combination of the DNA sequence-specific minor groove ligand netropsin with the bithiazole moiety of the antitumor drug bleomycin. The drug-DNA interaction has been investigated by means of electric linear dichroism (ELD) spectroscopy and DNase I footprinting. In compound 1 the two moieties are linked by a flexible aliphatic tether while in compound 2 the two aromatic ring systems are directly coupled by a rigid peptide bond. The results are consistent with a model in which the netropsin moiety of compound 1 resides in the minor groove of DNA and where the appended bithiazole moiety is projected away from the DNA groove. This monocationic hybrid compound has a weak affinity for DNA and shows a strict preference for A and T stretches. ELD measurements indicate that in the presence of DNA compound 2 has an orientation typical of a minor groove binder. Similar orientation angles were measured for netropsin and compound 2. This ligand which has a biscationic nature tightly binds to DNA (Ka = 6.3 x 10(5) M-1) and is mainly an AT-specific groove binder. But, depending on the nature of the sequence flanking the AT site first targeted by its netropsin moiety, the bithiazole moiety of 2 can accommodate various types of nucleotide motifs with the exception of homooligomeric sequences. As evidenced by footprinting data, the bithiazole group of bleomycin acts as a DNA recognition element, offering opportunities to recognize GC bp-containing DNA sequences with apparently a preference (although not absolute) for a pyrimidine-G-pyrimidine motif. Thus, the bithiazole unit of bleomycin provides an additional anchor for DNA binding and is also capable of specifically recognizing particular DNA sequences when it is appended to a strongly sequence selective groove binding entity. Finally, a model which schematizes the binding of compound 2 to the sequence 5'-TATGC is proposed. This model readily explains the experimentally observed specificity of this netropsin-bithiazole conjugate.  相似文献   

6.
Design, synthesis and DNA binding activities of two peptides containing 32 and 102 residues are reported. A nonlinear 102-residue peptide contains four modified alpha helix-turn-alpha helix motifs of 434 cro protein. These four units are linked covalently to a carboxyterminal crosslinker containing four arms each ending with an aliphatic amino group. From CD studies we have found that in aqueous buffer in the presence of 20% trifluoroethanol the peptide residues assume alpha-helical, beta-sheet and random-coiled conformations with the alpha-helical content of about 16% at room temperature. Upon complex formation between peptide and DNA, a change in the peptide conformation takes place which is consistent with an alpha - beta transition in the DNA binding alpha helix-turn-alpha helix units of the peptide. Similar conformation changes are observed upon complex formation with the synthetic operator of a linear peptide containing residues 7-37 of 434 cro repressor. Evidently, in the complex, residues present in helices alpha 2 and alpha 3 of the two helix motif form a beta-hairpin which is inserted in the minor DNA groove. The last inference is supported by our observations that the two peptides can displace the minor groove-binding antibiotic distamycin A from poly(dA).poly(dT) and synthetic operator DNA. As revealed from DNase digestion studies, the nonlinear peptide binds more strongly to a pseudooperator Op1, located in the cro gene, than to the operator OR3. A difference in the specificity shown by the non-linear peptide and wild-type cro could be attributed to a flexibility of the linker chains between the DNA-binding domains in the peptide molecule as well as to a replacement of Thr-Ala in the peptide alpha 2-helices. Removal of two residues from the N-terminus of helix alpha 2 in each of the four DNA-binding domains of the peptide leads to a loss of binding specificity.  相似文献   

7.
8.
Tethering of BBZPNH2, an analogue of the Hoechst 33258, with a 14 nucleotide long DNA sequence with the help of succinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate (SMCC), a heterobifunctional crosslinking reagent, using DMF/ water as solvent yields a conjugate which effectively stabilizes the triple helix. The above conjugate was hybridized with 26 bp long double stranded (ds) DNA having 14 bp long polypurine-polypyrimidine stretch to form a pyrimidine motif triple helix. The above conjugate increases the thermal stability of both the transitions, that is, triple helix to double helix by 12 degrees C and double helix to single strand transition by 16 degrees C for the triple helix formed with conjugated TFO over the triple helix made from non-conjugated TFO. Fluorescence and circular dichroism spectra recorded at different temperatures confirm the presence of minor groove binding bisbenzimidazole in the AT-rich minor groove of dsDNA even after the major groove bound TFO separates out.  相似文献   

9.
D Dasgupta  I H Goldberg 《Biochemistry》1985,24(24):6913-6920
Two general approaches have been taken to understand the mechanism of the reversible binding of the nonprotein chromophore of neocarzinostatin to DNA: (1) measurement of the relative affinity of the chromophore for various DNAs that have one or both grooves blocked by bulky groups and (2) studies on the influence of adenine-thymine residue-specific, minor groove binding agents such as the antibiotics netropsin and distamycin on the chromophore-DNA interaction. Experiments using synthetic DNAs containing halogen group (Br, I) substituents in the major groove or natural DNAs with glucosyl moieties projecting into the major groove show that obstruction of the major groove does not decrease the binding stoichiometry or the binding constant for the DNA-chromophore interaction. Chemical methylation of bases in both grooves of calf thymus DNA, resulting in 13% methylation of N-7 of guanine in the major groove and 7% methylation of N-3 of adenine in the minor groove, decreases the binding affinity and increases the size of the binding site for neocarzinostatin chromophore. Similar results were obtained whether binding parameters were determined directly by spectroscopic measurements or indirectly by measuring the ability of the DNA to protect the chromophore against degradation. On the other hand, netropsin and distamycin compete with neocarzinostatin chromophore for binding to the minor groove of DNA, as shown by their decrease in the ability of poly(dA-dT) to protect the chromophore against degradation and their reduction in chromophore-induced DNA damage as measured by thymine release.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Mammalian telomeres consist of long tandem arrays of double-stranded telomeric TTAGGG repeats packaged by the telomeric DNA-binding proteins TRF1 and TRF2. Both contain a similar C-terminal Myb domain that mediates sequence-specific binding to telomeric DNA. In a DNA complex of TRF1, only the single Myb-like domain consisting of three helices can bind specifically to double-stranded telomeric DNA. TRF2 also binds to double-stranded telomeric DNA. Although the DNA binding mode of TRF2 is likely identical to that of TRF1, TRF2 plays an important role in the t-loop formation that protects the ends of telomeres. Here, to clarify the details of the double-stranded telomeric DNA-binding modes of TRF1 and TRF2, we determined the solution structure of the DNA-binding domain of human TRF2 bound to telomeric DNA; it consists of three helices, and like TRF1, the third helix recognizes TAGGG sequence in the major groove of DNA with the N-terminal arm locating in the minor groove. However, small but significant differences are observed; in contrast to the minor groove recognition of TRF1, in which an arginine residue recognizes the TT sequence, a lysine residue of TRF2 interacts with the TT part. We examined the telomeric DNA-binding activities of both DNA-binding domains of TRF1 and TRF2 and found that TRF1 binds more strongly than TRF2. Based on the structural differences of both domains, we created several mutants of the DNA-binding domain of TRF2 with stronger binding activities compared to the wild-type TRF2.  相似文献   

11.
Design, synthesis and DNA binding activity of a nonlinear 102 residue peptide are reported. The peptide contains four sequence-specific DNA binding domains of 434 Cro protein. These four domains were linked covalently to a symmetrical carboxyterminal crosslinker that contains four arms each ending with an aliphatic aminogroup. From CD studies we have found that in aqueous buffer in the presence of 20% trifluoroethanol the peptide residues assume alpha helical, beta-sheet and random coiled conformations with an alpha helical content of about 16% at room temperature. The alpha helicity is increased up to 40% in the presence of 40% trifluoroethanol. Upon complex formation between the peptide and DNA a change in the peptide conformation takes place which is consistent with an alpha-beta transition in the DNA binding, helix-turn-helix motif of 434 Cro repressor. Evidently residues present in helices alpha(2) and alpha(3) form a beta hairpin which is inserted in the minor DNA groove. The latter inference is supported by our observations that the peptide can displace minor groove binding antibiotic distamycin A from a complex with poly(dA).poly(dT). As revealed from DNase protection studies the peptide exhibits preferences for binding to operator and pseudooperator sites recognized by 434 Cro repressor. It binds strongly to operator sites OR1, OR2 and OR3 and exhibits a greater affinity for pseudooperator site Op1. From analysis of nucleotide sequences in the strong affinity binding sites for the peptide on DNA a conclusion is drawn that it binds to pseudosymmetrical nucleotide sequences 5'-ACAA(W)nCTGT-3', where W is an arbitrary nucleotide. n is equal to six or seven. In the strongest affinity binding site for the peptide on DNA (Op1) motif 5'-ACAA-3' is replaced by sequence 5'-ACCA-3'. A difference in binding specificity shown by the peptide and 434 Cro protein could be attributed to a flexibility of the connecting chains between DNA-binding domains in the peptide molecule as well as to a replacement of Thr - Ala in the alpha 2 helix. Removal of two residues from the N-terminal end of helix alpha 2 in each of the four DNA binding domains of 434 Cro present in the peptide leads to a loss of binding specificity, although the modified peptide binds to DNA unspecifically.  相似文献   

12.
Changes in the elastic properties of single deoxyribonucleic acid (DNA) molecules in the presence of different DNA-binding agents are identified using atomic force microscope single molecule force spectroscopy. We investigated the binding of poly(dG-dC) dsDNA with the minor groove binder distamycin A, two supposed major groove binders, an alpha-helical and a 3(10)-helical peptide, the intercalants daunomycin, ethidium bromide and YO, and the bis-intercalant YOYO. Characteristic mechanical fingerprints in the overstretching behavior of the studied single DNA-ligand complexes were observed allowing the distinction between different binding modes. Docking of ligands to the minor or major groove of DNA has the effect that the intramolecular B-S transition remains visible as a distinct plateau in the force-extension trace. By contrast, intercalation of small molecules into the double helix is characterized by the vanishing of the B-S plateau. These findings lead to the conclusion that atomic force microscope force spectroscopy can be regarded as a single molecule biosensor and is a potent tool for the characterization of binding motives of small ligands to DNA.  相似文献   

13.
DNA binding of two hybrid ligands composed of an alkylating pyrrolo[2,1-c][1,4]benzodiazepine (PBD) moiety tethered to either a naphthalimide or a phenyl benzimidazole chromophore was studied by DNA melting experiments, UV and fluorescence titrations, CD spectroscopy and isothermal titration calorimetry (ITC). Binding of both hybrids results in a remarkable thermal stabilization with an increase of DNA melting temperatures by up to 40 °C for duplexes that allow for a covalent attachment of the PBD moiety to guanine bases in their minor groove. CD spectroscopic measurements suggest that the naphthalimide moiety of the drug interacts through intercalation. In contrast, the PBD-benzimidazole hybrid binds in the DNA minor groove with a preference for (A,T)4G sequences. Whereas the binding of both ligands is enthalpy-driven and associated with a negative entropy, the benzimidazole hybrid exhibits a less favourable binding enthalpy that is counterbalanced by a more favourable entropic term when compared to the naphthalimide hybrid.  相似文献   

14.
The synthesis of a new versatile "Hoechst 33258-like" Boc-protected amino acid building block for peptide synthesis is described. It is demonstrated that this new ligand is an effective mimic of Hoechst 33258 in terms of DNA affinity and sequence specificity. Furthermore, this minor groove binder was conjugated to a DNA condensing peptide (KSPKKAKK) by continuous solid-phase peptide synthesis, and the conjugate exhibited increased DNA affinity (ca. 10-fold), but similar sequence preference compared to Hoechst 33258 as analyzed by DNaseI footprinting. Finally, the fluorescence quantum yield of the new chromophore is found to increase 30% upon binding to double stranded DNA.  相似文献   

15.
The deformed (Dfd) and ultrabithorax (Ubx) homeoproteins regulate developmental gene expression in Drosophila melanogaster by binding to specific DNA sequences within its genome. DNA binding is largely accomplished via a highly conserved helix-turn-helix DNA-binding domain that is known as a homeodomain (HD). Despite nearly identical DNA recognition helices and similar target DNA sequence preferences, the in vivo functions of the two proteins are quite different. We have previously revealed differences between the two HDs in their interactions with DNA. In an effort to define the individual roles of the HD N-terminal arm and recognition helix in sequence-specific binding, we have characterized the structural details of two Dfd/Ubx chimeric HDs in complex with both the Dfd and Ubx-optimal-binding site sequences. We utilized hydroxyl radical cleavage of DNA to assess the positioning of the proteins on the binding sites. The effects of missing nucleosides and purine methylation on HD binding were also analyzed. Our results show that both the Dfd and Ubx HDs have similar DNA-binding modes when in complex with the Ubx-optimal site. There are subtle but reproducible differences in these modes that are completely interchanged when the Dfd N-terminal arm is replaced with the corresponding region of the Ubx HD. In contrast, we showed previously that the Dfd-optimal site sequence elicits a very different binding mode for the Ubx HD, while the Dfd HD maintains a mode similar to that elicited by the Ubx-optimal site. Our current methylation interference studies suggest that this alternate binding mode involves interaction of the Ubx N-terminal arm with the minor groove on the opposite face of DNA relative to the major groove that is occupied by the recognition helix. As judged by hydroxyl radical footprinting and the missing nucleoside experiment, it appears that interaction of the Ubx recognition helix with the DNA major groove is reduced. Replacing the Dfd N-terminal arm with that of Ubx does not elicit a complete interchange of the DNA-binding mode. Although the position of the chimera relative to DNA, as judged by hydroxyl radical footprinting, is similar to that of the Dfd HD, the missing nucleoside and methylation interference patterns resemble those of the Ubx HD. Repositioning of amino acid side-chains without wholesale structural alteration in the polypeptide appears to occur as a function of N-terminal arm identity and DNA-binding site sequence. Complete interchange of binding modes was achieved only by replacement of the Dfd N-terminal arm and the recognition helix plus 13 carboxyl-terminal residues with the corresponding residues of Ubx. The position of the N-terminal arm in the DNA minor groove appears to differ in a manner that depends on the two base-pair differences between the Dfd and Ubx-optimal-binding sites. Thus, N-terminal arm position dictates the binding mode and the interaction of the recognition helix with nucleosides in the major groove.  相似文献   

16.
An analogue of the DNA-binding compound Hoechst 33258, in which the piperazine ring has been replaced by an imidazoline group, has been cocrystallized with the dodecanucleotide sequence d(CGCGAATTCGCG)2. The structure has been solved by X-ray diffraction analysis and has been refined to an R-factor of 19.7% at a resolution of 2.0 A. The ligand is found to bind in the minor groove, at the central four AATT base pairs of the B-DNA double helix, with the involvement of a number of van der Waals contacts and hydrogen bonds. There are significant differences in minor groove width for the two compounds, along much of the AATT region. In particular this structure shows a narrower groove at the 3' end of the binding site consistent with the narrower cross-section of the imidazole group compared with the piperazine ring of Hoechst 33258 and therefore a smaller perturbation in groove width. The higher binding affinity to DNA shown by this analogue compared with Hoechst 33258 itself, has been rationalised in terms of these differences.  相似文献   

17.
Nuclear factor I (NFI) is a HeLa sequence-specific DNA-binding protein that is required for initiation of adenovirus (Ad) DNA replication and may be involved in the expression of several cellular genes. The interaction between NFI and its binding site on the Ad2 origin has been studied. Methylation interference and protection, u.v. irradiation of 5-BrdU substituted DNA and ethylation interference revealed major groove contacts with G and T, and phosphate backbone contacts. Computer stereographics show that the contacts are located in two blocks showing dyad symmetry to each other and 22 out of 23 contacts are accessible from one side of the helix. Inversion of the NFI binding site did not change the NFI dependent stimulation of Ad2 DNA replication in a reconstituted system. All data are compatible with NFI binding as a dimer at one side of the DNA helix.  相似文献   

18.
A H Wang  G Ughetto  G J Quigley  A Rich 《Biochemistry》1987,26(4):1152-1163
The crystal structure of a daunomycin-d(CGTACG) complex has been solved by X-ray diffraction analysis and refined to a final R factor of 0.175 at 1.2-A resolution. The crystals are in a tetragonal crystal system with space group P4(1)2(1)2 and cell dimensions of a = b = 27.86 A and c = 52.72 A. The self-complementary DNA forms a six base pair right-handed double helix with two daunomycin molecules intercalated in the d(CpG) sequences at either end of the helix. Daunomycin in the complex has a conformation different from that of daunomycin alone. The daunomycin aglycon chromophore is oriented at right angles to the long dimension of the DNA base pairs, and the cyclohexene ring A rests in the minor groove of the double helix. Substituents on this ring have hydrogen-bonding interactions to the base pairs above and below the intercalation site. O9 hydroxyl group of the daunomycin forms two hydrogen bonds with N3 and N2 of an adjacent guanine base. Two bridging water molecules between the drug and DNA stabilize the complex in the minor groove. In the major groove, a hydrated sodium ion is coordinated to N7 of the terminal guanine and the O4 and O5 of daunomycin with a distorted octahedral geometry. The amino sugar lies in the minor groove without bonding to the DNA. The DNA double helix is distorted with an asymmetrical rearrangement of the backbone conformation surrounding the intercalator drug. The sugar puckers are C1,C2'-endo, G2,C1'-endo, C11,C1'-endo, and G12,C3'-exo. Only the C1 residue has a normal anti-glycosyl torsion angle (chi = -154 degrees), while the other three residues are all in the high anti range (average chi = -86 degrees). This structure allows us to identify three principal functional components of anthracycline antibiotics: the intercalator (rings B-D), the anchoring functions associated with ring A, and the amino sugar. The structure-function relationships of daunomycin binding to DNA as well as other related anticancer drugs are discussed.  相似文献   

19.
The interactions between a novel antitumor drug nogalamycin with the self-complementary DNA hexamer d(CGTACG) have been studied by 500 MHz two dimensional proton nuclear magnetic resonance spectroscopy. When two nogalamycins are mixed with the DNA hexamer duplex in a 2:1 ratio, a symmetrical complex is formed. All non-exchangeable proton resonances (except H5' & H5") of this complex have been assigned using 2D-COSY and 2D-NOESY methods at pH 7.0. The observed NOE cross peaks are fully consistent with the 1.3 A resolution x-ray crystal structure (Liaw et al., Biochemistry 28, 9913-9918, 1989) in which the elongated aglycone chromophore is intercalated between the CpG steps at both ends of the helix. The aglycone chromophore spans across the GC Watson-Crick base pairs with its nogalose lying in the minor groove and the aminoglucose lying in the major groove of the distorted B-DNA double helix. The binding conformation suggests that specific hydrogen bonds exist in the complex between the drug and guanine-cytosine bases in both grooves of the helix. When only one drug per DNA duplex is present in solution, there are three molecular species (free DNA, 1:1 complex and 2:1 complex) in slow exchange on the NMR time scale. This equilibrium is temperature dependent. At high temperature the free DNA hexamer duplex and the 1:1 complex are completely destabilized such that at 65 degrees C only free single-stranded DNA and the 2:1 complex co-exist. At 35 degrees C the equilibrium between free DNA and the 1:1 complex is relatively fast, while that between the 1:1 complex and the 2:1 complex is slow. This may be rationalized by the fact that the binding of nogalamycin to DNA requires that the base pairs in DNA open up transiently to allow the bulky sugars to go through. A separate study of the 2:1 complex at low pH showed that the terminal GC base pair is destabilized.  相似文献   

20.
The tripeptide 1,2-dihydro-(3 H )-pyrrolo[3,2- e ]indole-7-carboxylate (CDPI3) binds to the minor groove of DNA with high affinity. When this minor groove binder is conjugated to the 5'-end of short oligonucleotides the conjugates form unusually stable hybrids with complementary DNA and thus may have useful diagnostic and/or therapeutic applications. In order to gain an understanding of the structural interactions between the CDPI3minor groove binding moiety and the DNA, we have determined and compared the solution structure of a duplex consisting of oligodeoxyribonucleotide 5'-TGATTATCTG-3' conjugated at the 5'-end to CDPI3 and its complementary strand to an unmodified control duplex of the same sequence using nuclear magnetic resonance techniques. Thermal denaturation studies indicated that the hybrid of this conjugate with its complementary strand had a melting temperature that was 30 degrees C higher compared with the unmodified control duplex. Following restrained molecular dynamics and relaxation matrix refinement, the solution structure of the CDPI3-conjugated DNA duplex demonstrated that the overall shape of the duplex was that of a straight B-type helix and that the CDPI3moiety was bound snugly in the minor groove, where it was stabilized by extensive van der Waal's interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号