首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Journal of molecular biology》2014,426(7):1524-1538
Clustered DNA damage sites are caused by ionizing radiation. They are much more difficult to repair than are isolated single lesions, and their biological outcomes in terms of mutagenesis and repair inhibition are strongly dependent on the type, relative position and orientation of the lesions present in the cluster. To determine whether these effects on repair mechanism could be due to local structural properties within DNA, we used 1H NMR spectroscopy and restrained molecular dynamics simulation to elucidate the structures of three DNA duplexes containing bistranded clusters of lesions. Each DNA sequence contained an abasic site in the middle of one strand and differed by the relative position of the 8-oxoguanine, staggered on either the 3′ or the 5′ side of the complementary strand. Their repair by base excision repair protein Fpg was either complete or inhibited. All the studied damaged DNA duplexes adopt an overall B-form conformation and the damaged residues remain intrahelical. No striking deformations of the DNA chain have been observed as a result of close proximity of the lesions. These results rule out the possibility that differential recognition of clustered DNA lesions by the Fpg protein could be due to changes in the DNA's structural features induced by those lesions and provide new insight into the Fpg recognition process.  相似文献   

2.
Abstract

Tridecamers containing a central no-base residue (X) have been synthesized and hybridized to their complementary strands, so as to constitute duplexes consisting of two hexamers separated by central mismatched X-A or X-T pairs. The effect of the introduction of this deoxyribose derivative on duplex stability was investigated by measuring UV absorbance as a function of salt concentration and temperature. As expected, the duplexes containing the abnormal base pairs (X-T and X-A) are less stable when compared to the totally complementary duplexes (A-T and T-A). The X-T mismatched duplex shows the most unstable thermodynamical behavior. The conformational changes of these duplexes were studied by IR spectroscopy in condensed phase as a function of water content. At high relative humidity, the IR spectra show that these tridecamers form B-type double stranded duplex structures. If the water content is decreased, only the duplexes

m5 CGm5CGCTXAGCTTC

GCGCGAATCGAAG

and, to a lesser degree

m5 CGm5 CGCTXAGCTTC

GCGCGATTCGAAG

undergo a partial B→Z transition involving the methylated hexamer, the conformation of the second segment remaining of the B type. These results show that only one apurinic residue leads to a flexible junction between B and Z forms in a short duplex containing 5-methyl-2′- deoxycytidines.  相似文献   

3.
4.
Abstract

To elucidate the effect of guanine lesion produced by the oxidative damage on DNA, 1 nanosecond molecular dynamics simulations of native and oxidized DNA were performed. The target DNA molecules are dodecamer duplex d(CGCGAATTCGCG)2 and its derivative duplex d(C1G2C3(8-oxoG)4A5A6T7T8C9G10C11G12)·d(C13G14C15G16A17A18T19T20C21G22C23G24), which has one oxidized guanine, 7, 8-dihydro-8-oxoguanine (8-oxoG), at the fourth position. The local structural change due to the lesion of 8-oxoG and the global dynamic structure of the 8-oxoG DNA were studied. It was found that the 8-oxoG DNA remained structurally stable during the simulation due to newly produced hydrogen bonds around the (8-oxoG)4 residue. However, there were distinguishable differences in structural parameters and dynamic property in the 8-oxoG DNA. The conformation around the (8- oxoG)4 residue departed from the usual conformation of native DNA and took an unique conformation of ?-ζ in BII conformation and χ in high anti orientation at the (8-oxoG)4 residue, and adopted a very low helical twist angle at the C3:G22—(8-oxoG)4:C21 step. Further analysis by principal component analysis indicated that the formation of the hydrogen bonds around the (8-oxoG)4 residue plays a role as a trigger for the conformational transition of the 8-oxoG DNA in the conformational space.  相似文献   

5.
The oxidative lesion 8-oxoguanine (8-oxoG) is removed during base excision repair by the 8-oxoguanine DNA glycosylase 1 (Ogg1). This lesion can erroneously pair with adenine, and the excision of this damaged base by Ogg1 enables the insertion of a guanine and prevents DNA mutation. In this report, we identified and characterized Ogg1 from the protozoan parasite Trypanosoma cruzi (TcOgg1), the causative agent of Chagas disease. Like most living organisms, T. cruzi is susceptible to oxidative stress, hence DNA repair is essential for its survival and improvement of infection. We verified that the TcOGG1 gene encodes an 8-oxoG DNA glycosylase by complementing an Ogg1-defective Saccharomyces cerevisiae strain. Heterologous expression of TcOGG1 reestablished the mutation frequency of the yeast mutant ogg1(-)/(-) (CD138) to wild type levels. We also demonstrate that the overexpression of TcOGG1 increases T. cruzi sensitivity to hydrogen peroxide (H(2)O(2)). Analysis of DNA lesions using quantitative PCR suggests that the increased susceptibility to H(2)O(2) of TcOGG1-overexpressor could be a consequence of uncoupled BER in abasic sites and/or strand breaks generated after TcOgg1 removes 8-oxoG, which are not rapidly repaired by the subsequent BER enzymes. This hypothesis is supported by the observation that TcOGG1-overexpressors have reduced levels of 8-oxoG both in the nucleus and in the parasite mitochondrion. The localization of TcOgg1 was examined in parasite transfected with a TcOgg1-GFP fusion, which confirmed that this enzyme is in both organelles. Taken together, our data indicate that T. cruzi has a functional Ogg1 ortholog that participates in nuclear and mitochondrial BER.  相似文献   

6.
Kim JE  Choi S  Yoo JA  Chung MH 《FEBS letters》2004,556(1-3):104-110
7,8-Dihydro-8-oxoguanine (8-oxoguanine; 8-oxo-G), one of the major oxidative DNA adducts, is highly susceptible to further oxidation by radicals. We confirmed the higher reactivity of 8-oxo-G toward reactive oxygen (singlet oxygen and hydroxyl radical) or nitrogen (peroxynitrite) species as compared to unmodified base. In this study, we raised the question about the effect of this high reactivity toward radicals on intramolecular and intermolecular DNA damage. We found that the amount of intact nucleoside in oligodeoxynucleotide containing 8-oxo-G decreased more by various radicals at higher levels of 8-oxo-G incorporation, and that the oligodeoxynucleotide damage and plasmid cleavage by hydroxyl radical were inhibited in the presence of 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxo-dG). We conclude that 8-oxo-G within DNA induces intramolecular DNA base damage, but that free 8-oxo-G protects intermolecular DNA from oxidative stress. These results suggest that 8-oxo-G within DNA must be rapidly released to protect DNA from overall oxidative damage.  相似文献   

7.
Human 8-oxoguanine DNA glycosylase (OGG1) is a key enzyme involved in removing 7,8-dihydro-8-oxoguanine (8-oxoG), a highly mutagenic DNA lesion generated by oxidative stress. The removal of 8-oxoG by OGG1 is affected by the local DNA sequence, and this feature most likely contributes to observed mutational hot spots in genomic DNA. To elucidate the influence of local DNA sequence on 8-oxoG excision activity of OGG1, we conducted steady-state, pre-steady-state, and single turnover kinetic evaluation of OGG1 in alternate DNA sequence contexts. The sequence context effect was studied for a mutational hot spot at a CpG dinucleotide. Altering either the global DNA sequence or the 5′-flanking unmodified base pair failed to influence the excision of 8-oxoG. Methylation of the cytosine 5′ to 8-oxoG also did not affect 8-oxoG excision. In contrast, a 5′-neighboring mismatch strongly decreased the rate of 8-oxoG base removal. Substituting the 5′-C in the CpG dinucleotide with T, A, or tetrahydrofuran (i.e. T:G, A:G, and tetrahydrofuran:G mispairs) resulted in a 10-, 13-, and 4-fold decrease in the rate constant for 8-oxoG excision, respectively. A greater loss in activity was observed when T:C or A:C was positioned 5′ of 8-oxoG (59- and 108-fold, respectively). These results indicate that neighboring structural abnormalities 5′ to 8-oxoG deter its repair thereby enhancing its mutagenic potential.  相似文献   

8.
8-Oxoguanine DNA damage: at the crossroad of alternative repair pathways   总被引:11,自引:0,他引:11  
Radical oxygen species (ROS) generate various modified DNA bases. Among them 8-oxo-7,8-dihydroguanine (8oxoG) is the most abundant and seems to play a major role in mutagenesis and in carcinogenesis. 8oxoG is removed from DNA by the specific glycosylase OGG1. An additional post-replication repair is needed to correct the 8oxoG/A mismatches that are produced by persistent 8oxoG residues. This review is focused on the mechanisms of base excision repair (BER) of this oxidized base. It is shown that, in vitro, efficient and complete repair of 8oxoG/C pairs requires a core of four proteins, namely OGG1, APE1, DNA polymerase (Pol) beta, and DNA ligase I. Repair occurs predominantly by one nucleotide replacement reactions (short-patch BER) and Pol beta is the polymerase of election for the resynthesis step. However, alternative mechanisms can act on 8oxoG residues since Pol beta-null cells are able to repair these lesions. 8oxoG/A mismatches are repaired by human cell extracts via two BER events which occur sequentially on the two strands. The removal of the mismatched adenine is followed by preferential insertion of a cytosine leading to the formation of 8oxoG/C pairs which are then corrected by OGG1-mediated BER. Both repair events are inhibited by aphidicolin, suggesting that a replicative DNA polymerase is involved in the repair synthesis step. We propose that Pol delta/epsilon-mediated BER (long-patch BER) is the mode of repair when lesions persist or are formed at replication. Finally, we address the issues of the relative contribution of the two BER pathways to oxidative damage repair in vivo and the possible role of BER gene variants as cancer susceptibility genes.  相似文献   

9.
Abstract

Oligodeoxynucleotides that possess alpha anomeric nucleotides and polarity reversals show promise for application in the area of antisense therapy. Here we provide a survey of the spectroscopic, thermodynamic, and enzymatic techniques used in our laboratories to investigate model systems containing such unnatural features with the ultimate goal of designing a new class of more potent and effective antisense therapeutics.  相似文献   

10.
MutM is a bacterial DNA glycosylase that serves as the first line of defense against the highly mutagenic 8-oxoguanine (oxoG) lesion, catalyzing glycosidic bond cleavage of oxoG to initiate base excision DNA repair. Previous work has shown that MutM actively interrogates DNA for the presence of an intrahelical oxoG lesion. This interrogation process involves significant buckling and bending of the DNA to promote extrusion of oxoG from the duplex. Structural snapshots have revealed several different highly conserved residues that are prominently inserted into the duplex in the vicinity of the target oxoG before and after base extrusion has occurred. However, the roles of these helix-invading residues during the lesion recognition and base extrusion process remain unclear. In this study, we set out to probe the function of residues Phe114 and Met77 in oxoG recognition and repair. Here we report a detailed biochemical and structural characterization of MutM variants containing either a F114A or M77A mutation, both of which showed significant decreases in the efficiency of oxoG repair. These data reveal that Met77 plays an important role in stabilizing the lesion-extruded conformation of the DNA. Phe114, on the other hand, appears to destabilize the intrahelical state of the oxoG lesion, primarily by buckling the target base pair. We report the observation of a completely unexpected interaction state, in which the target base pair is ruptured but remains fully intrahelical; this structure vividly illustrates the disruptive influence of MutM on the target base pair.  相似文献   

11.
Replication protein A (RPA) is a heterotrimeric protein that has high affinity for single-stranded (ss) DNA and is involved in DNA replication, repair, and recombination in eukaryotic cells. Photoaffinity modification was employed in studying the interaction of human RPA with DNA duplexes containing various gaps, which are similar to structures arising during DNA replication and repair. A photoreactive dUMP derivative was added to the 3" end of a gap-flanking oligonucleotide with DNA polymerase , and an oligonucleotide containing a 5"-photoreactive group was chemically synthesized. The 5" end predominantly interacted with the large RPA subunit (p70) regardless of the gap size, whereas interactions of the 3" end with the RPA subunits depended both on the gap size and on the RPA concentration. Subunit p32 was mostly labeled in the case of a larger gap and a lower RPA concentration. The results confirmed the model of polar RPA–DNA interaction, which has been advanced earlier.  相似文献   

12.
The modified base 8-oxo-7,8-dihydro-2′-deoxyguanosine (oxoG) is a common DNA adduct produced by the oxidation of DNA by reactive oxygen species. Kinetic data reveal that DNA polymerase X (pol X) from the African swine fever virus incorporates adenine (dATP) opposite to oxoG with higher efficiency than the non-damaged G:C basepair. To help interpret the kinetic data, we perform molecular dynamics simulations of pol X/DNA complexes, in which the template base opposite to the incoming dNTP (dCTP, dATP, dGTP) is oxoG. Our results suggest that pol X accommodates the oxoGsyn:A mispair by sampling closed active conformations that mirror those observed in traditional Watson-Crick complexes. Moreover, for both the oxoGsyn:A and oxoG:C ternary complexes, conformational sampling of the polymerase follows previously described large subdomain movements, local residue motions, and active site reorganization. Interestingly, the oxoGsyn:A system exhibits superior active site geometry in comparison to the oxoG:C system. Simulations for the other mismatch basepair complexes reveal large protein subdomain movement for all systems, except for oxoG:G, which samples conformations close to the open state. In addition, active site geometry and basepairing of the template base with the incoming nucleotide, reveal distortions and misalignments that range from moderate (i.e., oxoG:Asyn) to extreme (i.e., oxoGanti/syn:G). These results agree with the available kinetic data for pol X and provide structural insights regarding the mechanism by which this polymerase can accommodate incoming nucleotides opposite oxoG. Our simulations also support the notion that α-helix E is involved both in DNA binding and active site stabilization. Our proposed mechanism by which pol X can preferentially accommodate dATP opposite template oxoG further underscores the role that enzyme dynamics and conformational sampling operate in polymerase fidelity and function.  相似文献   

13.
The modified base 8-oxo-7,8-dihydro-2′-deoxyguanosine (oxoG) is a common DNA adduct produced by the oxidation of DNA by reactive oxygen species. Kinetic data reveal that DNA polymerase X (pol X) from the African swine fever virus incorporates adenine (dATP) opposite to oxoG with higher efficiency than the non-damaged G:C basepair. To help interpret the kinetic data, we perform molecular dynamics simulations of pol X/DNA complexes, in which the template base opposite to the incoming dNTP (dCTP, dATP, dGTP) is oxoG. Our results suggest that pol X accommodates the oxoGsyn:A mispair by sampling closed active conformations that mirror those observed in traditional Watson-Crick complexes. Moreover, for both the oxoGsyn:A and oxoG:C ternary complexes, conformational sampling of the polymerase follows previously described large subdomain movements, local residue motions, and active site reorganization. Interestingly, the oxoGsyn:A system exhibits superior active site geometry in comparison to the oxoG:C system. Simulations for the other mismatch basepair complexes reveal large protein subdomain movement for all systems, except for oxoG:G, which samples conformations close to the open state. In addition, active site geometry and basepairing of the template base with the incoming nucleotide, reveal distortions and misalignments that range from moderate (i.e., oxoG:Asyn) to extreme (i.e., oxoGanti/syn:G). These results agree with the available kinetic data for pol X and provide structural insights regarding the mechanism by which this polymerase can accommodate incoming nucleotides opposite oxoG. Our simulations also support the notion that α-helix E is involved both in DNA binding and active site stabilization. Our proposed mechanism by which pol X can preferentially accommodate dATP opposite template oxoG further underscores the role that enzyme dynamics and conformational sampling operate in polymerase fidelity and function.  相似文献   

14.
15.
DNA duplexes containing a single phosphoryldisulfide link in place of the natural internucleotide phosphodiester bond were employed in affinity modification of Cys142 in cytosine-C5 DNA methyltransferase SsoII (M.SsoII). The possibility of duplex–M.SsoII conjugation as a result of disulfide exchange was demonstrated. The crosslinking efficiency proved to depend on the DNA primary structure, modification position, and the presence of S-adenosyl-L-homocysteine, a nonreactive analog of the methylation cofactor. The SH group of M.SsoII Cys142 was assumed to be close to the DNA sugar-phosphate backbone in the DNA–enzyme complex.  相似文献   

16.
Abstract

Structural and synthetic model are given for (modified) parallel DNAs with non-Watson and Crick duplex formation.  相似文献   

17.
Abstract

New reactive analogs of substrates for DNA repair enzyme E. coli Fpg protein containing the residues of 8-oxoguanine and photoactivatable phenyl(trifluoromethyl)diazirine groups were synthesized. Their substrate properties were investigated. Using photocross-linking technique, we established the presence of contacts of two nucleosides located near the oxoG with amino acids from the Fpg protein. The cross-linking efficiency achieved 10%.  相似文献   

18.
Abstract

Oligonucleotides containing 1-(β-D-2′-deoxy-threo-pentofuranosyl)cytosine (dCx) and/or 1-(β-D-2′-deoxy-threo-pentofuranosyl)thymine (dTx) in place of dC and dT residues in the EcoRII and MvaI recognition site CCA/TGG were synthesized in order to investigate specific recognition of the DNA sugar-phosphate backbone by EcoRII and MvaI restriction endonucleases. In 2′-deoxyxylosyl moieties of dCx and dTx, 3′-hydroxyl groups were inverted, which perturbs the related individual phosphates. Introduction of a single 2′-deoxyxylo-syl moiety into a dC·dG pair resulted in a minor destabilization of double-stranded DNA structure. In the case of a dA·dT pair the effect of a 2′-deoxyxylose incorporation was much more pronounced. Multiple dCx modifications and their combination with dTx did not enhance the destabilization effect. Hydrolysis of dCx-containing DNA duplexes by EcoRII endonuclease was blocked and binding affinity was strongly depended on the location of an altered sugar. A DNA duplex containing a dTx residue was cleaved by the enzyme, but kcat/KM was slightly reduced. In contrast, MvaI endonuclease efficiently cleaved both types of sugar-altered substrate analogs. However it did not cleave conformationally perturbed scissile bonds, when the corresponding unmodified bonds were perfectly hydrolyzed in the same DNA duplexes. Based on these data the possible contributions of individual phosphates in the recognition site to substrate recognition and catalysis by EcoRII were proposed. We observed strikingly non-equivalent inputs for different phosphates with respect to their effect on EcoRII-DNA complex formation.  相似文献   

19.
Abstract

1H NMR experiments have been undertaken to elucidate the structural effects of methoxy substitution at the C8 of a deoxyguanosine residue in a self-complementary dodecadeoxyribonucleotide, d(C-G-C-mo8G-A-A-T-T-C-G-C-G), duplex, which has an 8-methoxy-2′-deoxyguanosine (mo8dG) residue at the 4th position. NMR data indicate that the mo8dG residue takes an anti glycosidic conformation in a mo8dG(anti):dC(anti) base-pair structure in a B-form duplex. The thermal stability of the duplex is reduced, but the overall structure is much the same as that of the unmodified d(C-G-C-G-A-A-T-T-C-G-C-G) duplex.  相似文献   

20.
Abstract

Oligodeoxyribonucleotides containing N4 -methoxycytosine (mo4 C) and its 5-methyl derivative (mo4 m5 C) are synthesised and used to compare the stabilities of duplexes containing mo4 C.A and mo4C.G base-pairs with those containing normal and mismatch pairs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号