首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aminoisoquinoline and isoquinoline groups have successfully replaced the more basic P1 benzamidine group of an acylsulfonamide factor VIIa inhibitor. Inhibitory activity was optimized by the identification of additional hydrophobic and hydrophilic P′ binding interactions. The molecular details of these interactions were elucidated by X-ray crystallography and molecular modeling. We also show that decreasing the basicity of the P1 group results in improved oral bioavailability in this chemotype.  相似文献   

2.
Here we demonstrate that the presence of the L-domain in calpastatins induces biphasic interaction with calpain. Competition experiments revealed that the L-domain is involved in positioning the first inhibitory unit in close and correct proximity to the calpain active site cleft, both in the closed and in the open conformation. At high concentrations of calpastatin, the multiple EF-hand structures in domains IV and VI of calpain can bind calpastatin, maintaining the active site accessible to substrate. Based on these observations, we hypothesize that two distinct calpain–calpastatin complexes may occur in which calpain can be either fully inhibited (I) or fully active (II). In complex II the accessible calpain active site can be occupied by an additional calpastatin molecule, now a cleavable substrate. The consequent proteolysis promotes the accumulation of calpastatin free inhibitory units which are able of improving the capacity of the cell to inhibit calpain. This process operates under conditions of prolonged [Ca2 +] alteration, as seen for instance in Familial Amyotrophic Lateral Sclerosis (FALS) in which calpastatin levels are increased. Our findings show that the L-domain of calpastatin plays a crucial role in determining the formation of complexes with calpain in which calpain can be either inhibited or still active. Moreover, the presence of multiple inhibitory domains in native full-length calpastatin molecules provides a reservoir of potential inhibitory units to be used to counteract aberrant calpain activity.  相似文献   

3.
We have used time-resolved fluorescence resonance energy transfer (TR-FRET) to characterize the interaction between phospholamban (PLB) and the sarcoplasmic reticulum (SR) Ca-ATPase (SERCA) under conditions that relieve SERCA inhibition. Unphosphorylated PLB inhibits SERCA in cardiac SR, but inhibition is relieved by either micromolar Ca2+ or PLB phosphorylation. In both cases, it has been proposed that inhibition is relieved by dissociation of the complex. To test this hypothesis, we attached fluorophores to the cytoplasmic domains of SERCA and PLB, and reconstituted them functionally in lipid bilayers. TR-FRET, which permitted simultaneous measurement of SERCA–PLB binding and structure, was measured as a function of PLB phosphorylation and [Ca2+]. In all cases, two structural states of the SERCA–PLB complex were resolved, probably corresponding to the previously described T and R structural states of the PLB cytoplasmic domain. Phosphorylation of PLB at S16 completely relieved inhibition, partially dissociated the SERCA–PLB complex, and shifted the T/R equilibrium within the bound complex toward the R state. Since the PLB concentration in cardiac SR is at least 10 times that in our FRET measurements, we calculate that most of SERCA contains bound phosphorylated PLB in cardiac SR, even after complete phosphorylation. 4 μM Ca2+ completely relieved inhibition but did not induce a detectable change in SERCA–PLB binding or cytoplasmic domain structure, suggesting a mechanism involving structural changes in SERCA’s transmembrane domain. We conclude that Ca2+ and PLB phosphorylation relieve SERCA–PLB inhibition by distinct mechanisms, but both are achieved primarily by structural changes within the SERCA–PLB complex, not by dissociation of that complex.  相似文献   

4.
Sennett NC  Kadirvelraj R  Wood ZA 《Biochemistry》2011,50(44):9651-9663
UDP-α-D-xylose (UDX) acts as a feedback inhibitor of human UDP-α-D-glucose 6-dehydrogenase (hUGDH) by activating an unusual allosteric switch, the Thr131 loop. UDX binding induces the Thr131 loop to translate ~5 ? through the protein core, changing packing interactions and rotating a helix (α6(136-144)) to favor the formation of an inactive hexameric complex. But how does to conformational change occur given the steric packing constraints of the protein core? To answer this question, we deleted Val132 from the Thr131 loop to approximate an intermediate state in the allosteric transition. The 2.3 ? resolution crystal structure of the deletion construct (Δ132) reveals an open conformation that relaxes steric constraints and facilitates repacking of the protein core. Sedimentation velocity studies show that the open conformation stabilizes the Δ132 construct as a hexamer with point group symmetry 32, similar to that of the active complex. In contrast, the UDX-inhibited enzyme forms a lower-symmetry, horseshoe-shaped hexameric complex. We show that the Δ132 and UDX-inhibited structures have similar hexamer-building interfaces, suggesting that the hinge-bending motion represents a path for the allosteric transition between the different hexameric states. On the basis of (i) main chain flexibility and (ii) a model of the conformational change, we propose that hinge bending can occur as a concerted motion between adjacent subunits in the high-symmetry hexamer. We combine these results in a structurally detailed model for allosteric feedback inhibition and substrate--product exchange during the catalytic cycle.  相似文献   

5.
6.
The Ca2+-activated potassium channel of intermediate conductance, KCa3.1, is now emerging as a therapeutic target for a large variety of health disorders. The Ca2+ sensitivity of KCa3.1 is conferred by the Ca2+-binding protein calmodulin (CaM), with the CaM C-lobe constitutively bound to an intracellular domain of the channel C terminus. It was proposed on the basis of the crystal structure obtained for the C-terminal region of the rat KCa2.2 channel (rSK2) with CaM that the binding of Ca2+ to the CaM N-lobe results in CaM interlocking the C-terminal regions of two adjacent KCa3.1 subunits, leading to the formation of a dimeric structure. A study was thus undertaken to identify residues of the CaM N-lobe–KCa3.1 complex that either contribute to the channel activation process or control the channel open probability at saturating Ca2+ (Pomax). A structural homology model of the KCa3.1–CaM complex was first generated using as template the crystal structure of the C-terminal region of the rat KCa2.2 channel with CaM. This model was confirmed by cross-bridging residues R362 of KCa3.1 and K75 of CaM. Patch-clamp experiments were next performed, demonstrating that the solvation energy of the residue at position 367 in KCa3.1 is a key determinant to the channel Pomax and deactivation time toff. Mutations of residues M368 and Q364 predicted to form anchoring points for CaM binding to KCa3.1 had little impact on either toff or Pomax. Finally, our results show that channel activation depends on electrostatic interactions involving the charged residues R362 and E363, added to a nonpolar energy contribution coming from M368. We conclude that electrostatic interactions involving residues R362 and E363 and hydrophobic effects at M368 play a prominent role in KCa3.1 activation, whereas hydrophobic interactions at S367 are determinant to the stability of the CaM–KCa3.1 complex throughout gating.  相似文献   

7.
8.
9.
Malignant mesothelioma (MM) is a neoplasm that arises from serosal surfaces of the pleural, peritoneal and pericardial cavities with worldwide incidence, much of which is caused by asbestos exposure. Patients suffer from pain and dyspnea due to direct invasion of the chest wall, lungs and vertebral or intercostal nerves by masses of thick fibrotic tumors. Although there has been recent progress in the clinical treatment, current therapeutic approaches do not provide satisfactory results. Therefore, development of a molecularly targeted therapy for MM is urgently required. Our recent studies suggest that normal mesothelial and MM cell growth is promoted by TGFβ, and that TGFβ signaling together with intrinsic disturbances in neurofibromatosis type 2 (NF2) and Hippo signaling cascades in MM cells converges upon further expression of connective tissue growth factor (CTGF). The formation of a YAP-TEAD4–Smad3-p300 complex on the specific CTGF promoter site with an adjacent TEAD and Smad binding motif is a critical and synergistic event caused by the dysregulation of these two distinct cascades. Furthermore, we demonstrated the functional importance of CTGF through the mouse studies and human histological analyses, which may elucidate the clinical features of MM with severe fibrosis in the thoracic cavity.  相似文献   

10.
Malignant mesothelioma (MM) is a neoplasm that arises from serosal surfaces of the pleural, peritoneal and pericardial cavities with worldwide incidence, much of which is caused by asbestos exposure. Patients suffer from pain and dyspnea due to direct invasion of the chest wall, lungs and vertebral or intercostal nerves by masses of thick fibrotic tumors. Although there has been recent progress in the clinical treatment, current therapeutic approaches do not provide satisfactory results. Therefore, development of a molecularly targeted therapy for MM is urgently required. Our recent studies suggest that normal mesothelial and MM cell growth is promoted by TGFβ, and that TGFβ signaling together with intrinsic disturbances in neurofibromatosis type 2 (NF2) and Hippo signaling cascades in MM cells converges upon further expression of connective tissue growth factor (CTGF). The formation of a YAP-TEAD4–Smad3-p300 complex on the specific CTGF promoter site with an adjacent TEAD and Smad binding motif is a critical and synergistic event caused by the dysregulation of these two distinct cascades. Furthermore, we demonstrated the functional importance of CTGF through the mouse studies and human histological analyses, which may elucidate the clinical features of MM with severe fibrosis in the thoracic cavity.  相似文献   

11.
Our previous work showed that purified coagulation factor Xa (FXa) acquires fibrinolysis cofactor activity after plasmin-mediated cleavage. The predominant functional species is a non-covalent heterodimer of 33 and 13 kDa, termed Xa33/13, which has predicted newly exposed C-terminal lysines that are important for tissue plasminogen activator (tPA)-mediated plasminogen activation to plasmin. To provide evidence that this mechanism occurs in a physiological context, here we demonstrated the appearance of Xa33 in clotting plasma by western blot analysis. Since the normal fate of FXa is stable association with antithrombin (AT), an AT western blot was conducted, which revealed a band of ~ 13 kDa higher apparent molecular weight than AT that appeared concurrent to Xa33. Sequencing of purified proteins confirmed the generation of Xa13 covalently bound to AT and Xa33 (Xa33/13-AT) by cleavages at Lys–Met339 and Lys–Asp389. Ligand blots demonstrated 125I-plasminogen binding to the Xa33 subunit of plasmin-generated Xa33/13-AT. Purified XaAT added to plasma that was induced to clot enhanced the rate of tPA-mediated fibrinolysis by ~ 16-fold. Similarly, purified plasminogen activation by tPA was enhanced by ~ 16-fold by XaAT. Plasmin cleaves XaAT and exposes plasminogen binding sites at least 10-fold faster than FXa. Here we demonstrate a novel function for AT, which accelerates the modulation of FXa into the fibrinolytic form, Xa33/13. The consequent exposure of C-terminal lysine binding sites essential for plasminogen activation enhances fibrinolysis. These results are consistent with a model where auxiliary cofactors link coagulation to fibrinolysis by priming the accelerating role of fibrin.  相似文献   

12.
Actin cytoskeleton remodeling is fundamental for Fcγ receptor–driven phagocytosis. In this study, we find that the leukocyte-specific protein 1 (LSP1) localizes to nascent phagocytic cups during Fcγ receptor–mediated phagocytosis, where it displays the same spatial and temporal distribution as the actin cytoskeleton. Down-regulation of LSP1 severely reduces the phagocytic activity of macrophages, clearly demonstrating a crucial role for this protein in Fcγ receptor–mediated phagocytosis. We also find that LSP1 binds to the class I molecular motor myosin1e. LSP1 interacts with the SH3 domain of myosin1e, and the localization and dynamics of both proteins in nascent phagocytic cups mirror those of actin. Furthermore, inhibition of LSP1–myosin1e and LSP1–actin interactions profoundly impairs pseudopodial formation around opsonized targets and their subsequent internalization. Thus the LSP1–myosin1e bimolecular complex plays a pivotal role in the regulation of actin cytoskeleton remodeling during Fcγ receptor–driven phagocytosis.  相似文献   

13.

Background

Recombinant factor VIIa (rFVIIa) may be used for rapid hemostasis in life-threatening hemorrhage. In warfarin-associated intracerebral hemorrhage (wICH), FVIIa use is controversial and may carry significant thromboembolic risks. We compared incidence of baseline thromboembolic risk factors and thromboembolism rates in wICH patients treated with additional rFVIIa to those treated with standard therapy of fresh frozen plasma (FFP) and vitamin K alone.

Methods

We identified 45 consecutive wICH patients treated with additional rFVIIa over 5-year period, and 34 consecutive wICH patients treated with standard therapy alone as comparison group. We compared the incidence of post-hemorrhage cardiac and extra-cardiac thromboembolic complications between two treatment groups, and used logistic regression to adjust for significant confounders such as baseline thromboembolic risk factors. We performed secondary analysis comparing the quantity of FFP transfused between two treatment cohorts.

Results

Both rFVIIa-treated and standard therapy-treated wICH patients had a high prevalence of pre-existing thromboembolic diseases including atrial fibrillation (73% vs 68%), deep venous thrombosis (DVT) or pulmonary embolism (PE) (22% vs 18%), coronary artery disease (CAD) (38% vs 32%), and abnormal electrocardiogram (EKG) (78% vs 85%). Troponin elevation following wICH was prevalent in both groups (47% vs 41%). Clinically significant myocardial infarction (MI), defined as troponin > 1.0 ng/dL, occurred in 13% of rFVIIa-treated and 6% of standard therapy-treated patients (p=0.52). Past history of CAD (p=0.0061) and baseline abnormal EKG (p=0.02) were independently associated with clinically significant MI following wICH while rFVIIa use was not. The incidences of DVT/PE (2% vs 9%; p=0.18) and ischemic stroke (2% vs 0%; p=0.38) were similar between two treatment groups. Recombinant FVIIa-treated patients had lower mean INR at 3 (p=0.0001) and 6 hours (p<0.0001) and received fewer units of FFP transfusion (3 vs 5; p=0.003).

Conclusions

Pre-existing thromboembolic risk factors as well as post-hemorrhage troponin elevation are prevalent in wICH patients. Clinically significant MI occurs in up to 13% of wICH patients. rFVIIa use was not associated with increased incidence of clinically significant MI or other venous or arterial thromboembolic events in this wICH cohort.
  相似文献   

14.
Four disulfide bridges of bovineα-lactalbumin (α-lact) were selectively reduced to obtain its derivatives with three, two, and zero disulfide bridges (designated as 3SS, 2SS, and OSSα-lact, respectively). The original helicity was almost maintained in 3SSα-lact missing only the Cys6-Cysl20 bridge. Upon the reduction of both Cys28-Cys111 and Cys6-Cys120 bridges, various changes occurred in the protein. In particular, the maximum fluorescence of 1-anilinonaphthalene-8-sulfonic acid was observed in this stage. Upon the reduction of all disulfide bridges, the hydrophobic box of the protein, formed by Trp60, Ile95, Tyr103, and Trp104, was disrupted and an internal helical structure was destroyed. The conformation of each derivative was examined mainly in a solution of sodium dodecyl sulfate. In the surfactant solution, the helicity increased from 33% to 37% in 3SSα-lact, from 26% to 31% in 2SSα-lact, and from 18% to 37% in OSSα-lact, as against from 34% to 44% in intactα-lact. On the other hand, the tryptophan fluorescence of each derivative was affected in very low surfactant concentrations, suggesting that the tertiary structure considerably changed prior to the secondary structural change in the surfactant solution.  相似文献   

15.
Heterochromatin is widespread in eukaryotic genomes and has diverse impacts depending on its genomic context. Previous studies have shown that a protein complex, the ASI1‐AIPP1‐EDM2 (AAE) complex, participates in polyadenylation regulation of several intronic heterochromatin‐containing genes. However, the genome‐wide functions of AAE are still unknown. Here, we show that the ASI1 and EDM2 mostly target the common genomic regions on a genome‐wide level and preferentially interacts with genetic heterochromatin. Polyadenylation (poly(A) sequencing reveals that AAE complex has a substantial influence on poly(A) site usage of heterochromatin‐containing genes, including not only intronic heterochromatin‐containing genes but also the genes showing overlap with heterochromatin. Intriguingly, AAE is also involved in the alternative splicing regulation of a number of heterochromatin‐overlapping genes, such as the disease resistance gene RPP4. We provided evidence that genic heterochromatin is indispensable for the recruitment of AAE in polyadenylation and splicing regulation. In addition to conferring RNA processing regulation at genic heterochromatin‐containing genes, AAE also targets some transposable elements (TEs) outside of genes (including TEs sandwiched by genes and island TEs) for epigenetic silencing. Our results reveal new functions of AAE in RNA processing and epigenetic silencing, and thus represent important advances in epigenetic regulation.  相似文献   

16.
Schoffman  Hanan  Keren  Nir 《Photosynthesis research》2019,141(3):343-353
Photosynthesis Research - The acclimation of cyanobacterial photosynthetic apparatus to iron deficiency is crucial for their performance under limiting conditions. In many cyanobacterial species,...  相似文献   

17.
The water-soluble peridinin–chlorophyll a-proteins (PCPs) are one of the major light harvesting complexes in photosynthetic dinoflagellates. PCP contains the carotenoid peridinin as its primary pigment. In this study, we identified and characterized the PCP protein and the PCP gene organization in Symbiodinium sp. CS-156. The protein molecular mass is 32.7 kDa, revealing that the PCP is of the monomeric form. The intronless PCP genes are organized in tandem arrays. The PCP gene cassette is composed of 1095-bp coding regions and spacers in between. Despite the heterogeneity of PCP gene tandem repeats, we identified a single form of PCP, the sequence of which exactly matches the deduced sequence of PCP gene clone 7 (JQ395030) by LC–MS/MS analysis of tryptic digested PCP, revealing the mature PCP apoprotein is 312 amino acids in length. Pigment analysis showed a peridinin-to-Chl a ratio of 4. The peridinin-to-Chl a Qy energy transfer efficiency is 95% in this complex.  相似文献   

18.
Thyroid hormone receptors (TR) are members of the nuclear receptor superfamily. There are at least two TR isoforms, TRα and TRβ. The TRα isoform plays a critical role in mediating the action of thyroid hormone in adipose tissue. We mapped the porcine TRα gene to chromosome 12 p11-p13, by using the ImpRH panel. We examined tissue-localization of TRα and determined expression patterns of TRα in porcine adipose tissue with quantitative real-time PCR. TRα was expressed in all tissues, including heart, liver, spleen, stomach, pancreas, brain, small intestine, skeletal muscle, and subcutaneous adipose tissue. In the adipose tissue, the expression of TRα decreased postnatally. Compared to Yorkshire pigs, Jinhua pigs had significantly lower expression levels of TRα gene in the subcutaneous fat tissue. The expression levels of β2-AR, HSL and ATGL were also significantly lower in Jinhua pigs than in Yorkshire pigs. However, no significant differences in PPARγ and SREBP-1C expression levels were found between Jinhua and Yorkshire pigs. Incubation of porcine adipose tissue explants with high doses of isoproterenol (100 and 1000 nM) significantly increased the expression levels of TRα. We conclude that there is considerable evidence that TRα plays an important role in fat deposition in porcine adipose tissue.  相似文献   

19.
20.
Mg(II)–porphyrin–ligand and (bacterio)chlorophyl–ligand coordination interactions have been studied by solution and solid-state MAS NMR spectroscopy. 1H, 13C and 15N coordination shifts due to ring currents, electronic perturbations and structural effects are resolved for imidazole (Im) and 1-methylimidazole (1-MeIm) coordinated axially to Mg(II)-OEP and (B)Chl a. As a consequence of a single axial coordination of Im or 1-MeIm to the Mg(II) ion, 0.9–5.2 ppm 1H, 0.2–5.5 ppm 13C and 2.1–27.2 ppm 15N coordination shifts were measured for selectively labeled [1,3-15N]-Im, [1,3-15N,2-13C]-Im and [1,3-15N,1,2-13C]-1-MeIm. The coordination shifts depend on the distance of the nuclei to the porphyrin plane and the perturbation of the electronic structure. The signal intensities in the 1H NMR spectrum reveal a five-coordinated complex, and the isotropic chemical shift analysis shows a close analogy with the electronic structure of the BChl a–histidine in natural light harvesting 2 complexes. The line broadening of the ligand responses support the complementary IR data and provide evidence for a dynamic coordination bond in the complex.Abbreviations (B)Chl a (bacterio)chlorophyll a - HMBC heteronuclear multiple bond correlation - Im imidazole - LH light-harvesting - 1-MeIm 1-methylimidazole - Mg(II)-Por Mg(II)-porphyrin macrocycle - OEP 2,3,7,8,12,13,17,18-octaethylporphyrin  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号