共查询到20条相似文献,搜索用时 0 毫秒
1.
Sode K Usuzaka E Kobayashi N Ochiai S 《Biochemical and biophysical research communications》2005,335(2):432-436
Alpha-synuclein is a major component of several pathological lesions diagnostic of specific neurodegenerative disease such as Parkinson's disease. This study focuses on the non-amyloid beta component of Alzheimer's disease amyloid, a key region for the aggregation and fibril formation of alpha-synuclein. Several mutations were introduced in an attempt to repress beta-strand formation and hydrophobic interaction-based aggregation. Although reducing the hydrophobicity drastically decreased fibril formation, the Val70Thr and Val70Pro mutations resulted in an unstable secondary structure thereby increasing non-structural aggregation, instead of fibril formation. Therefore, the stabilization of non-structural natively unfolded status is important to prevent alpha-synuclein fibril formation. Mixing the Val70Thr/Val71Thr double mutant, which has inherently low potential, with the fibril forming alpha-synucleins, WT and Ala53Thr, greatly reduced their fibril formation and aggregation. This double mutant has great potential for further therapeutic approaches. 相似文献
2.
《Phytomedicine》2014,21(5):704-711
Extract of Acanthopanax senticosus harms (EAS) has been shown to have neuroprotective effects on dopaminergic neurons in Parkinson's disease (PD) mice model. α-Synuclein is a key player in the pathogenesis of PD, the elevated level of which is deleterious to dopaminergic neurons, and enhancing its clearance might be a promising strategy for treating PD. To assess the potential of EAS in this regard, we investigated its effect on the SH-SY5Y cells overexpressing wild-type α-synuclein (WT-α-Syn) or A53T mutant α-synuclein (A53T-α-Syn), and the implicated pathway it might mediate. After treatment with EAS, the changes of α-synuclein, caspase-3, parkin, phospho-protein kinase B (Akt), phospho-glycogen synthase kinase 3 beta (GSK3β), and phospho-microtubule-associated protein tau (Tau) in WT-α-Syn or A53T-α-Syn transgenic cells were reverted back to near normal levels, demonstrated by the western blotting and quantitative real-time PCR outcomes. The neuroprotective effects of EAS may be able to protect WT-α-Syn or A53T-α-Syn transgenic SH-SY5Y cells from α-synuclein overexpression and toxicity. Therefore, we speculate that EAS might be a promising candidate for prevention or treatment of α-synuclein-related neurodegenerative disorders such as PD. 相似文献
3.
Jun Liu Min Shi Zhen Hong JianPeng Zhang Joshua Bradner Thomas Quinn Richard P. Beyer Patrick L. Mcgeer ShengDi Chen Jing Zhang 《Proteomics》2010,10(11):2138-2150
Accumulating evidence suggests that extracellular α‐synuclein (eSNCA) plays an important role in the pathogenesis of Parkinson's disease or related synucleinopathies by inducing neurotoxicity directly or indirectly via microglial or astroglial activation. However, the mechanisms by which this occurs remain to be characterized. To explore these mechanisms, we combined three biochemical techniques – stable isotope labeling of amino acid in cell cultures (SILAC), biotin labeling of plasma membrane proteins followed by affinity purification, and analysis of unique proteins binding to SNCA peptides on membrane arrays. The SILAC proteomic analysis identified 457 proteins, of which, 245 or 172 proteins belonged to membrane or membrane associated proteins, depending on the various bioinformatics tools used for interpretation. In dopamine neuronal cells treated with eSNCA, the levels of 86 membrane proteins were increased and 35 were decreased compared with untreated cells. In peptide array analysis, 127 proteins were identified as possibly interacting with eSNCA. Of those, seven proteins were overlapped with the membrane proteins that displayed alterations in relative abundance after eSNCA treatment. One was ciliary neurotrophic factor receptor, which appeared to modulate eSNCA‐mediated neurotoxicity via mechanisms related to JAK1/STAT3 signaling but independent of eSNCA endocytosis. 相似文献
4.
5.
Liang-Kai Chang Jian-Hua Zhao Hsuan-Liang Liu Kung-Tien Liu Jenn-Tzong Chen Wei-Bor Tsai 《Journal of biomolecular structure & dynamics》2013,31(6):731-740
Abstract Several neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Huntington's dis-eases, are associated with amyloid fibrils formed by different polypeptides. Recently, the atomic structure of the amyloid-forming peptide GGVVIA from the C-terminal hydrophobic segment of amyloid-β (Aβ) peptide has been determined and revealed a dry, tightly self-com-plementing structure between two β-sheets, termed as “steric zipper”. In this study, several all-atom molecular dynamics simulations with explicit water were conducted to investigate the structural stability and aggregation behavior of the GGVVIA oligomers with various sizes. The results of our single-layer models suggested that the structural stability of the GGVVIA oligomers increases remarkably with increasing the numbers of β-strands. We fur-ther identified that SH2-ST2 may act as a stable seed in prompting amyloid fibril formations. Our results also demonstrated that hydrophobic interaction is the principle driving force to stabilize and associate the GGVVIA oligomers between β-strands; while the hydrophobic steric zipper formed via the side chains of V3, V4, and I5 plays a critical role in holding the two neighboring β-sheets together. Single glycine substitution at V3, V4, and I5 directly disrupted the hydrophobic steric zipper between these two β-sheets, resulting in the destabili-zation of the oligomers. Our simulation results provided detailed insights into understanding the aggregation behavior of the GGVVIA oligomers in the atomic level. It may also be help-ful for designing new inhibitors able to prevent the fibril formation of Aβ peptide. 相似文献
6.
Paolo Calabresi Veronica Ghiglieri Petra Mazzocchetti Ilenia Corbelli Barbara Picconi 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2015,370(1672)
The long-term replacement therapy with the dopamine (DA) precursor 3,4-dihydroxy-l-phenylalanine (L-DOPA) is a milestone in the treatment of Parkinson''s disease (PD). Although this drug precursor can be metabolized into the active neurotransmitter DA throughout the brain, its therapeutic benefit is due to restoring extracellular DA levels within the dorsal striatum, which lacks endogenous DA as a consequence of the neurodegenerative process induced by the disease. In the early phases of PD, L-DOPA treatment is able to restore both long-term depression (LTD) and long-term potentiation (LTP), two major forms of corticostriatal synaptic plasticity that are altered by dopaminergic denervation. However, unlike physiological DA transmission, this therapeutic approach in the advanced phase of the disease leads to abnormal peaks of DA, non-synaptically released, which are supposed to trigger behavioural sensitization, namely L-DOPA-induced dyskinesia. This condition is characterized by a loss of synaptic depotentiation, an inability to reverse previously induced LTP. In the advanced stages of PD, L-DOPA can also induce non-motor fluctuations with cognitive dysfunction and neuropsychiatric symptoms such as compulsive behaviours and impulse control disorders. Although the mechanisms underlying the role of L-DOPA in both motor and behavioural symptoms are still incompletely understood, recent data from electrophysiological and imaging studies have increased our understanding of the function of the brain areas involved and of the mechanisms implicated in both therapeutic and adverse actions of L-DOPA in PD patients. 相似文献
7.
Pesah Y Burgess H Middlebrooks B Ronningen K Prosser J Tirunagaru V Zysk J Mardon G 《Genesis (New York, N.Y. : 2000)》2005,41(4):154-159
Previously published reports have suggested that misexpression of alpha-Synuclein in the Drosophila central nervous system causes neurodegeneration and progressive age-dependent locomotor dysfunction similar to pathologic and clinical manifestations of Parkinson's disease. The number of dopaminergic (DA) neurons in these studies was assessed using immunohistochemistry with an anti-tyrosine hydroxylase antibody on sequential paraffin sections of fly brains. In contrast, we do not observe any DA cell loss in alpha-Synuclein expressing fly brains when using whole-mount immunohistochemistry as an assay. Our results suggest that the DA cell loss observed with misexpression of alpha-Synuclein is not fully penetrant under a variety of experimental conditions and that this may complicate interpretation of such experiments. 相似文献
8.
9.
Flavie Waters Joseph M. Barnby Jan Dirk Blom 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2021,376(1817)
Within the broad field of human perception lies the category of stimulus-independent perceptions, which draws together experiences such as hallucinations, mental imagery and dreams. Traditional divisions between medical and psychological sciences have contributed to these experiences being investigated separately. This review aims to examine their similarities and differences at the levels of phenomenology and underlying brain function and thus reassemble them within a common framework. Using Edmund Parish''s historical work as a guiding tool and the latest research findings in the cognitive, clinical and computational sciences, we consider how different perspectives may be reconciled and help generate novel hypotheses for future research.This article is part of the theme issue ‘Offline perception: voluntary and spontaneous perceptual experiences without matching external stimulation’. 相似文献
10.
Maitrayee Sardar Sinha Ana Maria Villamil Giraldo Karin Öllinger Martin Hallbeck Livia Civitelli 《生物化学与生物物理学报:疾病的分子基础》2018,1864(9):3060-3068
Parkinson's disease (PD) and other synucleinopathies are characterized by accumulation of misfolded aggregates of α-synuclein (α-syn). The normal function of α-syn is still under investigation, but it has been generally linked to synaptic plasticity, neurotransmitter release and the maintenance of the synaptic pool. α-Syn localizes at synaptic terminals where it can bind to synaptic vesicles as well as to other cellular membranes. It has become clear that these interactions have an impact on both α-syn functional role and its propensity to aggregate. In this study, we investigated the aggregation process of α-syn covalently modified with 4-hydroxy-2-nonenal (HNE). HNE is a product of lipid peroxidation and has been implicated in the pathogenesis of different neurodegenerative diseases by modifying the kinetics of soluble toxic oligomers. Although HNE-modified α-syn has been reported to assemble into stable oligomers, we found that slightly acidic conditions promoted further protein aggregation. Lipid vesicles delayed the aggregation process in a concentration-dependent manner, an effect that was observed only when they were added at the beginning of the aggregation process. Co-aggregation of lipid vesicles with HNE-modified α-syn also induced cytotoxic effects on differentiated SHSY-5Y cells. Under conditions in which the aggregation process was delayed cell viability was reduced. By exploring the behavior and potential cytotoxic effects of HNE-α-syn under acidic conditions in relation to protein-lipid interactions our study gives a framework to examine a possible pathway leading from a physiological setting to the pathological outcome of PD. 相似文献
11.
I P de Castro A C Costa I Celardo R Tufi D Dinsdale S H Y Loh L M Martins 《Cell death & disease》2013,4(10):e873
Autophagy is a critical regulator of organellar homeostasis, particularly of mitochondria. Upon the loss of membrane potential, dysfunctional mitochondria are selectively removed by autophagy through recruitment of the E3 ligase Parkin by the PTEN-induced kinase 1 (PINK1) and subsequent ubiquitination of mitochondrial membrane proteins. Mammalian sequestrome-1 (p62/SQSTM1) is an autophagy adaptor, which has been proposed to shuttle ubiquitinated cargo for autophagic degradation downstream of Parkin. Here, we show that loss of ref(2)P, the Drosophila orthologue of mammalian P62, results in abnormalities, including mitochondrial defects and an accumulation of mitochondrial DNA with heteroplasmic mutations, correlated with locomotor defects. Furthermore, we show that expression of Ref(2)P is able to ameliorate the defects caused by loss of Pink1 and that this depends on the presence of functional Parkin. Finally, we show that both the PB1 and UBA domains of Ref(2)P are crucial for mitochondrial clustering. We conclude that Ref(2)P is a crucial downstream effector of a pathway involving Pink1 and Parkin and is responsible for the maintenance of a viable pool of cellular mitochondria by promoting their aggregation and autophagic clearance. 相似文献
12.
Croke RL Sallum CO Watson E Watt ED Alexandrescu AT 《Protein science : a publication of the Protein Society》2008,17(8):1434-1445
Amide proton NMR signals from the N-terminal domain of monomeric α-synuclein (αS) are lost when the sample temperature is raised from 10°C to 35°C at pH 7.4. Although the temperature-induced effects have been attributed to conformational exchange caused by an increase in α-helix structure, we show that the loss of signals is due to fast amide proton exchange. At low ionic strength, hydrogen exchange rates are faster for the N-terminal segment of αS than for the acidic C-terminal domain. When the salt concentration is raised to 300 mM, exchange rates increase throughout the protein and become similar for the N- and C-terminal domains. This indicates that the enhanced protection of amide protons from the C-terminal domain at low salt is electrostatic in nature. Cα chemical shift data point to <10% residual α-helix structure at 10°C and 35°C. Conformational exchange contributions to R2 are negligible at both temperatures. In contrast to the situation in vitro, the majority of amide protons are observed at 37°C in 1H-15N HSQC spectra of αS encapsulated within living Escherichia coli cells. Our finding that temperature effects on αS NMR spectra can be explained by hydrogen exchange obviates the need to invoke special cellular factors. The retention of signals is likely due to slowed hydrogen exchange caused by the lowered intracellular pH of high-density E. coli cultures. Taken together, our results emphasize that αS remains predominantly unfolded at physiological temperature and pH—an important conclusion for mechanistic models of the association of αS with membranes and fibrils. 相似文献
13.
14.
15.
Phelippe do Carmo-Gonçalves Eduardo Coelho-Cerqueira Juliana R. Cortines Theo Luiz Ferraz de Souza Luciana Romão Cristian Follmer 《Biochimica et Biophysica Acta (BBA)/General Subjects》2018,1862(12):2835-2845
Background
Salsolinol (SALSO), a product from the reaction of dopamine (DA) with acetaldehyde, is found increased in dopaminergic neurons of Parkinson's disease (PD) patients. The administration of SALSO in rats causes myenteric neurodegeneration followed by the formation of deposits of the protein α-synuclein (aS), whose aggregation is intimately associated to PD.Methods
NMR, isothermal titration calorimetry and MS were used to evaluate the interaction of SALSO with aS. The toxicity of SALSO and in vitro-produced aS-SALSO species was evaluated on mesencephalic primary neurons from mice.Results
SALSO, under oxidative conditions, stabilizes the monomeric state besides a minor population of oligomers of aS, resulting in a strong inhibition of the fibrillation process. SALSO does not promote any chemical modification of the protein. Instead, the interaction of SALSO with aS seems to occur via hydrophobic effect, likely mediated by the NAC (non-amyloid component) domain of the protein. aS-SALSO species were found to be innocuous on primary neurons, while SALSO alone induces apoptosis via caspase-3 activation. Importantly, exogenous aS monomer was capable of protecting neurons against SALSO toxicity irrespective whether the protein was co-administered with SALSO or added until 2?h after SALSO, as evidenced by DAPI and cleaved-caspase 3 assays. Similar protective action of aS was found by pre-incubating neurons with aS before the administration of SALSO.Conclusions
Interaction of SALSO with aS leads to the formation of fibril-incompetent and innocuous adducts. SALSO toxicity is attenuated by aS monomer.Significance
aS could exhibit a protective role against the neurotoxic effects of SALSO in dopaminergic neuron. 相似文献16.
17.
目的:探究合并不同发作形式的快速眼动睡眠期行为障碍(RBD)与帕金森病的临床特点及自主神经功能障碍变化。方法:采用快速眼动期睡眠行为障碍筛查量表及帕金森综合评分量表(Unified Parkinson's disease rating scale),对20例合并简单型(RBD)的帕金森病患者(RBD-简单组)与20例合并复杂型(RBD)的帕金森病患者(RBD-复杂组)进行研究。结果:两组帕金森病患者的一般情况、左旋多巴药物日剂量、疾病病程等无统计学差异(P>0.05)。合并复杂型(RBD)的帕金森病患者运动部分评分高于合并简单型(RBD)的帕金森病患者(P<0.05)。两组患者之间在非震颤、强直、运动减少症状均存在统计学差异(P<0.05),(RBD)复杂组评分均高于(RBD)简单组。多因素logistics回归显示,复杂型(RBD)的存在与UPDRS-Ш部分评分相关,而与年龄、病程、教育年限、左旋多巴药物日剂量等无显著相关,与运动减少症状最为相关,与震颤、非震颤、强直症状无相关性。两组患者运动障碍类型与(RBD)发作形式无明显相关性(P=0.108)。结论:合并复杂型(RBD)的帕金森病患者运动症状更重,并且累及运动障碍的诸多方面。帕金森病患者存在复杂型(RBD)症状主要与UPDRS-Ш评分相关,其中与运动减少方面显著相关。 相似文献
18.
19.
帕金森病(Parkinson’s disease, PD)是最常见的神经退行性疾病,随着我国人口老龄化加剧,PD病人的增加将造成严重的经济和医疗负担。PD的典型病理特征是黑质致密部多巴胺能神经元的死亡以及多巴胺能神经元中异常聚集的淀粉样蛋白α-突触核蛋白(α-synuclein,α-Syn)形成病理包涵体即路易小体(Lewy body)。研究发现路易小体不仅存在中枢神经系统中,也同样存在于外周神经系统。肠道内丰富的肠神经系统被称为“第二大脑”。肠脑轴的发现也证明α-Syn能在大脑和肠道进行双向传输。肠道中也存在着庞大的微生物群,这些微生物参与病理性α-Syn的形成和传输。因此文中基于肠脑轴探讨α-Syn在大脑和肠道的双向传输关系,尝试探索肠道微生物群对α-Syn异常聚集的影响。结合目前PD病人的研究和动物模型尤其是非人灵长类实验的研究,希望为PD疾病的筛查和诊断提供参考。 相似文献