首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Theoretical computations are performed on the structural and energetical factors involved in the sequence selective binding of daunomycin (DNM) to six representative self-complementary double-stranded hexanucleotides: d(CGTACG)2,d(CGATCG)2,d(CITACI)2, d(TATATA)2, d(CGCGCG)2 and d(TACGTA)2. The conformational angles of the hexanucleotides are fixed in values found in the representative crystal structure of the d(CGTACG)2-DNM complex. The intermolecular DNM-hexanucleotide interaction energies and the conformational energy changes of DNM upon binding are computed and optimized in the framework of the SIBFA procedure, which uses empirical formulas based on ab initio SCF computations. Among the two regularly alternating hexanucleotides, d(TATATA)2 and d(CGCGCG)2, a stronger binding is predicted for the former, in agreement with experimental results obtained with poly(dA-dT).poly(dA-dT) and poly(dG-dC).poly(dG-dC). Altogether, however, among the six investigated sequences, the strongest complexes are computed for the mixed hexanucleotides d(CGATCG)2 and d(CGTACG)2, containing the intercalation site between two CG base pairs and an adjacent TA base pair. This situation may be related to the increased affinity of DNM for GC rich DNA's and to the situation in the crystal structure of the DNM-d(CGTACG)2 complex. Analysis of the intrinsic base sequence preferences expressed by the individual constituents of DNM, namely the daunosamine side chain, the chromophore ring and its two 9-hydroxyl and 9-acetoxy substituents, reveals that the overall sequence preference found is the result of a rather intricate interplay of intrinsic sequence preferences, in particular at the level of daunosamine and the 9-hydroxyl substituent.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
K S Chen  N Gresh    B Pullman 《Nucleic acids research》1986,14(5):2251-2267
Theoretical computations are performed on the structural and energetical factors involved in the sequence selective binding of adriamycin (ADM) to five self-complementary double-stranded hexanucleotides. Among the two regularly alternating hexanucleotides d (TATATA)2 and d (CGCGCG)2, a stronger binding is predicted for the former. The strongest complex is computed, however, for the mixed hexanucleotide d (CGTACG)2, containing the intercalation site between two CG base pairs and an adjacent TA base pair. The overall sequence preference is the result of an intricate interplay of sequence preferences of the constituents in particular of daunosamine and the 9-OH substituent. Altogether, the selective base pair recognition by adriamycin cannot be defined in terms of the two base pairs implicated in the intercalation site alone but must be expressed in terms of a triplet of base pairs.  相似文献   

3.
The anticancer drugs adriamycin and daunomycin have each been crystallized with the DNA sequence d(CGATCG) and the three-dimensional structures of the complexes solved at 1.7- and 1.5-A resolution, respectively. These antitumor drugs have significantly different clinical properties, yet they differ chemically by only the additional hydroxyl at C14 of adriamycin. In these complexes the chromophore is intercalated at the CpG steps at either end of the DNA helix with the amino sugar extended into the minor groove. Solution of the structure of daunomycin bound to d(CGATCG) has made it possible to compare it with the previously reported structure of daunomycin bound to d(CGTACG). Although the two daunomycin complexes are similar, there is an interesting sequence dependence of the binding of the amino sugar to the A-T base pair outside the intercalation site. The complex of daunomycin with d(CGATCG) has tighter binding than the complex with d(CGTACG), leading us to infer a sequence preference in the binding of this anthracycline drug. The structures of daunomycin and adriamycin with d(CGATCG) are very similar. However, there are additional solvent interactions with the adriamycin C14 hydroxyl linking it to the DNA. Surprisingly, under the influence of the altered solvation, there is considerable difference in the conformation of spermine in these two complexes. The observed changes in the overall structures of the ternary complexes amplify the small chemical differences between these two antibiotics and provide a possible explanation for the significantly different clinical activities of these important drugs.  相似文献   

4.
The structure of a d(CGATCG)-daunomycin complex has been determined by single crystal X-ray diffraction techniques. Refinement, with the location of 40 solvent molecules, using data up to 1.5 A, converged with a final crystallographic residual, R = 0.25 (RW = 0.22). The tetragonal crystals are in space group P4(1)2(1)2, with cell dimensions of a = 27.98 A and c = 52.87 A. The self-complementary d(CGATCG) forms a distorted right-handed helix with a daunomycin molecule intercalated at each d(CpG) step. The daunomycin aglycon chromophore is oriented at right-angles to the long axis of the DNA base-pairs. This head-on intercalation is stabilized by direct hydrogen bonds and indirectly via solvent-mediated, hydrogen-bonding interactions between the chromophore and its intercalation site base-pairs. The cyclohexene ring and amino sugar substituent lie in the minor groove. The amino sugar N-3' forms a hydrogen bond with O-2 of the next neighbouring thymine. This electrostatic interaction helps position the sugar in a way that results in extensive van der Waals contacts between the drug and the DNA. There is no interaction between daunosamine and the DNA sugar-phosphate backbone. We present full experimental details and all relevant conformational parameters, and use the comparison with a d(CGTACG)-daunomycin complex to rationalize some neighbouring sequence effects involved in daunomycin binding.  相似文献   

5.
X W Hui  N Gresh    B Pullman 《Nucleic acids research》1990,18(5):1109-1114
A theoretical investigation is performed of the complexes of a tetracationic porphyrin, tetra-(4-N-methylpyridyl)-porphyrin, (T4MPyP), with the hexanucleotides d(CGCGCG)2 and d(TATATA)2, considering the possibility of both the intercalative and the groove binding interactions. These computations demonstrate that T4MPyP manifests a significant preference for intercalation in its complex with d(CGCGCG)2 but for non intercalative binding in the minor groove in its complex with d(TATATA)2. Such a dual binding behaviour of T4MPyP as a function of the sequence to which it is attached is fully consistent with available experimental data. It demonstrates that intercalation and groove binding may be viewed as two potential wells on a continuous energy surface. In agreement with experiment, the computations indicate that in the here considered case the deepest well is associated with intercalation.  相似文献   

6.
The antitumor anthracycline nemorubicin is converted by human liver microsomes to a major metabolite, PNU-159682 (PNU), which was found to be much more potent than its parent drug toward cultured tumor cells and in vivo tumor models. The mechanism of action of nemorubicin appears different from other anthracyclines and until now is the object of studies. In fact PNU is deemed to play a dominant, but still unclear, role in the in vivo antitumor activity of nemorubicin. The interaction of PNU with the oligonucleotides d(CGTACG)2, d(CGATCG)2 and d(CGCGCG)2 was studied with a combined use of 1H and 31P NMR spectroscopy and by ESI-mass experiments. The NMR studies allowed to establish that the intercalation between the base pairs of the duplex leads to very stable complexes and at the same time to exclude the formation of covalent bonds. Melting experiments monitored by NMR, allowed to observe with high accuracy the behaviour of the imine protons with temperature, and the results showed that the re-annealing occurs after melting. The formation of reversible complexes was confirmed by HPLC–tandem mass spectra, also combined with endonuclease P1digestion. The MS/MS spectra showed the loss of neutral PNU before breaking the double helix, a behaviour typical of intercalators. After digestion with the enzyme, the spectra did not show any compound with PNU bound to the bases. The evidence of a reversible process appears from both proton and phosphorus NOESY spectra of PNU bound to d(CGTACG)2 and to d(CGATCG)2. The dissociation rate constants (koff) of the slow step of the intercalation process, measured by 31P NMR NOE-exchange experiments, showed that the kinetics of the process is slower for PNU than for doxorubicin and nemorubicin, leading to a 10- to 20-fold increase of the residence time of PNU into the intercalation sites, with respect to doxorubicin. A relevant number of NOE interactions allowed to derive a model of the complexes in solution from restrained MD calculations. The conformation of PNU bound to the oligonucleotides was also derived from the coupling constant values.  相似文献   

7.
The Zα domain of human ADAR1 (ZαADAR1) preferentially binds Z-DNA rather than B-DNA with high binding affinity. ZαADAR1 binds to the Z-conformation of both non-CG-repeat DNA duplexes and a d(CGCGCG)2 duplex similarly. We performed NMR experiments on complexes between the ZαADAR1 and non-CG-repeat DNA duplexes, d(CACGTG)2 or d(CGTACG)2, with a variety of protein-DNA molar ratios. Comparison of these results with those from the analysis of d(CGCGCG)2 in the previous study suggests that ZαADAR1 exhibits the sequence preference of d(CGCGCG)2 ? d(CACGTG)2 > d(CGTACG)2 through multiple sequence discrimination steps during the B-Z transition.  相似文献   

8.
Among the disaccharide derivatives of the antitumor anthracycline doxorubicin, sabarubicin (Men10755) is more active and less cytotoxic than doxorubicin. It showed a strong in vivo antitumor activity in all preclinical models examined, in conjunction with a better tolerability, and is now in phase II clinical trials.The interaction of sabarubicin and Men10749 (a similar disaccharide with a different configuration at C-4′ of the proximal sugar) with the hexanucleotides d(CGTACG)2 and d(CGATCG)2 was studied by a combined use of 2D-1H and 31P NMR techniques. Both 1H and 31P chemical shifts of imino protons and phosphates allowed to established the intercalation sites between the CG base pairs, as it occurs for other anthracyclines of the series. The dissociation rate constants (koff) of the slow step of the intercalation process were measured for Men10755 and Men10749, by NMR NOE-exchange experiments. The increase of koff , with respect of doxorubicin, showed that the intercalation process is significantly faster for both drugs, leading to an average residence time for sabarubicin into d(CGTACG)2 sixfold shorter than for doxorubicin. This could give account of both higher cytoplasmic/nuclear ratio and lower cellular uptake of sabarubicin in comparison with doxorubicin and accordingly of the lower cytotoxicity of these disaccharide analogues.A relevant number of NOE interactions allowed the structure of the complexes in solution to be derived through restrained MD calculations. NMR-DOSY experiments were performed with several drug/oligonucleotide mixtures in order to determine the structure and the dimension of the aggregates.  相似文献   

9.
Interactions of cationic porphyrins bearing five-membered rings at the meso position, meso-tetrakis(1,2-dimethylpyrazolium-4-yl)porphyrin (MPzP; M is H2, CuII or ZnII), with synthetic polynucleotides poly(dG-dC)2 and poly(dA-dT)2 have been characterized by viscometric, visible absorption, circular dichroisim and magnetic circular dichroism spectroscopic and melting temperature measurements. Both H2PzP and CuPzP are intercalated into poly(dG-dC)2 and are outside-bound to the major groove of poly(dA-dT)2, while ZnPzP is outside-bound to the minor groove of poly(dA-dT)2 and surprisingly is intercalated into poly(dG-dC)2. The binding constants of the porphyrin and poly(dG-dC)2 and poly(dA-dT)2 are on the order of 106 M−1 and are comparable to those of other cationic porphyrins so far reported. The process of the binding of the porphyrin to poly(dG-dC)2 and poly(dA-dT)2 is exothermic and enthalpically driven for H2PzP, whereas it is endothermic and entropically driven for CuPzP and ZnPzP. These results have revealed that the kind of the central metal ion of metalloporphyrins influences the characteristics of the binding of the porphyrins to DNA.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

10.
The computer molecular modeling program HINT (Hydropathic INTeractions), an empirical hydropathic force field function that includes hydrogen bonding, coulombic and hydrophobic terms, was used to study sequence-selective doxorubicin binding/intercalation in the 64 unique CAxy, CGxy, TAxy, TGxy base pair quartet combinations. The CAAT quartet sequence is shown to have the highest binding score of the 64 combinations. Of the two regularly alternating polynucleotides, d(CGCGCG)2and d(TATATA)2, the HINT calculated binding scores reveal doxorubicin binds preferentially to d(TATATA)2. Although interactions of the chromophore with the DNA base pairs defining the intercalation site [I-1] [I+1] and the neighboring [I+2] base pair are predominant, the results obtained with HINT indicate that the base pair [I+3] contributes significantly to the sequence selectivity of doxorubicin by providing an additional hydrogen bonding opportunity for the N3' ammonium of the daunosamine sugar moiety in approximately 25% of the sequences. This observation, that interactions involving a base pair [I+3] distal to the intercalation site play a significant role in stabilizing/destabilizing the intercalation of doxorubicin into the various DNA sequences, has not been previously reported. In general terms, this work shows that molecular modeling and careful analysis of molecular interactions can have a significant role in designing and evaluating nucleotides and antineoplastic agents.  相似文献   

11.
The equilibrium and kinetic aspects of the interaction between four anthracyclines and two synthetic self-complementary hexanucleotides was investigated by fluorescence detection. Two of the studied anthracyclines are widely used antitumor drugs: doxorubicin (1, formerly adriamycin) and daunorubicin (2, formerly daunomycin). The other two, 9-deoxydoxorubicin (3) and 3'-deamino-3'-hydroxy-4'-epidoxorubicin (4), are doxorubicin analogues with modifications of the chemical groups that have been proposed as responsible for sequence specificity (Chen, K.-X., Gresh, N. and Pullman, B. (1985). J. Biomol. Struct. Dyn. 3, 445-466). One of the oligonucleotides, d(CGTACG), is identical to that used in the high resolution x-ray structure determination of the daunorubicin intercalative complex (Wang, A. H.-J., Ughetto, G., Quigley, G. J. & Rich, A. (1987). Biochemistry 26, 1152-1163). Binding to this hexanucleotide is compared with intercalation into the d(CGCGCG) duplex, revealing sequence preferences of the four anthracyclines. Taking into account the anthracycline aggregation and the dissociation of the hexanucleotide double standard form, results can be interpreted with a model that assumes complete fluorescence quenching at intercalative sites containing the CG base pair, and a large residual fluorescence after intercalation within the TpA fragment. All four anthracyclines show preferential intercalation at sites near the ends of both hexanucleotide duplexes, partly as a result of positive cooperativity in the formation of di-intercalated species at these sites. Within the limits of experimental error, complete site specificity for the CpG fragment is found in the intercalation of 1 and 2 into d(CGTACG) duplex, whereas analogues 3 and 4 give increasing evidence of intercalation at other sites including the fluorescence-preserving TpA fragment. Site specificity is less pronounced in the association with d(CGCGCG), when cooperativity is taken into account. Kinetic data corroborate the results of equilibrium studies and are interpreted with a mechanism that includes formation of an intermediate bound species followed by drug redistribution to preferential sites. Finally, from a comparison of pertinent site binding constants, approximate free energy contributions to sequence specific DNA interaction, due to C9-OH on the aglycone and -NH3+ on daunosamine, are estimated not to exceed 2 kcal/mol.  相似文献   

12.
A molecular mechanical study of netropsin-DNA interactions   总被引:5,自引:0,他引:5  
J Caldwell  P Kollman 《Biopolymers》1986,25(2):249-266
We present molecular mechanical calculations on the complexes of netropsin with dA6·dT6, d(TATATA)2, d(CGCGCG)2, and d(CGCGAATTCGCG)2. The complexes were model built using computer graphics and then completely energy refined. Our calculations are consistent with the observed AT preference for netropsin and suggest that mixed sugar pucker geometries should be more stable than uniform in netropsin complexes with poly[d(A-T)]·poly[d(A-T)] and poly(dA)·poly(dt). The netropsin·d(TATATA) and netropsin·dA6·dT6 complexes are significantly different in structure, leading to a possible reason why the observed thermodynamics of netropsin-association with poly[d(A-T)]·poly[d(A-T)] and with poly(dA)·poly(dT) are so different. We also model built and energy refined a structure of netropsin-d(CGCGAATTCGCG)2 using as a guide the nmr data of Patel [(1982) Proc. Natl. Acad. Sci. USA, 79 , 6424–6428] and found a three-dimensional structure qualitatively consistent with the NOE enhancements observed by him. After our calculations were completed, we learned of an x-ray structure of a netropsin:d(CGCGAATTCGCG)2 complex, and we compared the structure found in our calculation with the x-ray structure.  相似文献   

13.
The interaction between the fluorescent dye YO (oxazole yellow) and the alternating polynucleotides [poly(dA-dT)]2[the duplex of alternating poly(dA-dT)]and [poly(dG-dC)]2[the duplex of alternating poly(dG-dC)] has been studied with optical spectroscopic techniques including absorbance, flow linear dichroism, CD, and fluorescence measurements. The principal features of the spectra are very similar for the two polynucleotide solutions, showing that YO binds quite similarly to AT and GC base pairs. From a strongly negative reduced linear dichroism (LDr) in the dye absorption band, an induced negative CD, and transfer of energy from the bases to bound YO, we conclude that at low mixing ratios YO is intercalated in both [poly(dA-dT)]2 and [poly(dG-dC)]2. At higher mixing ratios an external binding mode starts to contribute, evidenced from the appearance of an exciton CD. The conclusion that YO binds in a similar way to AT and GC base pairs should be valid also for the dimer YOYO since its YO units have been found to bind to double-stranded (dsDNA) in the same way as the YO monomer. The fluorescence properties of YO and YOYO complexed with DNA or the polynucleotides have been characterized by studying the dependence of fluorescence intensity on temperature, mixing ratio, and ionic strength. The fluorescence intensity and fluorescence lifetime of YO-DNA decrease strongly with increasing mixing ratio, whereas the fluorescence intensity of YOYO-DNA shows a weaker dependence, indicating that the quantum yield depends on the distance between the YO chromophores on the DNA chain. Further, the fluorescence intensity of YO depends on the base sequence; the quantum yield and fluorescence lifetime for YO complexed with [poly(dG-dC)]2 are about twice as large as for YO complexed with [poly(dA-dT)]2. Measurements of excitation spectra at different mixing ratios and different emission wavelengths indicate that the fluorescence of the externally bound chromophores is negligible compared to the intercalated ones. © 1995 John Wiley & Sons, Inc.  相似文献   

14.
Molecular-mechanics calculations have been carried out on the base-paired hexanucleoside pentaphosphates d(TATATA)2, d(ATATAT)2, d(A6)·d(T6), d(CGCGCG)2, d(GCGCGC)2, and d(C6)·d(G6) in both A- and B-DNA geometries. The calculated relative energies of these polymers are consistent with the relative stabilities of the polymers found experimentally. In particular, the results of our calculations support the observation that the homopolymer d(A)n·d(T)n is more stable in a B-DNA conformation, while the homopolymer d(G)n·d(C)n is more stable in an A-DNA conformation. The molecular interactions responsible for these differential stabilities include both inter- and intrastrand base stacking, as well as base–phosphate interactions. While definitive experiments on the heteropolymer stabilities have not yet been carried out, the results of our calculations also suggest a greater stability of the purine-3′,5′-pyrimidine sequence over the pyrimidine-3′,5′-purine sequence in both the A- and B-conformations. The reason for this greater stability lies in the importance of the inherent directionality (5′ → 3′ vs 3′ → 5′) of phosphate–base and base–base interactions. The largest conformation change observed on energy refinement is sugar repuckering, which occurs mainly on pyrimidine-attched sugars and only in the B-DNA geometry. We suggest a molecular mechanism, specifically, differential base–sugar steric interactions involving neighboring sugars, to explain why this repuckering occurs more with d(A6)·d(T6) than with other isomers.  相似文献   

15.

Background

Base dependent binding of the cytotoxic alkaloid harmalol to four synthetic polynucleotides, poly(dA).poly(dT), poly(dA-dT).poly(dA-dT), poly(dG).poly(dC) and poly(dG-dC).poly(dG-dC) was examined by various photophysical and calorimetric studies, and molecular docking.

Methodology/Principal Findings

Binding data obtained from absorbance according to neighbor exclusion model indicated that the binding constant decreased in the order poly(dG-dC).poly(dG-dC)>poly(dA-dT).poly(dA-dT)>poly(dA).poly(dT)>poly(dG).poly(dC). The same trend was shown by the competition dialysis, change in fluorescence steady state intensity, stabilization against thermal denaturation, increase in the specific viscosity and perturbations in circular dichroism spectra. Among the polynucleotides, poly(dA).poly(dT) and poly(dG).poly(dC) showed positive cooperativity where as poly(dG-dC).poly(dG-dC) and poly(dA-dT).poly(dA-dT) showed non cooperative binding. Isothermal calorimetric data on the other hand showed enthalpy driven exothermic binding with a hydrophobic contribution to the binding Gibbs energy with poly(dG-dC).poly(dG-dC), and poly(dA-dT).poly(dA-dT) where as harmalol with poly(dA).poly(dT) showed entropy driven endothermic binding and with poly(dG).poly(dC) it was reported to be entropy driven exothermic binding. The study also tested the in vitro chemotherapeutic potential of harmalol in HeLa, MDA-MB-231, A549, and HepG2 cell line by MTT assay.

Conclusions/Significance

Studies unequivocally established that harmalol binds strongly with hetero GC polymer by mechanism of intercalation where the alkaloid resists complete overlap to the DNA base pairs inside the intercalation cavity and showed maximum cytotoxicity on HepG2 with IC50 value of 14 µM. The results contribute to the understanding of binding, specificity, energetic, cytotoxicity and docking of harmalol-DNA complexation that will guide synthetic efforts of medicinal chemists for developing better therapeutic agents.  相似文献   

16.
Core histones, (H2A,H2B,H3,H4)2, were reconstituted with the synthethic polynucleotides poly(dA-dT)·poly(dA-dT) and poly(dG-dC)·poly(dG-dC) to yield synthetic chromatins containing 200 basepairs per octamer. These synthetic chromatins displayed a 36% decrease in the circular dichroism (CD) peak ellipticity from the value of the polynucleotide free in solution; the poly(dA-dT)·poly(dA-dT)/chromatin showed an increase in the complexity of the thermal denaturation profile compared to that of the polynucleotide. Both the temperature of maximum dhdT for each transition (Tm) and the relative amount of poly(dA-dT)·poly(dA-dT) in the synthetic chromatin melting in each of the four thermal transitions is a function of the ionic strength over the 0–5 mM sodium phosphate range (0.25 mM EDTA, pH 7.0); a shift of material toward higher melting transitions was observed with increasing ionic strength. The CD peak ellipticity value for both synthetic chromatins was ionic strength-independent over the 0–5 mM sodium phosphate range. These results are in contrast to those observed with H1H5 stripped chicken erythrocyte chromatin (Fulmer, A. and Fasman, G.D. (1979) Biopolymers 18, 2875–2891), where an ionic strength dependence was found. Differences in the CD spectra between poly(dA-dT)·poly(dA-dT)/chromatin, poly(dG-dC)·poly(dG-dC)/chromatin and H1H5 stripped chicken erythrocyte chromatin suggest subtle differences in assembly. Finally, the temperature dependence of the CD spectra of poly(dA-dT)·poly(dA-dT)-containing synthetic chromatin, which is similar to that for the polynucleotide, suggests the core histone bound polynucleotide has a large degree of conformational flexibility allowing it to undergo the premelt transition.  相似文献   

17.
Stopped-flow spectrometry and simple mixing techniques have been employed to investigate the detergent-induced dissociation of anthracycline antibiotics from natural and synthetic DNAs. Both daunomycin and nogalamycin dissociate more slowly poly(dG-dC) than from poly(dA-dT), but the difference is much more marked for nogalamycin. With an equimolar mixture of poly(dG-dC) and poly(dA-dT), or with poly(dA-dC)·poly(dG-dT), dissociation of nogalamycin occurs very slowly. In all cases the release of antibiotic from a synthetic polynucleotide is a one-step process following a sinigle exponential. Dissociation of daunomycin, adrianmycin and iremycin from calf thymus DNA is a more complex reaction which requires a two-exponential fit, in contrast to earlier reports, but differences between the behaviour of the three antibotics are minor. Dissociation of nogalamycin from natural DNA requires a three-exponential fit, is in general far slower, and depends upon the base composition, the level of binding and the time allowed for the complex to equilibrate. It is concluded that sequence selectivity is minimal or lacking for daunomycin, whereas nogalamycin binding is sequence dependent and probably involves migration of the antibiotic between DNA binding sites. There is an inverse correlation between dissociation rate constants and antibacterial potency in simple tests.  相似文献   

18.
X W Hui  N Gresh    B Pullman 《Nucleic acids research》1989,17(11):4177-4187
An investigation of the intrinsically preferred binding modes of a steroid diamine, dipyrandium, to the double-stranded hexanucleotides d(TATATA)2, d(ATATAT)2, and d(CGCGCG)2 is carried out by the energy minimization procedure JUMNA. Several alternative binding modes are compared: groove binding in which the conformation of the oligonucleotide remains close to that of B-DNA, intercalation between base-pairs and interaction with variously kinked structures in which base pairs of dinucleoside steps open towards the groove in which the binding occurs. The favored binding configuration occurs at the d(TpA) step of the AT kinked nucleotides in which the kink opens the base pairs towards the minor groove. Thus, for the d(T1A2T3A4T5A6)2 sequences the preferred complexation involves the kink at the T3A4 step facing the cyclohexane rings A, B, and C of the ligand. For the d(A1T2A3T4A5T6)2 sequence, the kink occurs at the T2A3 step facing the cationic pyrrolidine ring linked to ring A. The binding of dipyrandium to d(CGCGCG)2 is found to be considerably less favourable than for either of the two (AT) sequences.  相似文献   

19.
Stopped-flow spectrometry and simple mixing techniques have been employed to investigate the detergent-induced dissociation of anthracycline antibiotics from natural and synthetic DNAs. Both daunomycin and nogalamycin dissociate more slowly from poly(dG-dC) than from poly(dA-dT) but the difference is much more marked for nogalamycin. With an equimolar mixture of poly(dG-dC) and poly(dA-dT), or with poly(dA-dC).poly(dG-dT), dissociation of nogalamycin occurs very slowly. In all cases the release of antibiotic from a synthetic polynucleotide is a one-step process following a single exponential. Dissociation of daunomycin, adriamycin and iremycin from calf thymus DNA is a more complex reaction which requires a two-exponential fit, in contrast to earlier reports, but differences between the behaviour of the three antibiotics are minor. Dissociation of nogalamycin from natural DNA requires a three-exponential fit, is in general far slower, and depends upon the base composition, the level of binding and the time allowed for the complex to equilibrate. It is concluded that sequence selectivity is minimal or lacking for daunomycin, whereas nogalamycin binding is sequence dependent and probably involves migration of the antibiotic between DNA binding sites. There is an inverse correlation between dissociation rate constants and antibacterial potency in simple tests.  相似文献   

20.
The anticancer drug daunomycin has been co-crystallized with the hexanucleotide duplex sequences d(TGTACA) and d(TGATCA) and single crystal X-ray diffraction studies of these two complexes have been carried out. Structure solution of the d(TGTACA) and d(TGATCA) complexes to 1.6 and 1.7 Angstrom resolution, respectively, shows two daunomycin molecules bound to the DNA hexamer. Binding occurs via intercalation of the drug chromophore at the d(TpG) step, and hydrogen bonding interactions involving the drug, DNA and solvent molecules. The daunomycin sugar is located in the minor groove of the DNA hexamer and is stabilized by hydrogen bonds between the amino group of the sugar and functional groups on the floor of the groove. The amino sugar of the d(TGATCA) duplex interacts directly with the DNA sequence, while in the d(TGTACA) duplex, the interaction is via solvent molecules. Two other complexes d(CGTACG)-daunomycin and d(CGATCG)-daunomycin have previously been structurally characterized. Comparison of the four structures with daunomycin bound to the triplet sequences 5'TGT, 5'TGA, 5'CGT and 5'CGA reveals changes in the conformation of both the DNA hexamer and the daunomycin upon complexation, as well as the hydrogen bonding and van der Waals' interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号