首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oocytes of the sea urchin Sphaerechinus granularis and the startish Marthasterias glacialis have been submitted to U.V. irradiation before fertilization. This treatment significantly increased the incidence and severity of polyspermy in the sea urchin and was also found effective on starfish oocytes. These were found more resistant to damage than sea urchin eggs and U.V. irradiation did not affect either their response to the hormone l-methyladenine or the rate of elevation of the fertilization envelope, which assures the late and definitive block to polyspermy. Electrophysiological measurements performed on M. glacialis oocytes definitively demonstrate that U.V. irradiation completely inactivates voltage-dependent sodium channels, without altering the other main conductances, Cl?, K+ or Ca2+. After such a treatment, the relative permeability of the membrane to Na+ as compared to K+ shifted from 0.019±0.003 to 0.003±0.002 and only the calcium component of the action potentials could be observed. However, a fertilization potential, preceded by small sperm induced steps, is still present in these conditions, although its peak and plateau level are greatly reduced. These new findings are discussed, which confirm the electrical nature of the fast block to polyspermy but question about the specificity of those sperm-gated channels which are supposed to trigger the fertilization potential.  相似文献   

2.
Fertilization is a general feature of eukaryotic uni- and multicellular organisms to restore a diploid genome from female and male gamete haploid genomes. In angiosperms, polyploidization is a common phenomenon, and polyploidy would have played a major role in the long-term diversification and evolutionary success of plants. As for the mechanism of formation of autotetraploid plants, the triploid-bridge pathway, crossing between triploid and diploid plants, is considered as a major pathway. For the emergence of triploid plants, fusion of an unreduced gamete with a reduced gamete is generally accepted. In addition, the possibility of polyspermy has been proposed for maize, wheat and some orchids, although it has been regarded as an uncommon mechanism of triploid formation. One of the reasons why polyspermy is regarded as uncommon is because it is difficult to reproduce the polyspermy situation in zygotes and to analyze the developmental profiles of polyspermic triploid zygotes. Recently, polyspermic rice zygotes were successfully produced by electric fusion of an egg cell with two sperm cells, and their developmental profiles were monitored. Two sperm nuclei and an egg nucleus fused into a zygotic nucleus in the polyspermic zygote, and the triploid zygote divided into a two-celled embryo via mitotic division with a typical bipolar microtubule spindle. The two-celled proembryos further developed and regenerated into triploid plants. These suggest that polyspermic plant zygotes have the potential to form triploid embryos, and that polyspermy in angiosperms might be a pathway for the formation of triploid plants.  相似文献   

3.
A. Rashid  H. E. Street 《Planta》1973,113(3):263-270
Summary Development of haploid embryoids from the microspores of Atropa belladonna occurs with relatively high frequency when anthers are excised from buds in which the petals are shorter than the sepals (at this stage microspores are predominantly uninucleate) and cultured on a medium containing iron as the ferric salt of ethylenediamine-di-O-hydroxyphenylacetic acid (FeEDDHA). Additions of combinations of kinetin, auxin and casamino-acids to the culture medium induce callusing in both haploid and diploid tissues, lead to the origin of embryoids from somatic tissues of the anther and should be avoided. Simple techniques for the maintenance of haploid clones are described.Stages in early embryogenesis in the pollen grains have been observed and these indicate that embryogenesis is most frequently initiated by an equal division in the uninucleate spore. The frequency of grains showing embryoid formation is very low and it is estimated that plantlets are formed from up to 50% of these grains.  相似文献   

4.
A block to polyspermy is required for successful fertilisation and embryo survival in mammals. A higher incidence of polyspermy is observed during in vitro fertilisation (IVF) compared with the in vivo situation in several species. Two groups of mechanisms have traditionally been proposed as contributing to the block to polyspermy in mammals: oviduct‐based mechanisms, avoiding a massive arrival of spermatozoa in the proximity of the oocyte, and egg‐based mechanisms, including changes in the membrane and zona pellucida (ZP) in reaction to the fertilising sperm. Additionally, a mechanism has been described recently which involves modifications of the ZP in the oviduct before the oocyte interacts with spermatozoa, termed “pre‐fertilisation zona pellucida hardening”. This mechanism is mediated by the oviductal‐specific glycoprotein (OVGP1) secreted by the oviductal epithelial cells around the time of ovulation, and is reinforced by heparin‐like glycosaminoglycans (S‐GAGs) present in oviductal fluid. Identification of the molecules contributing to the ZP modifications in the oviduct will improve our knowledge of the mechanisms of sperm‐egg interaction and could help to increase the success of IVF systems in domestic animals and humans.  相似文献   

5.
Polyploidization has played a major role in the long‐term diversification and evolutionary success of angiosperms. Triploid formation among diploid plants, which is generally considered to be achieved by fertilization of an unreduced gamete with a reduced one, has been accepted as a means of polyploid production. In addition, it has been supposed that polyspermy also contributes to the triploid formation in maize, wheat, and some orchids; however, such a mechanism has been considered uncommon because reproducing the polyspermic situation and unambiguously investigating developmental profiles of polyspermic zygotes are difficult. To overcome these problems, rice polyspermic zygotes have been successfully produced by electrofusion of an egg cell with two sperm cells, and their developmental profiles have been monitored. The triploid zygotes progress through karyogamy and divide into two‐celled embryos via a typical bipolar mitotic division; the two‐celled embryos further develop into triploid plants, indicating that polyspermic plant zygotes, unlike those of animals, can develop normally. Furthermore, progenies consisting of triparental genetic materials have been successfully obtained in Arabidopsis through the pollination of two different kinds of male parents with a female parent. These different pieces of evidence for development and emergence of polyspermic zygotes in vitro and in planta suggest that polyspermy is a key event in polyploidization and species diversification.  相似文献   

6.
Sperm entry into the oocyte of the starfish, Asterina pectinifera, was prevented when the membrane potential of the oocyte was held more positive than −10 to −5 mV, and multiple sperm entries were induced when the potential was held more negative. Based on this potential-dependent fertilization block mechanism, it was demonstrated that an activation potential (AVP) which is induced immediately after the attachment of the first sperm to the egg surface plays the role of a fast polyspermy block. The AVP-mediated polyspermy block mechanism develops as the oocyte matures and deteriorates as it ages. AVPs of mature oocytes exceeded −5 mV (the critical potential level for fertilization block) within 1 sec, and the potential stayed at +12 mV even after the initiation of fertilization membrane elevation. Consequently, the entry of a second sperm is prevented. In contrast, AVPs of overripe oocytes took about 15 sec to attain −5 mV, or they did not attain −5 mV at all. In overripe oocytes multiple sperm entries were associated with “step depolarization(s)” in the rising phase of the AVPs before membrane elevation took place. Immature oocytes generated AVPs associated with sperm entries, but without membrane elevation. AVPs in immature oocytes were characterized by the step depolarization(s) in the rising phase, and an AVP could be evoked again by a second insemination 20 min after the first insemination. These findings indicate that immature oocytes lack both fast and slow polyspermy block mechanisms.  相似文献   

7.
The Caucasus is a biodiversity hotspot of global significance, containing a number of highly diverse and species‐rich plant taxa. The region is also thought to be an important evolutionary hotspot for Rubus subgenus Rubus (brambles). However, Caucasian brambles have only been poorly studied to date and our knowledge of their evolutionary mechanisms, systematics and taxonomic variability remains rudimentary. Therefore, the objectives of this study were to shed light on the evolution, diversity and reproduction modes of Rubus in one of the two Caucasian glacial refugia, Colchis. Flow cytometry measurements were used to estimate DNA ploidy, a flow cytometric seed screen was conducted to determine reproduction mode and Sanger sequencing of two non‐coding plastid regions was used to reveal phylogenetic patterns. The most common ploidy level was tetraploid, followed by diploid and (rarely) triploid. Intra‐individual variation in reproduction mode was low, as the morphoseries Glandulosi and Radula exhibited strict sexuality and other taxa were mostly apomictic. A few exceptions were observed that deserve further attention, e.g. sexuality induced hypothetically by haploid pollen or by environmental conditions, a high proportion of triploid embryos or polyspermy. Plastid haplotype variability revealed specific, ancient evolutionary patterns with limited involvement of extant diploid taxa and recent isolation from European brambles. We provide the first insight into the variability and evolution of Colchic brambles, which serves as a starting point for further systematic and evolutionary studies.  相似文献   

8.
We investigated meiosis, fertilization, and early development in eggs of the tellinid bivalve Macoma balthica (L.), which has external fertilization. Meiosis is standard but polyspermy is found to be very common. In all eight crosses examined, mosaic embryos consisting of a mixture of diploid (2n = 38) and haploid cells occur at a frequency ranging from 2.7 to 29.1%. The earliest mosaic found is in the two-cell stage. We propose that an androgenic haploid cell lineage can originate from one supernumerary sperm that decondenses into a functional haploid nucleus, starts mitosis, and is incorporated in the developing embryo.  相似文献   

9.
In the polymerizations of alanine, γ-ethyl glutamate, and leucine N-carboxyanhydrides (NCA's) initiated by tertiary amines and some secondary amines such as N-methyl-L -alanine dialkylamide, a stereoselectivity was observed: the polymerization rates of L - and D -NCA's were identical to each other and larger than that of DL -NCA. However, this selectivity was not observed in the polymerizations of valine and isoleucine NCA's initiated by N-methyl-L -alanine dialkylamide. The stereoselective polymerizations of valine and isoleucine NCA's were induced only with tetriary amines such as tri-n-butylamine. N-Methyl-L -alanine di-alkylamide has been shown to initiate the polymerization of usual α-amino acid NCA according to the activated-NCA mechanism, but it initiated the polymerizations of valine and isoleucine NCA's according to the primary amine-type mechanism. This is because in the latter NCA's the N–H group is masked by the adjacent Cβ-branched alkyl substituent against the approach of the secondary amine. Poly(DL -alanine)s produced in the stereoselective polymerization had higher viscosities and were more stereoblock-like than those produced without the stereoselectivity. These experimental results indicate that the stereoselective polymerization is possible only when the polymerization proceeds through the activated-NCA mechanism.  相似文献   

10.
In vivo haploid induction has been extended from maize to monocotyledonous plants like rice, wheat, millet and dicotyledonous plants such as tomato, rapeseed, tobacco and cabbage. Accurate identification of haploids is a crucial step of doubled haploid technology, where a useful identification marker is very pivotal. R1-nj is an extensively used visual marker for haploid identification in maize. RFP and eGFP have been shown to be feasible in identifying haploid. However, these methods are either limited to specific species, or require specific equipment. It still lacks an efficient visual marker that is practical across different crop species. In this study, we introduced the RUBY reporter, a betalain biosynthesis system, into maize and tomato haploid inducers as a new marker for haploid identification. Results showed that expression of RUBY could result in deep betalain pigmentation in maize embryos as early as 10 days after pollination, and enabled 100% accuracy of immature haploid embryo identification. Further investigation in tomato revealed that the new marker led to deep red pigmentation in radicles and haploids can be identified easily and accurately. The results demonstrated that the RUBY reporter is a background-independent and efficient marker for haploid identification and would be promising in doubled haploid breeding across different crop species.  相似文献   

11.
Macronuclei of Tetrahymena pyriformis contain approximately 200 copies of the genes for 25S and 17S ribosomal RNA (rRNA) per haploid genome. Micronuclei, however, contain only a few copies of the rRNA genes per haploid complement. Since macronuclei develop from, products of meiosis, fertilization and division of micronuclei, we suggested that the multiple copies of the rRNA genes in macronuclei are generated by amplification of the small number of genes in micronuclei (Yao et al., 1974). This process provides a simple mechanism for maintaining the homogeneity of the repeated rRNA genes. To test if amplification is a general mechanism operating on all repeated genes in Tetrahymena, we have examined the numbers of 5S RNA and tRNA genes in macro- and micronuclei. 5S RNA was purified by polyacrylamide gel electrophoresis and hybridized to saturation against macro- and micronuclear DNA. Approximately 0.013–0.014% of macronuclear DNA and about 0.009% of micronuclear DNA is complementary to 5S RNA. After correcting for the differences in the DNA sequence complexities between the two nuclei, we calculate that there are 300–350 5S genes per haploid macro- or micronuclear genome. From these data we conclude that there is little or no detectable amplification of the 5S genes in macronuclei relative to micronuclei. Similar studies using tRNA indicate that these genes are also highly repeated in both nuclei; about 800 genes are present per haploid genome. Thus, amplification from a small number of genes can be excluded as the mechanism for generating the repeated copies of the 5S and tRNA genes in Tetrahymena and it is likely that another, as yet unidentified, mechanism operates to maintain the homogeneity of these genes.  相似文献   

12.
    
Summary The radioprotective efficiency of cysteamine and cysteine has been studied on haploid and diploid, Saccharomyces cerevisiae, wild-type and various X-ray repair deficient rad mutants. The correlation between the radioprotecting action of cysteamine and cell repair capacity was demonstrated for diploid yeasts; such a correlation was not expressed for wild-type and rad mutant haploid yeast cells. It was concluded that the radioprotective action may involve cellular recovery processes, which may be mediated by a recombination-like mechanism, for which the diploid state is required. Liquid holding recovery was shown not to participate in radioprotection, judged by the absence of the influence of cysteine on the delay of the first postradiation budding as well as by the additive action of cysteine and liquid holding recovery.  相似文献   

13.
The DNA of Arabidopsis thaliana   总被引:11,自引:0,他引:11  
Summary Arabidopsis thaliana is a small flowering plant of the mustard family. It has a four to five week generation time, can be self- or cross-pollinated and bears as many as 104 seeds per plant. Many visible and biochemical mutations exist and have been mapped by recombination to one of the five chromosomes that comprise the haploid karyotype. With the experiments reported here we demonstrate that Arabidopsis has an extraordinarily small haploid genome size (approximately 7×107 nucleotide pairs) and a low level of cytosine methylation for an angiosperm. In addition, it appears to have little repetitive DNA in its nuclear DNA, in contrast to other higher plants.  相似文献   

14.
Summary The haploid myxamoebae of Physarum polycephalum reversibly differentiate to form dormant microcysts under conditions of starvation. The thin-walled cysts can be selective recovered from a cell suspension which has been treated with the surfactant Triton X-100 to lyse amoeboid forms. Excystment, which is initiated by suspension in liquid medium, is inhibited by antibiotics which block protein synthesis. Cysts of drug resistant mutants excyst rapidly in media containing sufficient antibiotic to maintain drug sensitive strains in the encysted state. The selective survival of non-excysted cells following Triton X-100 treatment has been employed to enrich for drug sensitive mutants. Several anisomycin sensitive mutants have been isolated, one of which has been analysed genetically. The possible applications of this mutant enrichment technique are discussed.  相似文献   

15.
Zusammenfassung Bei Kreuzungen zwischenCulex pipiens-Popalationen verschiedener geographischer Herkunft werden drei Kreuzungstypen festgestellt: normale Kreuzbarkeit, reduzierte Kreuzbarkeit und Inkompatibilitt (Nichtkreuzbarkeit). Die drei Kreuzungstypen sind mit Hilfe der Embryonierungsrate, der Schlüpfrate und der entstehenden Nachkommenschaft gegeneinander abgrenzbar. Bei Inkompatibilitt sind 99,9% der Embryonen letal, und etwa 0,1% der Tiere schlüpfen und sind fertile, diploide Weibchen.Die Aktivierung des Eies und der Entwicklungsansto\ erfolgt durch das Spermium. Das Spermium gelangt nicht zur Karyogamie mit dem Pronucleus. Es liegt induzierte, meiotische Parthenogenese vor.Die diploiden, parthenogenetischen Weibchen gehen aus einer Oocyte 2. Ordnung oder aus Teilungsprodukten einer Oocyte 2. Ordnung hervor. Die letalen Embryonen sind haploid. Das Spermium beteiligt sich nicht am Aufbau des Embryos. Nach Aktivierung des Eies wird das Spermium im Eiplasma resorbiert, whrend der haploide Pronucleus einen rein haploiden Embryo aufbaut.Bei einigen Kreuzungen entwickeln sich bis zu 75% der Embryonen bis zum Stadium der histologischen Differenzierung der Organe. Die Embryonen zeigen noch einige Stunden nach dem normalen Schlüpftermin Muskelkontraktionen, vermögen die Eihülle jedoch nicht zu sprengen.Die DNS-Verteilungen von Interphasekernen der letalen Embryonen liegen zwischen den Werten C und 2C für haploide Zellen. ltere Embryonen besitzen in geringem Ma\e höhere DNS-Werte als 2C. Whrend der histologischen Differenzierung der Organe liegen in diploiden Kontrollembryonen und in letalen Embryonen die Ploidiestufen C, 2C, 4C, 8C and 16C vor. Bei inkompatiblen Kreuzungen wird das in das Ei eindringende Spermium cytophotometrisch nachgewiesen. Die Wanderung des Spermiums im Ei wird untersucht.In Normalkreuzungen wird nur ein geringer Grad von Polyspermie festgestellt. Monound Dispermie sind am hufigsten. Es werden die Möglichkeiten diskutiert die zur Blockierung der Karyogamie in inkompatiblen Kreuzungen führen können.
Investigations on the incompatibility in theCulex pipiens-complex
Summary In crosses between populations of the mosquitoCulex pipiens of different geographical origin three crossing types have been found (1) crosses with normal offspring (2) crosses with reduced offspring and (3) crosses that show almost total incompatibility. In the case of incompatible crosses 99.9% of the embryos are lethal and only about 0.1% of the embryos hatch and develop to fertile diploid females. Based on genetical and cytological data it is argued that induced meiotic parthenogenesis takes place. The sperm does not play any part in the production of the diploid females and the lethal embryos. After the activation of the egg the sperm moves to the center of the egg but it does not succeed in fusing with the pronucleus. As a result the pronucleus starts to develop into a haploid embryo in about 99.9% and only in a few cases the diploidy is restored by a change in the meiotic process in the egg. Up to 75% of the haploid embryos develop to the stage of histological differentiation. The frequency distribution of the DNA in interphase nuclei of these embryos shows a maximum at C and 2 C characteristic for haploid cells. The absence of ploidy classes higher than 2 C in the early embryos is in agreement with the assumption of pure haploidy. After histological differentiation ploidy classes C to 16 C can be found in tissues that show endomitotic growth. The development of the haploid embryos is described. It has been shown through cytophotometric methods that in incompatible crosses entrance of the sperm into the egg takes place. In normal crosses polyspermy is rather rare, monospermy and dispermy are most common. The blocking of the sperm in incompatible crosses is discussed.


Teil einer Dissertation der Math.-Nat. Fakultt der Universitt Mainz. Herrn Prof. Dr. H. Laven danke ich für die Bereitstellung des Untersuchungsmaterials sowie für die Anregungen bei der Durchführung der Arbeit.  相似文献   

16.
R. D. Iyer  S. K. Raina 《Planta》1972,104(2):146-156
Summary Haploidy induction through anther culture has been examined in Datura metel and rice with a view to tracing the precise sequence of development of the pollen, either directly or through an intervening callus, into an embryo and seedling. In D. metel, the vegetative cell of the young pollen grain assumes the major role in formation of embryos whereas the generative cell and its few derivatives degenerate. Embryos and seedlings arising directly from pollen without an intervening callus phase always proved to be haploids, whereas those differentiating from pollen-derived callus gave haploid, diploid and even triploid plants. Cytological analysis of callus tissue showed cells of various ploidy levels ranging from haploid to triploid, and in rare instances even with higher chromosome numbers.In rice anther cultures the embryoids arose from an initial callus phase. Of 15 different rice cultivars tried, only four produced a callus, and in only one, was there differentiation of plants, both haploid and diploid ones. Among other species tried, egg plant has also yielded plantlets through a callus phase whereas only callus production has been achieved in jute, tea and petunia. No response has been obtained in wheat, maize, cotton and coconut.Coconut milk (CM) appears to be the most important component of the medium for the initial induction of embryoids and callus in anther cultures of most of the species tried. However, further growth and differentiation of plants may require a simpler medium; in D. metel, continued culture on CM led to dedifferntiation.Dedicated to the memory of the late Dr. J. P. Nitsch.  相似文献   

17.
Plants have evolved a battery of mechanisms that potentially act as polyspermy barriers. Supernumerary sperm fusion to one egg cell has consequently long remained a hypothetical concept. The recent discovery that polyspermy in flowering plants is not lethal but generates viable triploid plants is a game changer affecting the field of developmental biology, evolution, and plant breeding. The establishment of protocols to artificially induce polyspermy together with the development of a high‐throughput assay to identify and trace polyspermic events in planta now provide powerful tools to unravel mechanisms of polyspermy regulation. These achievements are likely to open new avenues for animal polyspermy research as well, where forward genetic approaches are hampered by the fatal outcome of supernumerary sperm fusion.  相似文献   

18.
Nicotiana plumbaginifolia haploid protoplasts were co-transformed with two plasmids, one with a NPT-II/Ds element and one with a gene encoding an amino-terminal truncated Ac transposase. It is shown that Ds can efficiently transpose from extrachromosomal DNA to N. plumbaginifolia chromosomes when the Ac transposase gene is present in trans. Ds has been shown to have transposed into the plant genome in a limited number of copies (1.9 copies per genome), for 21/32 transgenic lines tested. The flanking sequences present in the original plasmid are missing in these 21 plants. In only two of 21 plants was part of the transposase construct integrated. By segregation analysis of transgenic progeny, Ds was shown to be present in the heterozygous state in 10 lines even though haploid protoplasts had been originally transformed. This observation could indicate that integration occurred after or during DNA replication that leads to protoplast diploidization.  相似文献   

19.
The thalloid liverwort Corsinia coriandrina includes morphologically similar haploid and polyploid populations with an allopatric geographical distribution. Haploid and polyploid colonies of the Old World, and one polyploid colony from Texas have been analysed. The polyploid, monoecious cytotype has a wider geographical range and ecological tolerance than the haploid, dioecious cytotype which appears to be restricted to southern Europe and Macaronesia. Similarity coefficients between the two Old World cytotypes based on isozyme data show them to be more genetically divergent than suggested by their morphology, and to fit the definition of sibling species. Fixed heterozygosity in six of eight enzyme loci suggests an alloploid origin of the Old World polyploids. The haploid cytotype could be one of the putative parents. Alleles in the polyploid that were not detected in the haploid are presumably derived from an unknown progenitor. The polyploid New World colony shows significant genetic divergence; it represents a different allopolyploid sibling species. Accordingly, at least two independent origins of the polyploid must be supposed; one in the Old World; the other in the New World. The presumed autopolyploid origin of polyploid liverworts is once more challenged by our analysis of polyploid Corsinia. Indeed, autopolyploidy has still not been documented conclusively in any polyploid liverwort.  相似文献   

20.
Amount of DNA-Feulgen staining in individual somatic nuclei and mature sperm of the parthenogenetic wasps, Habrobracon juglandis, H. serinopae, and Mormoniella vitripennis, were determined with a scanning microdensitometer. The haploid genome for both species of Habrobracon was estimated to be 0.15–0.16×10–12 g DNA, corresponding to a molecular weight of roughly 10×1010 daltons. The haploid genome of M. vitripennis is approximately twice this value, 0.33–0.34×10–12 g, or about 20×1010 daltons. Measurements made on dividing nuclei from syncytial preblastoderm embryos of H. juglandis and M. vitripennis showed that the chromosomes of impaternate males were present in the haploid number and contained the C amount of DNA; whereas nuclei from female preblastoderm embryos contained the diploid number of chromosomes and the 2C amount of DNA. However, hemocyte and brain cell nuclei from either male or female adult wasps contained 2C and 4C amounts of DNA. Both sexes also showed equivalent levels of polyploidy (8C, 16C, or 32C) in Malpighian tubule nuclei. Therefore, in these parthenogenetic species, a mechanism must exist that compensates during later development for the initial two-fold difference in the chromatin content of somatic nuclei in haploid male and diploid female embryos. Hemocytes from impaternate Mormoniella diploid males and triploid females contain the 2C and 3C amounts of DNA, respectively. Therefore dosage compensation involves an additional cycle of DNA replication only in haploid cells, and it insures that a certain minimum quantity of DNA is received by each somatic cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号