首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, an attempt has been made to study the interaction of four taiwaniaquinoids with fat mass and obesity-associated protein (FTO) by UV–vis absorption, fluorescence spectroscopy, and molecular docking techniques. The results indicated that taiwaniaquinoids effectively quenched the intrinsic fluorescence of FTO via static quenching. According to the binding constants and thermodynamic parameters at three different temperatures, the hydrophobic force and electrostatic interactions appeared be the predominant intermolecular forces in stabilizing the complex. Results revealed that W-4 was the strongest quencher and W-3 was the weakest. The results of synchronous and three-dimensional fluorescence spectra showed that the conformation of FTO was changed. In addition, the influence of molecular structure on the quenching effect has been investigated.  相似文献   

2.
Interactions of sulfadiazine sodium (SD‐Na) with calf thymus DNA (ctDNA) and human serum albumin (HSA) were studied using fluorescence spectroscopy, UV absorption spectroscopy and molecular modeling. The fluorescence experiments showed that the processes were static quenching. The results of UV spectra and molecular modeling of the interaction between SD‐Na and ctDNA indicated that the binding mode might be groove binding. In addition, the interaction of SD‐Na with HSA under simulative physiological conditions was also investigated. The binding constants (K) and the number of binding sites (n) at different temperatures (292, 302, 312 K) were 5.23 × 103 L/mol, 2.18; 4.50 × 103 L/mol, 2.35; and 4.08 × 103 L/mol, 2.47, respectively. Thermodynamic parameters including enthalpy change (ΔH) and entropy change (ΔS) were calculated, the results suggesting that hydrophobic force played a very important role in SD‐Na binding to HSA, which was in good agreement with the molecular modeling study. Moreover, the effect of SD‐Na on the conformation of HSA was analyzed using three‐dimensional fluorescence spectra. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
The interaction between vincamine (VCM) and human serum albumin (HSA) has been studied using a fluorescence quenching technique in combination with UV/vis absorption spectroscopy, Fourier transform infrared (FT–IR) spectroscopy, circular dichroism (CD) spectroscopy and molecular modeling under conditions similar to human physiological conditions. VCM effectively quenched the intrinsic fluorescence of HSA via static quenching. The binding constants were calculated from the fluorescence data. Thermodynamic analysis by Van't Hoff equation revealed enthalpy change (ΔH) and entropy change (ΔS) were ?4.57 kJ/mol and 76.26 J/mol/K, respectively, which indicated that the binding process was spontaneous and the hydrophobic interaction was the predominant force. The distance r between the donor (HSA) and acceptor (VCM) was obtained according to the Förster's theory of non‐radiative energy transfer and found to be 4.41 nm. Metal ions, viz., Na+, K+, Li+, Ni2+, Ca2+, Zn2+ and Al3+ were found to influence binding of the drug to protein. The 3D fluorescence, FT–IR and CD spectral results revealed changes in the secondary structure of the protein upon interaction with VCM. Furthermore, molecular modeling indicated that VCM could bind to the subdomain IIA (site I) of HSA. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
The binding interaction between quinapril (QNPL) and bovine serum albumin (BSA) in vitro has been investigated using UV absorption spectroscopy, steady-state fluorescence spectroscopic, synchronous fluorescence spectroscopy, 3D fluorescence spectroscopy, Fourier transform infrared spectroscopy, circular dichroism, and molecular docking methods for obtaining the binding information of QNPL with BSA. The experimental results confirm that the quenching mechanism of the intrinsic fluorescence of BSA induced by QNPL is static quenching based on the decrease in the quenching constants of BSA in the presence of QNPL with the increase in temperature and the quenching rates of BSA larger than 1010 L mol?1 s?1, indicating forming QNPL–BSA complex through the intermolecular binding interaction. The binding constant for the QNPL–BSA complex is in the order of 105 M?1, indicating there is stronger binding interaction of QNPL with BSA. The analysis of thermodynamic parameters together with molecular docking study reveal that the main binding forces in the binding process of QNPL with BSA are van der Waal’s forces and hydrogen bonding interaction. And, the binding interaction of BSA with QNPL is an enthalpy-driven process. Based on Förster resonance energy transfer, the binding distance between QNPL and BSA is calculated to be 2.76 nm. The results of the competitive binding experiments and molecular docking confirm that QNPL binds to sub-domain IIA (site I) of BSA. It is confirmed there is a slight change in the conformation of BSA after binding QNPL, but BSA still retains its secondary structure α-helicity.  相似文献   

5.
To further understand the mechanism of action and pharmacokinetics of medroxyprogesterone acetate (MPA), the binding interaction of MPA with bovine serum albumin (BSA) under simulated physiological conditions (pH 7.4) was studied using fluorescence emission spectroscopy, synchronous fluorescence spectroscopy, circular dichroism and molecular docking methods. The experimental results reveal that the fluorescence of BSA quenches due to the formation of MPA–BSA complex. The number of binding sites (n) and the binding constant for MPA–BSA complex are ~1 and 4.6 × 103 M?1 at 310 K, respectively. However, it can be concluded that the binding process of MPA with BSA is spontaneous and the main interaction forces between MPA and BSA are van der Waals force and hydrogen bonding interaction due to the negative values of ΔG0, ΔH0 and ΔS0 in the binding process of MPA with BSA. MPA prefers binding on the hydrophobic cavity in subdomain IIIA (site II′′) of BSA resulting in a slight change in the conformation of BSA, but BSA retaining the α‐helix structure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Molecular interaction of atenolol, a selective β1 receptor antagonist with the major carrier protein, bovine serum albumin (BSA), was investigated under imitated physiological conditions (pH 7.4) by means of fluorescence spectroscopy, UV absorption spectroscopy, Fourier transform infrared spectroscopy (FT-IR), and molecular modeling studies. The steady-state fluorescence spectra manifested that static type, due to formation of the atenolol-BSA complex, was the dominant mechanism for fluorescence quenching. The characteristic information about the binding interaction of atenolol with BSA in terms of binding constant (Kb) were determined by the UV–vis absorption titration, and were found to be in the order of 103 M?1 at different temperatures, indicating the existence of a weak binding in this system. Thermodynamic analysis revealed that the binding process was primarily mediated by van der Waals force and hydrogen bonds due to the negative sign for enthalpy change (ΔH0), entropy change (ΔS0). The molecular docking results elucidated that atenolol preferred binding on the site II of BSA according to the findings observed in competitive binding experiments. Moreover, via alterations in synchronous fluorescence, three-dimensional fluorescence and FT-IR spectral properties, it was concluded that atenolol could arouse slight configurational and micro-environmental changes of BSA.  相似文献   

7.
Ye H  Qiu B  Lin Z  Chen G 《Luminescence》2011,26(5):336-341
The interaction between tamibarotene and bovine serum albumin (BSA) was studied using fluorescence quenching technique and ultraviolet–visible spectrophotometry. The results of experiments showed that tamibarotene could strongly quench the intrinsic fluorescence of BSA by a dynamic quenching mechanism. The apparent binding constant, number of binding site and corresponding thermodynamic parameters at different temperatures were calculated respectively, and the main interaction force between tamibarotene and BSA was proved to be hydrophobic force. Synchronous fluorescence spectra showed that tamibarotene changed the molecular conformation of BSA. When BSA concentration was 1.00 × 10?6 mol L?1, the quenched fluorescence ΔF had a good linear relationship with the concentration of tamibarotene in the range 1.00 × 10?6 to 12.00 × 10?6 mol L?1 with the detection limit of 6.52 × 10?7 mol L?1. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Donepezil (DNP) is one of approved drugs to treat Alzheimer's disease (AD). However, the potential effect of DNP on DNA is still unclear. Therefore, the interaction of DNP with calf thymus DNA (DNA) was studied in vitro using spectroscopic and molecular docking methods. Steady‐state and transient fluorescence experiments showed that there was a clear binding interaction between DNP and DNA, resulting from DNP fluorescence being quenched using DNA. DNP and DNA have one binding site between them, and the binding constant (Kb) was 0.78 × 104 L·mol?1 at 298 K. In this binding process, hydrophobic force was the main interaction force, because enthalpy change (ΔH) and entropy change (ΔS) of DNP–DNA were 67.92 kJ·mol?1 and 302.96 J·mol?1·K?1, respectively. DNP bound to DNA in a groove‐binding mode, which was verified using a competition displacement study and other typical spectroscopic methods. Fourier transform infrared (FTIR) spectrum results showed that DNP interacted with guanine (G) and cytosine (C) bases of DNA. The molecular docking results further supported the results of spectroscopic experiments, and suggested that both Pi‐Sigma force and Pi‐Alkyl force were the major hydrophobic force functioning between DNP and DNA.  相似文献   

9.
The interaction of triazole substituted 4‐methyl‐7‐hydroxycoumarin derivatives (CUM1‐4) with serum albumin (bovine serum albumin [BSA] and human serum albumin [HSA]) have been studied employing ultraviolet‐visible (UV‐Vis), fluorescence, circular dichroism (CD) spectroscopy, and molecular docking methods at physiological pH 7.4. The fluorescence quenching occurred with increasing concentration of CUMs, and the binding constant of CUM derivatives with BSA and HSA obtained from fluorescence quenching experiment was found to be ~ 104 L mol?1. CD study showed conformational changes in the secondary structure of serum albumin upon titration of CUMs. The observed experimental results were further validated by theoretical studies involving density functional theory (DFT) and molecular docking.  相似文献   

10.
The binding interactions of simvastatin (SIM), pravastatin (PRA), fluvastatin (FLU), and pitavastatin (PIT) with bovine serum albumin (BSA) were investigated for determining the affinity of four statins with BSA through multiple spectroscopic and molecular docking methods. The experimental results showed that SIM, PRA, FLU, and PIT statins quenched the intrinsic fluorescence of BSA through a static quenching process and the stable stains–BSA complexes with the binding constants in the order of 104 M?1 at 298 K were formed through intermolecular nonbond interaction. The values of ΔH0, ΔS0 and ΔG0 in the binding process of SIM, PRA, FLU, and PIT with BSA were negative at the studied temperature range, suggesting that the binding process of four statins and BSA was spontaneous and the main interaction forces were van der Waals force and hydrogen-bonding interactions. Moreover, the binding of four statins with BSA was enthalpy-driven process due to |ΔH°|>|TΔS°| under the studied temperature range. From the results of site marker competitive experiments and molecular docking, subdomain IIIA (site II) was the primary binding site for SIM, PRA, FLU, and PIT on BSA. The results of UV–vis absorption, synchronous fluorescence, 3D fluorescence and FT-IR spectra proved that the slight change in the conformation of BSA, while the significant changes in the conformation of SIM, PRA, FLU, and PIT drug in statin–BSA complexes, indicating that the flexibility of statin molecules plays an important role in increasing the stability of statin–BSA complexes.  相似文献   

11.
To further understand the mode of action and pharmacokinetics of lisinopril, the binding interaction of lisinopril with bovine serum albumin (BSA) under imitated physiological conditions (pH 7.4) was investigated using fluorescence emission spectroscopy, synchronous fluorescence spectroscopy, Fourier transform infrared spectroscopy (FTIR), circular dichroism (CD) and molecular docking methods. The results showed that the fluorescence quenching of BSA near 338 nm resulted from the formation of a lisinopril–BSA complex. The number of binding sites (n) for lisinopril binding on subdomain IIIA (site II) of BSA and the binding constant were ~ 1 and 2.04 × 104 M–1, respectively, at 310 K. The binding of lisinopril to BSA induced a slight change in the conformation of BSA, which retained its α‐helical structure. However, the binding of lisinopril with BSA was spontaneous and the main interaction forces involved were van der Waal's force and hydrogen bonding interaction as shown by the negative values of ΔG0, ΔH0 and ΔS0 for the binding of lisinopril with BSA. It was concluded from the molecular docking results that the flexibility of lisinopril also played an important role in increasing the stability of the lisinopril–BSA complex. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Abstract

The binding characteristic of anti-platelet drug dipyridamole has been investigated with a transport protein, serum albumin. A multi-spectroscopic approach has been employed, and the results were well supported by in silico molecular docking and simulation studies. The fluorescence quenching of serum albumin at three different temperatures revealed that the mechanism involved is static and the binding constant of the interaction was found to be of the order of 104 M?1. The reaction was found to be spontaneous and involved hydrophobic interactions. Synchronous, 3D fluorescence and CD spectroscopy indicated a change in conformation of bovine serum albumin (BSA) on interaction with DP. Using site-selective markers, the binding site of DP was found to be in subdomain IB. Molecular docking studies further corroborated these results. Molecular dynamic (MD) simulations showed lower RMSD values on interaction, suggesting the existence of a stable complex between DP and BSA. Furthermore, since β-Cyclodextrin (βCD) is used to improve the solubility of DP in ophthalmic solutions, therefore, the effect of (βCD) on the interaction of BSA and DP was also studied, and it was found that in the presence of βCD, the binding constant for BSA-DP interaction decreased. The present study is an attempt to characterize the transport of DP and to improve its bioavailability, consequently helping in dosage design to achieve optimum therapeutic levels.

Communicated by Ramaswamy H. Sarma  相似文献   

13.
The interaction of pepsin with chlorogenic acid (CHA) was investigated using fluorescence, UV/vis spectroscopy and molecular modeling methods. Stern–Volmer analysis indicated that the fluorescence quenching of pepsin by CHA resulted from a static mechanism, and the binding constant was 1.1846 × 105 and 1.1587 × 105 L/mol at 288 and 310 K, respectively. The distance between donor (pepsin) and acceptor (CHA) was calculated to be 2.39 nm and the number of binding sites for CHA binding on pepsin was ~ 1. The results of synchronous fluorescence and three‐dimensional fluorescence showed that binding of CHA to pepsin could induce conformational changes in pepsin. Molecular docking experiments found that CHA bonded with pepsin in the area of the hydrophobic cavity with Van der Waals' forces or hydrogen bonding interaction, which were consistent with the results obtained from the thermodynamic parameter analysis. Furthermore, the binding of CHA can inhibit pepsin activity in vitro. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
The binding interaction of lovastatin with calf thymus DNA (ct‐DNA) was studied using UV/Vis absorption spectroscopy, fluorescence emission spectroscopy, circular dichroism (CD), viscosity measurement and molecular docking methods. The experimental results showed that there was an obvious binding interaction of lovastatin with ct‐DNA and the binding constant (Kb) was 5.60 × 103 M–1 at 298 K. In the binding process of lovastatin with ct‐DNA, the enthalpy change (ΔH0) and entropy change (ΔS0) were –24.9 kJ/mol and –12.0 J/mol/K, respectively, indicating that the main binding interaction forces were van der Waal's force and hydrogen bonding. The molecular docking results suggested that lovastatin preferred to bind on the minor groove of different B‐DNA fragments and the conformation change of lovastatin in the lovastatin–DNA complex was obviously observed, implying that the flexibility of lovastatin molecule plays an important role in the formation of the stable lovastatin–ct‐DNA complex. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
The interaction between N‐acetyl cysteine (NAC) and bovine serum albumin (BSA) was investigated by UV–vis, fluorescence spectroscopy, and molecular docking methods. Fluorescence study at three different temperatures indicated that the fluorescence intensity of BSA was reduced upon the addition of NAC by the static quenching mechanism. Binding constant (Kb) and the number of binding sites (n) were determined. The binding constant for the interaction of NAC and BSA was in the order of 103 M?1, and the number of binding sites was obtained to be equal to 1. Enthalpy (ΔH), entropy (ΔS), and Gibb's free energy (ΔG) as thermodynamic values were also achieved by van't Hoff equation. Hydrogen bonding and van der Waals force were the major intermolecular forces in the interaction process and it was spontaneous. Finally, the binding mode and the binding sites were clarified using molecular docking which were in good agreement with the results of spectroscopy experiments. © 2015 Wiley Periodicals, Inc. Biopolymers 103: 638–645, 2015.  相似文献   

16.
The interaction of anticancer drug cytarabine with calf thymus DNA (CT-DNA) was investigated in vitro under simulated physiological conditions by multispectroscopic techniques and molecular modeling study. The fluorescence spectroscopy and UV absorption spectroscopy indicated drug interacted with CT-DNA in a groove-binding mode, while the binding constant of UV-vis and the number of binding sites were 4.0 ± 0.2 × 104 L mol?1 and 1.39, respectively. The fluorimetric studies showed that the reaction between the drugs with CT-DNA is exothermic. Circular dichroism spectroscopy was employed to measure the conformational change of DNA in the presence of cytarabine. Furthermore, the drug induces detectable changes in its viscosity for DNA interaction. The molecular modeling results illustrated that cytarabine strongly binds to groove of DNA by relative binding energy of docked structure ?20.61 KJ mol?1. This combination of multiple spectroscopic techniques and molecular modeling methods can be widely used in the investigation on the interaction of small molecular pollutants and drugs with biomacromolecules for clarifying the molecular mechanism of toxicity or side effect in vivo.  相似文献   

17.
Eriocitrin is a flavanone glycoside, which exists in lemon or lime citrus fruits. It possesses antioxidant, anticancer, and anti‐allergy activities. In order to investigate the pharmacokinetics and pharmacological mechanisms of eriocitrin in vivo, the interaction between eriocitrin and bovine serum albumin (BSA) was studied under the simulated physiological conditions by multispectroscopic and molecular docking methods. The results well indicated that eriocitrin and BSA formed a new eriocitrin‐BSA complex because of intermolecular interactions, which was demonstrated by the results of ultraviolet‐visible (UV‐vis) absorption spectra. The intrinsic fluorescence of BSA was quenched by eriocitrin, and static quenching was the quenching mechanism. The number of binding sites (n) and binding constant (Kb) at 310 K were 1.22 and 2.84 × 106 L mol?1, respectively. The values of thermodynamic parameters revealed that the binding process was spontaneous, and the main forces were the hydrophobic interaction. The binding distance between eriocitrin and BSA was 3.43 nm. In addition, eriocitrin changed the conformation of BSA, which was proved by synchronous fluorescence and circular dichroism (CD) spectra. The results of site marker competitive experiments suggested that eriocitrin was more likely to be inserted into the subdomain IIA (site I), which was further certified by molecular docking studies.  相似文献   

18.
Mechanistic and conformational studies on the interaction of sulfamethoxazole (SMX) with human immunoglobulin G (HIgG) were performed by molecular modeling and multi‐spectroscopic methods. The interaction mechanism was firstly predicted through molecular modeling that confirmed the interaction between SMX and HIgG. The binding parameters and thermodynamic parameters at different temperatures had been calculated according to the Stern?Volmer, Scatchard, Sips and Van ’t Hoff equations, respectively. Experimental results showed that the fluorescence intensity of HIgG was quenched by the gradual addition of SMX. The binding constants of SMX with HIgG decreased with the increase of temperature, which meant that the quenching mechanism was a static quenching. Meanwhile, the results also confirmed that there was one independent class of binding site on HIgG for SMX during their interaction. The thermodynamic parameters of the reaction, namely standard enthalpy ΔH0 and entropy ΔS0, had been calculated to be ?14.69 kJ·mol?1 and 22.99 J·mol?1·K?1, respectively, which suggested that the electrostatic and hydrophobic interactions were the predominant intermolecular forces in stabilizing the SMX?HIgG complex. Furthermore, experimental results obtained from three‐dimensional fluorescence spectroscopy, UV?vis absorption spectroscopy and circular dichroism (CD) spectroscopy confirmed that the conformational structure of HIgG was altered in the presence of SMX. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
In the present study, the interaction of Pyrogallol (PG) with human serum albumin (HSA) was investigated by UV, fluorescence, Circular dichroism (CD), and molecular docking methods. The results of fluorescence experiments showed that the quenching of intrinsic fluorescence of HSA by PG was due to a static quenching. The calculated binding constants (K) for PG-HSA at different temperatures were in the order of 104?M ?1, and the corresponding numbers of binding sites, n were approximately equal to unity. The thermodynamic parameters, ΔH and ΔS were calculated to be negative, which indicated that the interaction of PG with HSA was driven mainly by van der Waals forces and hydrogen bonds. The negative value was obtained for ΔG showed that the reaction was spontaneous. In addition, the effect of PG on the secondary structure of HSA was analyzed by performing UV–vis, synchronous fluorescence, and CD experiments. The results indicated that PG induced conformational changes in the structure of HSA. According to Förster no-radiation energy transfer theory, the binding distance of HSA to PG was calculated to be 1.93?nm. The results of molecular docking calculations clarified the binding mode and the binding sites which were in good agreement with the results of experiments.

Communicated by Ramaswamy H. Sarma  相似文献   


20.
The binding characteristics of the interaction between 3-(2-cyanoethyl) cytosine (CECT) and human serum albumin (HSA) were investigated using fluorescence, UV absorption spectroscopic and molecular modeling techniques under simulative physiological conditions. The intrinsic fluorescence intensity of HSA was decreased with the addition of CECT. The fluorescence data handled by Stern–Volmer equation proved that the quenching mechanism of the interaction between CECT and HSA was a static quenching procedure. The binding constants evaluated utilizing the Lineweaver–Burk equation at 17, 27 and 37?°C, were 2.340?×?104, 2.093?×?104 and 1.899?×?104?L?mol?1, respectively. The thermodynamic parameters were calculated according to van’t Hoff equations. Negative enthalpy (ΔH) and positive entropy (ΔS) values indicated that both hydrogen bond and hydrophobic force played a major role in the binding process of CECT to HSA, which was consistent with the results of the molecular modeling study. In addition, the effect of other ions on the binding constant of CECT-HSA was examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号