首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The influence of conformational rearrangement of the furanose ring in DNA on its dipole moment is studied. The dipole moment of the deoxyribose molecule as a function of its puckered state is calculated by the quantum-mechanical method using the MINDO/3 approximation. The values of the dipole moment and its components are obtained at various magnitudes of the pseudorotation phase angle. The C3'-endo in equilibrium C2'-endo conformational transition of deoxyribose is shown to be accompanied by the change in the dipole moment up to 3D. The results obtained are used to explain the structural properties of the DNA hydration shell.  相似文献   

2.
Abstract

The double helical structure of the self-complementary DNA-RNA-DNA hybrid d(CG)r(CG) d(CG) was studied in solution by 500 MHz 1H-NMR spectroscopy. The non-exchangeable base protons and the (deoxy)ribose H1′, H2′ and H2″ protons were unambiguously assigned using 2D-J-correlated (COSY) and 2D-NOE (NOESY) spectroscopy techniques. A general strategy for the sequential assignment of 1H-NMR spectra of (double) helical DNA and RNA fragments by means of 2D-NMR methods is presented.

Conformational analysis of the sugar rings of d(CG)r(CG)d(CG) at 300 K shows that the central ribonucleotide part of the helix adopts an A-type double helical conformation. The 5′- and 3′-terminal deoxyribose base pairs, however, take up the normal DNA-type conformation. The A-to-B transition in this molecule involves only one (deoxyribose) base pair. It is shown that this A-to-B conformational transition can only be accomodated by two specific sugar pucker combinations for the junction base pair, i.e. N·S (C3′-endo-C2′-endo, 60%, where the pucker given first is that assigned to the junction nucleotide residue of the strand running 5′ → 3′ from A-RNA to B-DNA) and S·S (C2′-endo-C2′-endo, 40%).  相似文献   

3.
4.
The virtual bond scheme set forth in preceding papers for treating the average properties of polyriboadenylic acid (poly rA) is here applied to the calculation of the unperturbed mean-square end-to-end distance of polydeoxyriboadenylic acid (poly dA). The modifications in structure and in charge distribution resulting from the replacement of the hydroxyl group at C2′ in the ribose residue by hydrogen in deoxyribose produce only minor modifications in the conformational energies associated with the poly dA chain as compared to those found for poly rA. The main difference is manifested in the energy associated with rotations about the C3′–O3′ bond of the deoxyribose residue in the C2′-endo conformation; accessible rotations are confined to the range between 0° and 30° relative to the trans conformation, whereas in the ribose unit the accessible regions comprise two ranges centered at approximately 35° and 85°. The characteristic ratio 〈r2〉0/nl2 calculated on the basis of the conformational energy estimates is ≈9 for the poly dA chain with all deoxyribose residues in the C3′-endo conformation and ≈21 with all residues in the C2′-endo form. Satisfactory agreement is achieved between the theoretical values and experimental results on apurinic acid by treating the poly dA chain as a random copolymer of C3′-endo and C2′-endo conformational isomers present in a ratio of ~1 to 9.  相似文献   

5.
The structural adjustments of the sugar-phosphate DNA backbone (switching of the γ angle (O5′–C5′–C4′–C3′) from canonical to alternative conformations and/or C2′-endo → C3′-endo transition of deoxyribose) lead to the sequence-specific changes in accessible surface area of both polar and non-polar atoms of the grooves and the polar/hydrophobic profile of the latter ones. The distribution of the minor groove electrostatic potential is likely to be changing as a result of such conformational rearrangements in sugar-phosphate DNA backbone. Our analysis of the crystal structures of the short free DNA fragments and calculation of their electrostatic potentials allowed us to determine: (1) the number of classical and alternative γ angle conformations in the free B-DNA; (2) changes in the minor groove electrostatic potential, depending on the conformation of the sugar-phosphate DNA backbone; (3) the effect of the DNA sequence on the minor groove electrostatic potential. We have demonstrated that the structural adjustments of the DNA double helix (the conformations of the sugar-phosphate backbone and the minor groove dimensions) induce changes in the distribution of the minor groove electrostatic potential and are sequence-specific. Therefore, these features of the minor groove sizes and distribution of minor groove electrostatic potential can be used as a signal for recognition of the target DNA sequence by protein in the implementation of the indirect readout mechanism.  相似文献   

6.
Abstract

The magnetic shielding constant of the different 13C and 13H nuclei of a deoxyribose are calculated for the C2′ endo and C3′ endo puckerings of the furanose ring as a function of the conformation about the C4′C5′ bond. For the carbons the calculated variations are of several ppm, the C3′ endo puckering corresponding in most cases to a larger shielding than the C2′ endo one. For the protons the calculated variations of chemical shifts are all smaller than 1.3 ppm, that is of the order of magnitude of the variation of the geometrical shielding produced on these protons by the other units of a DNA double helix, with a change of the overall structure of the helix. The computations carried out on the deoxyribose ?3′ and 5′ phosphates for several conformations of the phosphate group tend to show that the changes of conformation of the charged group of atoms produce chemical shift variations smaller than the two conformational parameters of the deoxyribose itself. The calculations carried out for a ribose do give the general features of the differences between the carbon and proton spectra of deoxynucleosides and nucleosides.

The comparison of the measured and calculated phosphorylation shifts tend to show that the counterion contributes significantly, for some nuclei of the deoxyribose, to the shifts measured. The calculated magnitude of this polarization effect on carbon shifts suggests a tentative qualitative interpretation of carbon spectra of the ribose part of DNA double helices.  相似文献   

7.
Abstract

Two nucleoside analogs were synthesized to test the ribose conformational and electronic effects on phosphate hydrolysis at the 3′ position. It was found that under alkaline conditions, a 2′-fluoro-nucleoside (C3′-endo) resulted in a phosphate degradation that was ten times faster than the 2′-deoxynucleoside analog (C2′-endo). In addition to kinetic differences, product distributions will be presented.  相似文献   

8.
Abstract

Crystal structure analysis of 2′,3′-dideoxy-3′-fluorocytidine (1) and its prodrug derivative, N4-dimethylaminomethylene-2′,3′-dideoxy-3′-fluorocytidine (2), active anti-HIV nucleoside analogues, reveals that both structures adopt an anti conformation about the glycosyl bond. The furanose ring is C2′-endo for (2) and C2′-endo/C1′-exo and C2′-endo/C3′-exo for the two independent molecules of (1), respectively.  相似文献   

9.
Abstract

Molecular mechanics calculations and molecular dynamics simulations have been used to study the binding of the partially inserted major groove complex of A-[Ru(1,10-phenanthroline)3]2+ with DNA. Energy refinements of this complex showed a clear preference for binding at purine-3′,5′-pyrimidine sites over pyrimidine-3′,5′-purine sites. The basis for this difference is shown to be a slight change in the binding orientation induced by interchanging the purine and pyrimidine bases. This in turn provides for a better secondary interaction with the helix backbone at a point beyond the immediate binding site. It is this secondary interaction that provides the additional energetic stabilisation for complexes formed at purine-3′,5′-pyrimidine sites. Molecular dynamics simulations including explicit representation of solvent support these conclusions and provide an insight into the positional stability of the ligand at a particular site. Repuckering of specific deoxyribose rings to the C3′-endo conformation seems to be an important feature of the DNA/ligand complex.  相似文献   

10.
The influence of sugar ring flexibility in DNA on the mechanism of the B<-->A conformational transition is studied. The dipole moment of the deoxyribose as a function of its puckered states is calculated by the quantum-mechanical method using the MINDO/3 approximation. The interaction of the sugar dipole with the neighbour molecular groups in polynucleotide chain is estimated. The sugar dipole interaction witch phosphate groups and counterions is shown to be strong and capable to deform the pseudorotation potential of deoxyribose. The effective pseudorotation potential of sugar ring in the B- and A-helices is obtained. The results are used to explain the behaviour of Raman bands in the region of sugar-phosphate vibrations. The mechanism of the effect of electrostatic forces on the sugar-phosphate backbone conformation which is essential for the B<-->A and other structure transitions is offered.  相似文献   

11.
12.
Abstract

The interaction of adenosine-5′-monophosphate (5′-AMP), guanosine-5′-monophosphate (5′-GMP) and 2′-deoxyguanosine-5′-monophosphate (5′-dGMP) with the [Co(NH3)6]3+, [CO(NH3)5C1]2+ and [CO(NH3)4C12]+ cations has been investigated in aqueous solution with metal/nucleotide ratios (r) of 1/2, 1 and 2 at neutral pH. The solid complexes have been isolated and characterized by FT-IR and 1H-NMR spectroscopy.

The complexes are polymeric in nature both in the crystalline solid and aqueous solution. The binding of the cobalt-hexammine cation is indirectly (via NH3) through the N-7 and the PO3 2- groups of the AMP and via O-6, N-7 and the PO3 2- of the GMP and dGMP anions (outer-sphere). The cobalt-pentammine and cobalt-tetrammine bindings are through the phosphate groups (inner-sphere) and the N-7 site (outer-sphere) of these nucleotide anions. The ribose moiety shows C2′-endo/anti conformation, in the free AMP and GMP anions as well as in the cobalt-ammine - AMP complexes, whereas a mixture of the C2′-endo/anti and C3′-endo/anti sugar puckers were observed for the Co(NH3)6-GMP, Co(NH3)5-GMP and a C3′-endo/anti conformer for the Co(NH3)4-GMP complexes. The deoxyribose showed an O4′-endo/anti conformation for the free dGMP anion and a C3′-endo/anti for the Co(NH3)6-dGMP, Co(NH3)5-dGMP and Co(NH3)4-dGMP complexes.  相似文献   

13.
14.
The influence of sugar ring flexibility in DNA on the mechanism of the B ? A conformational transition is studied. The dipole moment of the deoxyribose as a function of its puckered states is calculated by the quantum-mechanical method using the MINDO/3 approximation. The interaction of the sugar dipole with the neighbor molecular groups in polynucleotide chains is estimated. The sugar dipole interaction with phosphate groups and counterions is shown to be strong and capable to deform the pseudorotation potential of deoxyribose. The effective pseudorotation potential of sugar ring in the B and A helices is obtained. The results are used to explain the behavior of Raman bands in the region of sugar–phosphate vibrations. The mechanism of the effect of electrostatic forces on the sugar–phosphate backbone conformation, which is essential for the B ? A and other structure transitions, is offered. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
Abstract

A normal coordinate analysis has been carried out on guanosine and cytidine residues appearing in oligo and polynucleotides by using a simplified valence force field that allows the vibrational spectra of 5′-dGMP and 2′-deoxycytidine molecules to be reproduced. The role of both C2′-endo and C3′-endo conformations on sugar pucker, as well as that of glycosidic torsion angle (χ), on several characteristic vibration modes of these residues have been studied. The present calculations based on a non-redundant set of internal coordinates preserving the harmonic approximation of the potential field, allows us to explain quite satisfactorily the modifications of the vibrational spectra in the 1550-1250 cm?1 and 785-500 cm?1 regions, when the right → left-handed conformational transition occurs.  相似文献   

16.
The molecular structures of 3′-azido-2′,3′-dideoxyribosylthymine 5′-triphosphate (AZTTP), 2′,3′-dideoxyribosylinosine 5′-triphosphate (ddITP), 3′-azido-2′,3′-dideoxyribosylthymine 5′-monophosphate (AZTMP) and 2′,3′-dideoxyribosyladenine 5′-monophosphate (ddAMP) have been studied by NMR to understand their anti-HIV activity. For ddAMP and ddITP, conformations are almost identical with their nucleoside analogues with sugar ring pucker equilibriating between C3′-endo (∼75%) and C2′-endo (∼25%). AZTMP and AZTTP on the other hand show significant variations in the conformational behaviour compared with 3′-azido-2′,3′-dideoxyribo-sylthymine (AZT). The sugar rings for these nucleotides have a much larger population of C2′-endo (∼75%) conformers, like those observed for natural 2′-deoxynucleosides and nucleotides. The major conformers around C5′-O5′, C4′-C5′ and the glycosidic bonds are the βt, γ+ and anti, respectively.  相似文献   

17.
Abstract

Conformational analysis and 1H NMR spectral assignments have been carried out using COSY and RELAY methods for a series of related oligoribonucleotides including two pen- tamers with 5′-dangling bases. Intraresidue long-range five bond scalar coupling was observed between pyrimidine H5 and H1′ protons in the COSY-45 spectra and this feature was useful for both assignment purposes and conformational analysis. The ribose ring conformations were predominantly C3′-endo with the C2′-endo population increasing at the 3′-terminus. The 5′-dangling bases were not stacked efficiently, exhibiting lower % C3′-endo values than their 3′-nearest neighbors. Backbone torsion angle populations, β′, γ+, ε′, were determined using ′H-′H, ′H-31P, and 13C-31P coupling constants. From β′ and γ+ populations the U3-G4 step in CAUG was found to be less efficiently stacked than the C1-A2 and A2-U3 steps. This observation in solution is consistent with the fiber diffraction A-RNA model (S. Arnott, D.W.L. Hukins, S.D. Dover, W. Fuller and A.R. Hodgson, J. Mol. Biol. 81, 107-122, 1973) which also predicts poor stacking in a U-G dinucleotide. The ε′ populations were >65% for all C3′- O3′ bonds and consistent with a right-handed A-RNA helix.  相似文献   

18.
Abstract

We have examined some subtle parameter modifications to the Cornell et al. force field, which has proven quite successful in reproducing nucleic acid properties, but whose C2′-endo sugar pucker phase and helical repeat for B DNA appear to be somewhat underestimated. Encouragingly, the addition of a single V2 term involving the atoms C(sp3)-O-(sp3)-C(sp3)- N(sp2), which can be nicely rationalized because of the anomeric effect (lone pairs on oxygen are preferentially oriented relative to the electron withdrawing N), brings the sugar pucker phase of C2′-endo sugars to near perfect agreement with ab initio calculations (W near 162°). Secondly, the use of high level ab initio calculations on entire nucleosides (in contrast to smaller model systems necessitated in 1994–95 by computer limitations) lets one improve the % torsional potential for nucleic acids. Finally, the O(sp3)-C(sp3)- C(sp3)-O(sp3) V2 torsional potential has been empirically adjusted to reproduce the ab initio calculated relative energy of C2′- endo and C3′-endo nucleosides. These modifications are tested in molecular dynamics simulations of mononucleosides (to assess sugar pucker percentages) and double helices of DNA and RNA (to assess helical and sequence specific structural properties). In both areas, the modified force field leads to improved agreement with experimental data.  相似文献   

19.
20.
Backbone sugar groups are central components of nucleic acids. The conformations of the ribose/deoxyribose can be elegantly described using the concept of pseudorotation (Altona and Sundaralingam, 1972), and are dominated by the C2′- and C3′-endo conformers. The free energy barrier of the transition between these two major puckering modes can be probed by NMR relaxation experiments (Johnson and Hoogstraten, 2008), but an atomic picture of the transition path per se is only available for several truncated nucleoside analogues (Brameld & Goddard III, 1999). Here, we implemented a new free energy simulation method for Molecular Dynamics simulations using pseudorotation as the reaction coordinate (Cremer and Pople, 1975). This allowed us to compute the free energy landscape of a complete pseudorotation cycle. The free energy landscape revealed not only the relative stability of C2′- and C3′-endo conformers, but also the main transition path and its free energy barrier. As a validation of our new approach, we calculated free energy surface of the pseudorotation of guanosine monophosphate. The free energy surface revealed that the C2′-endo conformation is ?1?kcal/mol that is more stable and the free energy barrier for the transition is 4.5–5?kcal/mol. These are in excellent agreement with previous NMR measurements (Zhang et al., 2012; Röder et al., 1975). We have further applied this method to other systems that are important in pre-biotic chemistry, including an RNA duplex with unique 2′, 5′-phosphodiester linkages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号