首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Biofiltration of air: a review   总被引:9,自引:0,他引:9  
In this paper we present a review of the existing air pollution control technologies (APCT), when used essentially for the elimination of volatile organic compounds (VOC). The biotechnologies referred to, bioscrubbers, biotrickling filters and biofilters, are also described. A more detailed review of biofiltration is proposed, presenting the most recent and latest developments achieved in the field of bioprocessing. In particular, the influence of the filter bed, the polluted air flowrates, the pollutants, the pressure drop, bed moisture content, temperature, nutrients, pH and the microorganisms are reviewed. Models of biofiltration are also presented.  相似文献   

2.
生物过滤方法在废气净化中具有费用低和环保的特点, 因而成为一种应用前景良好的空气污染控制技术。本文综述了不同生物过滤反应器的特点, 详细分析了应当在生物过滤过程中合理控制的关键参数, 并展望了今后的研究热点。  相似文献   

3.
Biofiltration for treating VOCs: an overview   总被引:1,自引:0,他引:1  
In this paper we present a review of Biofiltration, one of the air pollution control technologies (APCT) used to treat volatile organic compounds (VOCs) effectively. It also talks about the history of biofiltration, and also proposes few ideas for the future developments in the biofiltration research pertaining to VOC control. Moreover, the paper also discusses about various important physical, chemical and biological factors which affect the performance of a biofilter both directly and indirectly. This paper will be handier for those who are new to the field of biofiltration research for VOC treatment.  相似文献   

4.
A study was performed to determine the effectiveness of using biofiltration for the removal of a complex mixture of volatile organic compounds (VOCs) air-stripped from petroleum hydrocarbons. A biofilter was constructed which contained 264 cm3 of packing material (Celite? R-635). The unit was inoculated with a mixed culture containing a hydrocarbon-degrading Pseudomonas sp and an Alcaligenes sp. Several of the major compounds in the VOC mixture were monitored individually, along with the total VOCs, using gas chromatography. The average influent concentration of the VOC mixture was 320 ppmv and the average total VOC removal rate was over 56%, with the average removal rate of the monitored individual compounds ranging from 49–90%. After 30 days of operation the average overall removal rate was 69% and the removal of the major compounds averaged 92%. The toxicity and mutagenicity of the air stream was monitored using the Microtox and Ames assays, respectively. These data show marked decreases in toxicity and mutagenicity of the air stream as a result of the biofiltration treatment. The biofiltration system, therefore, was not only effective in removing VOCs from the air stream over an extended time-period, but was also effective in greatly reducing the toxicity and mutagenicity associated with the remaining VOCs. Received 03 July 1997/ Accepted in revised form 25 November 1997  相似文献   

5.
《Free radical research》2013,47(8):927-939
Abstract

This review outlines recent advances in the investigation of the chemical properties, molecular interactions and health effects of hazardous compounds in atmospheric aerosols, in particular reactive oxygen species (ROS), soot, polycyclic aromatic compounds (PACs) and allergenic proteins. Epidemiological studies show correlations between air particulate matter and adverse health effects of air pollution including allergy, asthma, cardiovascular and respiratory diseases, but the causative relations and mechanisms of interaction on the molecular level are still unclear. ROS generated by photochemical and heterogeneous reactions in the atmosphere seem to play a key role in aerosol health effects and provide a direct link between atmospheric and physiological multiphase processes. Soot and PACs can trigger formation of ROS in vivo, leading to inflammation and cellular damage. PACs as well as allergenic proteins are efficiently oxygenated and nitrated upon exposure to ozone and nitrogen dioxide, which leads to an enhancement of their toxicity and allergenicity.  相似文献   

6.
This paper focuses on recent developments of biofiltration technology used in treating nuisance chemical odors from industrial and municipal air streams. In the biofiltration process, odorous chemical constituents in the air are first transported to biofilms by diffusion, solubilization and adsorption processes. Bacteria within the biofilms oxidize odor constituents into harmless and odorless products. Through successful laboratory and pilot research on biofiltration of odorous air-stream constituents, numerous commercial biofilters have been designed and installed across North America. In this paper, case studies related to biofiltration of air emissions from meat rendering plants, municipal wastewater treatment applications, and printed circuit board production are discussed to demonstrate the robustness of this technology in eliminating a wide variety of compounds. Electronic Publication  相似文献   

7.
PurposeTo estimate the surface dose in diagnostic radiology in real time based on the relationship between the incident air kerma and the surface dose.MethodsThe air kerma for 20 X-ray beams with tube voltages of 50–140 kV and a half-value layer (HVL) of 2.27–9.65 mm Al was measured using an ionization chamber. The beam quality was classified based on the quality indexes (QIs) of 0.4, 0.5, and 0.6, which are defined as the ratio of the effective energy to the maximum energy corresponding to the tube potential. The surface dose for 20 X-ray beams was evaluated based on the measured air kerma, backscatter factor, and ratio of the mass–energy absorption coefficients of water to air, which were calculated using the Monte Carlo method. Finally, the relationship between the air kerma and the surface dose was investigated for X-ray beams with the specific QI values.ResultsThe surface dose at a water phantom was represented by a linear approximation of R2 > 0.98, with the air kerma, regardless of the X-ray beam quality. The surface dose estimated based on a linear approximation with the air kerma indicated an agreement within 8% with that evaluated by the chamber measurements at HVL > 3.4 mm Al.ConclusionIt is possible to estimate the surface dose in real time using the linear relationship between the incident air kerma and the surface dose regardless of the X-ray beam quality by accepting ±10% uncertainty in the surface dose estimation.  相似文献   

8.
《Endocrine practice》2013,19(1):149-156
ObjectiveTo review the current literature with regard to the use of recombinant human thyroid stimulating hormone (rhTSH) as an adjunct to radioactive iodine (RAI) remnant ablation and adjuvant therapy.MethodsLiterature review of clinical studies examining rhTSH and/or thyroid hormone withdrawal preparations for RAI remnant ablation. The primary endpoints evaluated were (1) effectiveness at ablating the thyroid bed as demonstrated by the lack of significant uptake in the thyroid bed on follow-up diagnostic imaging and (2) effectiveness in facilitating the adjuvant therapy function of RAI ablation as manifested by follow-up thyroid stimulating hormone (TSH)-stimulated serum thyroglobulin levels and clinical outcomes (recurrence rates, likelihood of having no evidence of disease at final follow-up).ResultsRAI remnant ablation can be successfully achieved using either traditional thyroid hormone withdrawal or recombinant human TSH preparation. While initial studies included primarily thyroid cancer patients at low risk of recurrence, more recent studies suggest that rhTSH can also be effectively used as preparation for RAI ablation in patients with an intermediate or high risk of recurrence. Furthermore, while early studies focused primarily on the endpoint of thyroid bed remnant ablation, more recent retrospective studies suggest that final clinical outcomes (recurrence rates, likelihood of achieving no evidence of disease status at final follow-up) over 5-10 years of follow-up are very similar with either method of preparation.ConclusionrhTSH is an effective alternative to thyroid hormone withdrawal in preparation for RAI remnant ablation in patients without evidence of distant metastases who are at low, intermediate, or high risk of recurrence.  相似文献   

9.
10.
A laboratory scale bioreactor has been designed and set up in order to degrade hydrogen sulfide from an air stream. The reactor is a vertical column of 7 litre capacity and 1 meter in height. It is divided into three modules and each module is filled with pellets of agricultural residues as packing bed material. The gas stream fed into the reactor through the upper inlet consists of a mixture of hydrogen sulfide and humidified air. The hydrogen sulfide content in the inlet gas stream was increased in stages until the degradation efficiency was below 90%. The parameters to be controlled in order to reach continuous and stable operation were temperature, moisture content and the percentage of the compound to be degraded at the inlet and outlet gas streams (removal or elimination efficiency). When the H2S mass loading rate was between 10 and 40 g m-3h-1, the removal efficiency was greater than 90%. The support material had a good physical performance throughout operation time, which is evidence that this material is suitable for biofiltration purposes.  相似文献   

11.
Butyl acetate and xylene mixtures are commonly encountered from the manufacture of semi‐conductor or opto‐electronic apparatuses. The release of these substances into the ambient air may have a negative effect on the air quality. This study attempts to employ a trickle‐bed air biofilter for treating butyl acetate and xylene mixtures under different gas flow rates and influent concentrations. Almost complete VOC removal could be attained with influent carbon loadings of BA (butyl acetate) and X (xylene) below 40 and 15 g/m3h, respectively. As the influent carbon loadings of BA and X were increased up to 150 and 110 g/m3h, removal efficiencies higher than 80 % were achieved. Therefore, the trickle‐bed air biofilter (TBAB) appeared efficient in the control of emissions containing mixtures of butyl acetate and xylene with low to medium carbon loadings. The removal efficiencies of butyl acetate were higher than those of xylene, indicating that butyl acetate was the substrate preferred in the utilization of butyl acetate and xylene mixtures by the microorganisms. Carbon recoveries of 98–101 % were achieved, demonstrating the accuracy of results. The carbon mass rate of the liquid effluent was approximately two to three orders of magnitude less than that of the CO2 effluent, indicating that the dissolved VOCs and their derivatives in the leachate were present in a negligible amount in the reactor. Applicable operating conditions of the TBAB unit for treating BA and X mixtures were suggested.  相似文献   

12.
Biofiltration of volatile organic compounds   总被引:6,自引:0,他引:6  
The removal of volatile organic compounds (VOCs) from contaminated airstreams has become a major air pollution concern. Improvement of the biofiltration process commonly used for the removal of odorous compounds has led to a better control of key parameters, enabling the application of biofiltration to be extended also to the removal of VOCs. Moreover, biofiltration, which is based on the ability of micro-organisms to degrade a large variety of compounds, proves to be economical and environmentally viable. In a biofilter, the waste gas is forced to rise through a layer of packed porous material. Thus, pollutants contained in the gaseous effluent are oxidised or converted into biomass by the action of microorganisms previously fixed on the packing material. The biofiltration process is then based on two principal phenomena: (1) transfer of contaminants from the air to the water phase or support medium, (2) bioconversion of pollutants to biomass, metabolic end-products, or carbon dioxide and water. The diversity of biofiltration mechanisms and their interaction with the microflora mean that the biofilter is defined as a complex and structured ecosystem. As a result, in addition to operating conditions, research into the microbial ecology of biofilters is required in order better to optimise the management of such biological treatment systems.  相似文献   

13.
Abstract

Uptake and in-plant transport of formaldehyde by six plants with or without soil microorganisms were investigated. The capabilities of fresh and boiled leaf extracts to dissipate added formaldehyde were also measured to evaluate formaldehyde metabolism in plant tissues. Results show that when the initial formaldehyde level in air was 0.56?±?0.04?mg·m?3, the removal rate in the plant-only systems varied from 1.91 to 31.8?μg·h?1·g?1 FW (fresh weight). The removal rate of plants in the plant-only systems were ordered as Helianthus annuus Linn > Lycopersicon esculentum Miller > Oryza sativa > Sansevieria trifasciata Prain > Bryophyllum pinnatum > Mesembryanthemum cordifolium L. f. Most reduction of formaldehyde in the air was due to degradation by active components in the plant tissues, of which 4–64% of these were through to be enzymatic reactions. In the microbe-plant systems, formaldehyde removal rates increased by 0.24–9.53 fold compared to the plant-only systems, with approximately 19.6–90.5% of the formaldehyde reduction resulting from microbial degradation. Microorganisms added to the rhizosphere solution enhanced phytoremediation by increasing the downward transport of formaldehyde and its release by roots. Results suggest a new means to screen for efficient plant species that can be used for phytoremediation of indoor air.  相似文献   

14.
The agricultural sector is responsible for an important part of Canadian greenhouse gas (GHG) emissions, 8 % of the 747 Mt eq. CO2 emitted each year. The pork industry, a key sector of the agrifood industry, has had a rapid growth in Canada since the middle 1980s. For this industry, slurry storage accounts for the major part of methane (CH4) emissions, a GHG 25 times higher than carbon dioxide (CO2) on a 100-year time horizon. Intending to reduce these emissions, biofiltration, a process effective to treat CH4 from landfills and coal mines, could be effective to treat CH4 from the pig industry. Biofiltration is a complex process that requires the understanding of the biological process of CH4 oxidation and a control of the engineering parameters (filter bed, temperature, etc.). Some biofiltration studies show that this technology could be used to treat CH4 at a relatively low cost and with a relatively high purification performance.  相似文献   

15.
Lithium ‐ air batteries have become a focus of research on future battery technologies. Technical issues associated with lithium‐air batteries, however, are rather complex. Apart from the sluggish oxygen reaction kinetics which demand efficient oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalysts, issues are also inherited from the nature of an open battery system and the use of reactive metal lithium as anode. Lithium‐air batteries, which exchange oxygen directly with ambient air, face more challenges due to the additional oxidative agents of moisture, carbon dioxide, etc. which degrade the metal lithium anode, deteriorating the performance of the batteries. In order to improve the cycling performance one must hold a full picture of lithium‐oxygen electrochemistry in the presence of carbon dioxide and/or moisture and fully understand the fundamentals of chemistry reactions therein. Recent advances in the exploration of the effect of moisture and CO2 contaminants on Li‐O2 batteries are reviewed, and the mechanistic understanding of discharge/charge process in O2 at controlled level of moisture and/or CO2 are illustrated. Prospects for development opportunities of Li‐air batteries, insight into future research directions, and guidelines for the further development of rechargeable Li‐air batteries are also given.  相似文献   

16.
Biofiltration of n-butyric acid for the control of odour   总被引:3,自引:0,他引:3  
Odour control from pig production facilities is a significant concern due to increased public awareness and the development of more stringent legislation to control production. Although many technologies exist, biofiltration is still the most attractive due to its low maintenance and operating costs. One of the key odour components, n-butyric acid, was selected for a laboratory scale biofilter study. It was examined as a sole carbon substrate in order to investigate the effectiveness of biofiltration in reducing n-butyric acid concentration under different operating conditions using a moist enriched woodchip medium. Three superficial gas velocities; 38.2, 76.4, and 114.6 m x h(-1) were tested for n-butyric acid concentrations ranging from 0.13 to 3.1 g [n-butyric acid] m(-3) [air]. For superficial gas velocities 38.2, 76.4, and 114.6 m x h(-1), maximum elimination capacities (100% removal) of 148, 113 and 34.4 g x m(3) x h(-1), respectively, were achieved. Upon investigation of effective bed height, true elimination capacities (100% removal) of 230, 233 and 103 g x m(-3) x h(-1), respectively, were achieved at these superficial gas velocities. Averaged pressure drops for superficial gas velocities 38.2, 76.4, and 114.6 m x h(-1) were 30, 78 and 120 Pa, respectively. It was concluded that biofiltration is a viable technology for the removal of n-butyric acid from waste exhaust air, but near 100% removal efficiency is required due to the low odour detection threshold for this gaseous compound.  相似文献   

17.
ABSTRACT

A laboratory-scale biofilter unit packed with a mixture of compost, sugarcane bagasse, and granulated activated carbon (GAC) in the ratio of 55:30:15 by weight was used for a biofiltration study of air stream containing benzene, toluene, ethylbenzene, and o-xylene (BTEX). The effect of superficial velocity on mass transfer coefficient for the packing was studied by maintaining gas flow rates of 3, 4, 5, 6, and 8 L min?1 for inlet concentrations of 0.1, 0.4, and 0.8 g m?3 for each of benzene, toluene, ethylbenzene, and o-xylene. The maximum elimination capacity was found to be 20.92, 22.72, 20.73, and 18.94 g m?3 h?1 for BTEX, respectively, for stated flow rates. Removal efficiency of BTEX decreased from 99% to 71% for increasing inlet concentration from 0.1 to 0.8 g m?3. Gas film mass transfer coefficient predicted by modified Onda's equation was within ±10% of the experimental values.  相似文献   

18.
Active compost biofiltration of toluene   总被引:5,自引:0,他引:5  
Composting of leaves and alfalfa (i.e. active compost) was used for thebiofiltration of toluene-contaminated air in a 6-L biofilter (initial bedheight: 180 mm). During the thermophilic phase (45 to 55 °C), toluenebiodegradation rates reached 110 gtoluene.m-3.h-1 at an inlet concentration ofabout 5 g.m-3.h-1 and a gas residence time of 90 seconds. Thehighest rates were obtained late in the thermophilic phase suggesting amicrobial adaptation was occurring. Biodegradation rates decreased rapidly(50% in 48h) in the cooling stage. Under mesophilic conditions, themaximum biodegradation rates that could be obtained by increasing the inlettoluene concentration were near 89 gtoluene.m-3.h-1 which issimilar to that reported in the literature for mature compost biofilters. Novolatile by-product was detected by gas chromatography. Mineralization of14C-toluene and benzene showed that they were completelydegraded into CO2 and H2O under boththermophilic and mesophilic conditions. Bacteria isolated from latemesophilic stage had the capacity to degrade all BTEX compounds but were notable to transform chlorinated compounds. No organisms were isolated whichcould use toluene as their sole source of carbon and energy at 50 °C.Active compost biofiltration should be an excellent process for thetreatment of gaseous BTEX by biofiltration. This is the first report ofthermophilic biofiltration of toluene.  相似文献   

19.
呼出气温度是一种新的呼吸系统疾病监测手段。从被发现开始,呼出气温度就引起了众多学者的兴趣。人们发现在哮喘等呼吸系统疾病患者身上测出的呼出气温度较正常健康人的呼出气温度要高。大量的研究结果表明呼出气温度的变化与患者肺部的炎症改变有关,学者们研究推断肺部的炎症改变使得肺部病变部位局部血管增生及血流量增加因而导致了肺部气道热量交换和损失的改变,最终导致患者呼出气温度的改变。这一发现在呼吸系统疾病中有着重要意义,科学家们认为呼出气温度可以作为一种非侵入性的新监测手段。  相似文献   

20.
Abstract

Volatile organic compounds (VOCs) are some of the most important pollutants that have adverse effects on human health. In this study, simultaneous indoor and outdoor air samples were collected from four types of microenvironments (restaurants, photocopy centers, dry cleaners, and auto paint shops) in Kocaeli, Turkey in both winter and summer. Twenty-four VOCs were detected using gas chromatography and a flame ionization detector. The aim of the study was to determine the VOC concentrations in various workplaces and investigate associated health risks. Results show that the highest mean total VOC concentrations are in auto paint shops (14,066 µg/m3 in winter, 3441 µg/m3 in summer) followed by dry cleaners, restaurants, and photocopy centers. Total cancer risk was approximately 310 times greater than the acceptable limit in auto paint shops, 44 times greater in restaurants, 42 times greater in dry cleaners, and 17 times greater in photocopy centers. Total hazard quotients were also greater than the acceptable limit in all microenvironments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号