首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Cyclin-dependent kinases (CDKs) have a central role in cell-cycle control and are activated by complex formation with positive regulatory proteins called cyclins and by phosphorylation. The overexpression and mutation of cyclins and CDKs has been associated with tumorigenesis and oncogenesis. A virus-encoded cyclin (v-cyclin) from herpesvirus saimiri has been shown to exhibit highest sequence homology to type D cyclins and specifically activates CDK6 of host cells to a very high degree. RESULTS: We have determined the first X-ray structure of a v-cyclin to 3.0 A resolution. The structure of the core domains is very similar to those of cyclin A and cyclin H from human cells. To understand the structural basis for the v-cyclin specificity for CDK6 and the insensitivity of the complex to inhibitors of the p21 and INK4 families, a v-cyclin-CDK2 model was built on the basis of the known structures of human cyclin A in complex with CDK2 and the CDK inhibitor p27(Kip1). CONCLUSIONS: Although many critical interactions between cyclin A and CDK2 would be conserved in a v-cyclin-CDK2 complex, some appear sterically or electrostatically unfavorable due to shifts in the backbone conformation or sidechain differences and may contribute to v-cyclin selectivity for CDK6. The insensitivity of v-cyclin-CDK6 complexes to inhibitors of the p21 family is probably due to structural changes in v-cyclin that lead to a flatter surface area offering fewer potential contacts with the protein inhibitor. In addition, sequence changes in v-cyclin eliminate hydrogen-bonding partners for atoms of the p27(Kip1) inhibitor. This structure provides the first model for interactions between v-cyclins and host cell-cycle proteins; these interactions may be important for virus survival as well as oncogenic transformation of host cells.  相似文献   

2.
We present a comprehensive structural, evolutionary and molecular dynamics (MD) study of the G/U wobble basepairs in the ribosome based on high-resolution crystal structures, including the recent Escherichia coli structure. These basepairs are classified according to their tertiary interactions, and sequence conservation at their positions is determined. G/U basepairs participating in tertiary interactions are more conserved than those lacking any interactions. Specific interactions occurring in the G/U shallow groove pocket--like packing interactions (P-interactions) and some phosphate backbone interactions (phosphate-in-pocket interactions)--lead to higher G/U conservation than others. Two salient cases of unique phylogenetic compensation are discovered. First, a P-interaction is conserved through a series of compensatory mutations involving all four participating nucleotides to preserve or restore the G/U in the optimal orientation. Second, a G/U basepair forming a P-interaction and another one forming a phosphate-in-pocket interaction are replaced by GNRA loops that maintain similar tertiary contacts. MD simulations were carried out on eight P-interactions. The specific GU/CG signature of this interaction observed in structure and sequence analysis was rationalized, and can now be used for improving sequence alignments.  相似文献   

3.
We present heuristic-based predictions of the secondary and tertiary structures of the cyclins A, B, and D, representatives of the cyclin superfamily. The list of suggested constraints for tertiary structure assembly was left unrefined in order to submit this report before an announced crystal structure for cyclin A becomes available. To predict these constraints, a master sequence alignment over 270 positions of cyclin types A, B, and D was adjusted based on individual secondary structure predictions for each type. We used new heuristics for predicting aromatic residues at protein-protein interfaces and to identify sequentially distinct regions in the protein chain that cluster in the folded structure. The boundaries of two conjectured domains in the cyclin fold were predicted based on experimental data in the literature. The domain that is important for interaction of the cyclins with cyclin-dependent kinases (CDKs) is predicted to contain six helices; the second domain in the consensus model contains both helices and a β-sheet that is formed by sequentially distant regions in the protein chain. A plausible phosphorylation site is identified. This work represents a blinded test of the method for prediction of secondary and, to a lesser extent, tertiary structure from a set of homologous protein sequences. Evaluation of our predictions will become possible with the publication of the announced crystal structure.  相似文献   

4.
5.
Cyclins in association with the protein kinase p34cdc2and related cyclin-dependent protein kinases (cdks) are key regulatory elements in controlling the cell division cycle. Here, we describe the identification and characterization of a full-length cDNA clone of alfalfa mitotic cyclin, termed CycIIIMs. Computer analysis of known plant cyclin gene sequences revealed that this cyclin belongs to the same structural group as the other known partial alfalfa cyclin sequences. Genetic segregation analysis based on DNA-DNA hybridization data showed that the CycIIIMs gene(s) locates in a single chromosomal region on linkage group 5 of the alfalfa genetic map between RFLP markers UO89A and CG13. The assignment of this cyclin to the mitotic cyclin class was based on its cDNA-derived sequence and its differential expression during G2/M cell cycle phase transition of a partially synchronized alfalfa cell culture. Sequence analysis indicated common motifs with both the A- and B-types of mitotic cyclins similarly to the newly described B3-type of animal cyclins.  相似文献   

6.
Mitotic cyclins are abruptly degraded at the end of mitosis by a cell-cycle-regulated ubiquitin-dependent proteolytic system. To understand how cyclin is recognized for ubiquitin conjugation, we have performed a mutagenic analysis of the destruction signal of mitotic cyclins. We demonstrate that an N-terminal cyclin B segment as short as 27 residues, containing the 9-amino-acid destruction box, is sufficient to destabilize a heterologous protein in mitotic Xenopus extracts. Each of the three highly conserved residues of the cyclin B destruction box is essential for ubiquitination and subsequent degradation. Although an intact destruction box is essential for the degradation of both A- and B-type cyclins, we find that the Xenopus cyclin A1 destruction box cannot functionally substitute for its B-type counterpart, because it does not contain the highly conserved asparagine necessary for cyclin B proteolysis. Physical analysis of ubiquitinated cyclin B intermediates demonstrates that multiple lysine residues function as ubiquitin acceptor sites, and mutagenic studies indicate that no single lysine residue is essential for cyclin B degradation. This study defines the key residues of the destruction box that target cyclin for ubiquitination and suggests there are important differences in the way in which A- and B-type cyclins are recognized by the cyclin ubiquitination machinery.  相似文献   

7.
PAS domains are widespread in archaea, bacteria, and eukaryota, and play important roles in various functions. In this study, we aim to explore functional evolutionary relationship among proteins in the PAS domain superfamily in view of the sequence‐structure‐dynamics‐function relationship. We collected protein sequences and crystal structure data from RCSB Protein Data Bank of the PAS domain superfamily belonging to three biological functions (nucleotide binding, photoreceptor activity, and transferase activity). Protein sequences were aligned and then used to select sequence‐conserved residues and build phylogenetic tree. Three‐dimensional structure alignment was also applied to obtain structure‐conserved residues. The protein dynamics were analyzed using elastic network model (ENM) and validated by molecular dynamics (MD) simulation. The result showed that the proteins with same function could be grouped by sequence similarity, and proteins in different functional groups displayed statistically significant difference in their vibrational patterns. Interestingly, in all three functional groups, conserved amino acid residues identified by sequence and structure conservation analysis generally have a lower fluctuation than other residues. In addition, the fluctuation of conserved residues in each biological function group was strongly correlated with the corresponding biological function. This research suggested a direct connection in which the protein sequences were related to various functions through structural dynamics. This is a new attempt to delineate functional evolution of proteins using the integrated information of sequence, structure, and dynamics.  相似文献   

8.
In the budding yeast Saccharomyces cerevisiae, progress of the cell cycle beyond the major control point in G1 phase, termed START, requires activation of the evolutionarily conserved Cdc28 protein kinase by direct association with GI cyclins. We have used a conditional lethal mutation in CDC28 of S. cerevisiae to clone a functional homologue from the human fungal pathogen Candida albicans. The protein sequence, deduced from the nucleotide sequence, is 79% identical to that of S. cerevisiae Cdc28 and as such is the most closely related protein yet identified. We have also isolated from C. albicans two genes encoding putative G1 cyclins, by their ability to rescue a conditional GI cyclin defect in S. cerevisiae; one of these genes encodes a protein of 697 amino acids and is identical to the product of the previously described CCN1 gene. The second gene codes for a protein of 465 residues, which has significant homology to S. cerevisiae Cln3. These data suggest that the events and regulatory mechanisms operating at START are highly conserved between these two organisms.  相似文献   

9.
Analysis of wild-type and mutant p21WAF-1 gene activities.   总被引:14,自引:6,他引:8       下载免费PDF全文
The p21WAF-1 gene is positively regulated by the wild-type p53 protein. p21WAF-1 has been shown to interact with several cyclin-dependent kinase complexes and block the activity of G1 cyclin-dependent kinases (cdks). Mutational analysis with the p21WAF-1 gene localized a site, at amino acid residues 21 and 24 in the amino terminus of the protein, for p21WAF-1 binding to cyclins D and E. This region of the protein is conserved (residues 21 to 26) in other p21WAF-1 family members, p27kip-1 and p57kip-2. The same p21WAF-121,24 mutant also fails to bind to cyclin D1-cdk 4 or cyclin E-cdk 2 complexes in vitro, suggesting that amino acid residues 21 and 24 are important for p21WAF-1-cdk-cyclin trimeric complex interactions. The p21WAF-1 wild-type protein will suppress tumor cell growth in culture while p21WAF-1 mutant proteins with defects in residues 21 and 24 fail to suppress tumor cell growth. The overexpression of cyclin D or E in these cells will partially overcome the growth suppression of wild-type p21WAF-1 protein in cells. These results provide evidence that p21WAF-1 acts through cyclin D1-cdk4 and cyclin E-cdk2 complexes in vivo to induce the growth suppression. The p21WAF-1 binding sites for cyclins (residues 21 to 26), cdk2 (residues 49 to 71), and proliferating-cell nuclear antigen (residues 124 to 164) have all been mapped to discrete sites on the protein.  相似文献   

10.
Progression through the eukaryotic cell cycle is driven by the orderly activation of cyclin-dependent kinases (CDKs). For activity, CDKs require association with a cyclin and phosphorylation by a separate protein kinase at a conserved threonine residue (T160 in CDK2). Here we present the structure of a complex consisting of phosphorylated CDK2 and cyclin A together with an optimal peptide substrate, HHASPRK. This structure provides an explanation for the specificity of CDK2 towards the proline that follows the phosphorylatable serine of the substrate peptide, and the requirement for the basic residue in the P+3 position of the substrate. We also present the structure of phosphorylated CDK2 plus cyclin A3 in complex with residues 658-668 from the CDK2 substrate p107. These residues include the RXL motif required to target p107 to cyclins. This structure explains the specificity of the RXL motif for cyclins.  相似文献   

11.
The two retroviruses human T-lymphotropic virus type I (HTLV-I) and human immunodeficiency virus type 1 (HIV-1) are the causative agents of severe and fatal diseases including adult T-cell leukemia and the acquired immune deficiency syndrome (AIDS). Both viruses code for a protease that is essential for replication and therefore represents a key target for drugs interfering with viral infection. The retroviral proteases from HIV-1 and HTLV-I share 31% sequence identity and high structural similarities. Yet, their substrate specificities and inhibition profiles differ substantially. In this study, we performed all-atom molecular dynamics (MD) simulations for both enzymes in their ligand-free states and in complex with model substrates in order to compare their dynamic behaviors and enhance our understanding of the correlation between sequence, structure, and dynamics in this protein family. We found extensive similarities in both local and overall protein dynamics, as well as in the energetics of their interactions with model substrates. Interestingly, those residues that are important for strong ligand binding are frequently not conserved in sequence, thereby offering an explanation for the differences in binding specificity. Moreover, we identified an interaction network of contacts between conserved residues that interconnects secondary structure elements and serves as a scaffold for the protein fold. This interaction network is conformationally stable over time and may provide an explanation for the highly similar dynamic behavior of the two retroviral proteases, even in the light of their rather low overall sequence identity.  相似文献   

12.
The important role of histone posttranslational modifications, particularly methylation and acetylation, in Plasmodium falciparum gene regulation has been established. However, the role of histone phosphorylation remains understudied. Here, we investigate histone phosphorylation utilizing liquid chromatography and tandem mass spectrometry to analyze histones extracted from asexual blood stages using two improved protocols to enhance preservation of PTMs. Enrichment for phosphopeptides lead to the detection of 14 histone phospho-modifications in P. falciparum. The majority of phosphorylation sites were observed at the N-terminal regions of various histones and were frequently observed adjacent to acetylated lysines. We also report the identification of one novel member of the P. falciparum histone phosphosite binding protein repertoire, Pf14-3-3I. Recombinant Pf14-3-3I protein bound to purified parasite histones. In silico structural analysis of Pf14-3-3 proteins revealed that residues responsible for binding to histone H3 S10ph and/or S28ph are conserved at the primary and the tertiary structure levels. Using a battery of H3 specific phosphopeptides, we demonstrate that Pf14-3-3I preferentially binds to H3S28ph over H3S10ph, independent of modification of neighbouring residues like H3S10phK14ac and H3S28phS32ph. Our data provide key insight into histone phosphorylation sites. The identification of a second member of the histone modification reading machinery suggests a widespread use of histone phosphorylation in the control of various nuclear processes in malaria parasites.  相似文献   

13.
A data collection which merges protein structural and sequence information is described. Structural superpositions amongst proteins with similar main-chain fold were performed or collected from the literature. Sequences taken from the protein primary structure databases were associated with the multiple structural alignments providing they were at least 50% homologous in residue identity to one of the structural sequences and at least 50% of the structural sequence residues were alignable. Such restrictions allow reasonable confidence that the primary sequences share the conformation of the tertiary structural templates, except in the less conserved loop regions. Multiple structural superpositions were collected for 38 familial groups containing a total of 209 tertiary structures; 45 structures had no superposable mates and were used individually. Other information is also provided as main-chain and side-chain conformational angles, secondary structural assignments and the like. Wedding the primary and tertiary structural data resulted in an 8-fold increase of data bank sequence entries over those associated with the known three-dimensional architectures alone.  相似文献   

14.
15.
Mitotic cyclins A and B contain a conserved N-terminal helix upstream of the cyclin box fold that contributes to a significant interface between cyclin and cyclin-dependent kinase (CDK). To address its contribution on cyclin-CDK interaction, we have constructed mutants in conserved residues of the N-terminal helix of Xenopus cyclins B2 and A1. The mutants showed altered binding affinities to Cdc2 and/or Cdk2. We also screened for mutations in the C-terminal lobe of CDK that exhibited different binding affinities for the cyclin-CDK complex. These mutations were at residues that interact with the cyclin N-terminal helix motif. The cyclin N-terminal helix mutations have a significant effect on the interaction between the cyclin-CDK complex and specific substrates, Xenopus Cdc6 and Cdc25C. These results suggest that the N-terminal helix of mitotic cyclins is required for specific interactions with CDKs and that to interact with CDK, specific substrates Cdc6 and Cdc25C require the CDK to be associated with a cyclin. The interaction between the cyclin N-terminal helix and the CDK C-terminal lobe may contribute to binding specificity of the cyclin-CDK complex.  相似文献   

16.
In the CryoEM-structure of the hSkMNaV1.4 ion channel (PDB:6AGF), the 59-residue DIS5-S6 linker peptide was omitted due to absence of electron density. This peptide is intriguing – comprised of unique sequence and found only in mammalian skeletal muscle sodium ion channels. To probe potential physiological and evolutionary significance, we constructed an homology model of the complete hSkMNaV1.4 channel. Rather than a flexible random coil potentiating drift across the channel, the linker folds into a compact configuration through self-assembling secondary structural elements. Analogous sequences from 48 mammalian organisms show hypervariability with between 40% and 100% sequence similarity. To investigate structural implications, sequences from 14 representative organisms were additionally modelled. All showed highly conserved N-and C-terminal residues closely superimposed, suggesting a critical functional role. An optimally located asparagine residue within the conserved region was investigated for N-linked glycosylation and MD simulations carried out. Results suggest a complex glycan added at this site in the linker may form electrostatic interactions with the DIV voltage sensing domain and be mechanistically involved in channel gating. The relationship of unique sequence, compact configuration, potential glycosylation and MD simulations are discussed relative to SkMNaV1.4 structure and function.  相似文献   

17.
A new family of three related cyclins has been identified in Arabidopsis by complementation of a yeast strain deficient in G1 cyclins. Individual members show tissue-specific expression and are conserved in other plant species. They form a distinctive group of plant cyclins, which we named delta-type cyclins to indicate their similarities with mammalian D-type cyclins. The sequence relationships between delta and D cyclins include the N-terminal sequence LXCXE. This motif was originally identified in certain viral oncoproteins and is strongly implicated in binding to the retinoblastoma protein pRb. By analogy to mammalian cyclin D, these plant homologs may mediate growth and phytohormonal signals into the plant cell cycle. In support of this hypothesis, we show that, on restimulation of suspension-cultured cells, cyclin delta 3 is rapidly induced by the plant growth regulator cytokinin and cyclin delta 2 is induced by carbon source.  相似文献   

18.
Human tyrosyl‐tRNA synthetase (HsTyrRS) is composed of two structural modules: N‐terminal catalytic core and an EMAP II‐like C‐terminal domain. The structures of these modules are known, but no crystal structure of the full‐length HsTyrRS is currently available. An all‐atom model of the full‐length HsTyrRS was developed in this work. The structure, dynamics, and domain binding interfaces of HsTyrRS were investigated by extensive molecular dynamics (MD) simulations. Our data suggest that HsTyrRS in solution consists of a number of compact asymmetric conformations, which differ significantly by their rigidity, internal mobility, orientation of C‐terminal modules, and the strength of interdomain binding. Interfaces of domain binding obtained in MD simulations are in perfect agreement with our previous coarse‐grained hierarchical rotations technique simulations. Formation of the hydrogen bonds between R93 residue of the ELR cytokine motif and the residues A340 and E479 in the C‐module was observed. This observation supports the idea that the lack of cytokine activity in the full‐length HsTyrRS is explained by interactions between N‐modules and C‐modules, which block the ELR motif. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Progression of cell cycle is regulated by sequential expression of cyclins, which associate with distinct cyclin kinases to drive the transition between different cell cycle phases. The complex of Cyclin A with cyclin‐dependent kinase 2 (CDK2) controls the DNA replication activity through phosphorylation of a set of chromatin factors, which critically influences the S phase transition. It has been shown that the direct interaction between the Cyclin A‐CDK2 complex and origin recognition complex subunit 1 (ORC1) mediates the localization of ORC1 to centrosomes, where ORC1 inhibits cyclin E‐mediated centrosome reduplication. However, the molecular basis underlying the specific recognition between ORC1 and cyclins remains elusive. Here we report the crystal structure of Cyclin A‐CDK2 complex bound to a peptide derived from ORC1 at 2.54 å resolution. The structure revealed that the ORC1 peptide interacts with a hydrophobic groove, termed cyclin binding groove (CBG), of Cyclin A via a KXL motif. Distinct from other identified CBG‐binding sequences, an arginine residue flanking the KXL motif of ORC1 inserts into a neighboring acidic pocket, contributing to the strong ORC1‐Cyclin A association. Furthermore, structural and sequence analysis of cyclins reveals divergence on the ORC1‐binding sites, which may underpin their differential ORC1‐binding activities. This study provides a structural basis of the specific ORC1‐cyclins recognition, with implication in development of novel inhibitors against the cyclin/CDK complexes.  相似文献   

20.
The crystal structure of human cyclin H refined at 2.6 A resolution is compared with that of cyclin A. The core of the molecule consists of two repeats containing five helices each and forming the canonical cyclin fold also observed in TFIIB. One hundred and thirty-two out of the 217 C alpha atoms from the cyclin fold can be superposed with a root-mean-square difference of 1.8 A. The structural homology is even higher for the residues at the interface with the kinase, which is of functional significance, as shown by our observation that cyclin H binds to cyclin-dependent kinase 2 (cdk2) and that cyclin A is able to activate cdk7 in the presence of MAT1. Based on this superposition, a new signature sequence for cyclins was found. The specificity of the cyclin H molecule is provided mainly by two long helices which extend the cyclin fold at its N- and C-termini and pack together against the first repeat on the side opposite to the kinase. Deletion mutants show that the terminal helices are required for a functionally active cyclin H.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号