首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structural determinants of DNA bending of different types have been studied by theoretical conformational analysis of duplexes. Their terminal parts were fixed either in an ordinary low-energy B-like conformation or in "anomalous" conformations with a narrowed minor groove typical of An tracts. The anomalous conformations had different negative tilt angles (up to about zero), different propeller twists and minor groove widths. Calculations have been performed for DNA fragments AnTm, TnAm, AnGCTm, AnCGTm, TmGCAn, TmCGAn which are the models of the junction of two anomalous structures on An and Tm tracts. On the AT step of the AnTm fragment the minor groove can be easily narrowed so that a whole unbent fragment of anomalous structure is formed on AnTm. According to our energy estimates, there should not be any reliable bending on AnTm. In contrast, in all other cases there was a pronounced roll-like bending into the major groove in the chemical symmetry region. Calculations of the junction between the anomalous and ordinary B-like structure for GnTm and CnAm have shown that there is an equilibrium bending with a tilt component towards the chain having the anomalous structure at the 5'-end. From our calculations it is impossible to determine precisely the direction of bending, though it can be suggested that the roll component of bending might be directed towards the major groove. The anomalous structure is the main reason of bending; alternations of pyrimidines and purines can modulate the value and the direction of equilibrium bending (only the value in the case of self-complementary fragments).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
A method is proposed to measure global bending in DNA and RNA structures. It relies on a properly defined averaging of base-fixed coordinate frames, computes mean frames of suitably chosen groups of bases and uses these mean frames to evaluate bending. The method is applied to DNA A-tracts, known to induce considerable bend to the double helix. We performed atomistic molecular dynamics simulations of sequences containing the A4T4 and T4A4 tracts, in a single copy and in two copies phased with the helical repeat. Various temperature and salt conditions were investigated. Our simulations indicate bending by roughly 10° per A4T4 tract into the minor groove, and an essentially straight structure containing T4A4, in agreement with electrophoretic mobility data. In contrast, we show that the published NMR structures of analogous sequences containing A4T4 and T4A4 tracts are significantly bent into the minor groove for both sequences, although bending is less pronounced for the T4A4 containing sequence. The bending magnitudes obtained by frame averaging are confirmed by the analysis of superhelices composed of repeated tract monomers.  相似文献   

3.
New insights into the structure of An tracts and B'-B' bends in DNA   总被引:4,自引:0,他引:4  
Energy calculations suggest that the currently available NOE distance constraints for An tracts in DNA are incapable of distinguishing between structures with a narrowed minor groove arising from a large propeller twist with a small inclination or from a small propeller twist with a large negative inclination. Furthermore, analysis of published data, together with energy estimations, strongly argue against bifurcated hydrogen bonding between A and T residues being the cause of the anomalous structural properties of An tracts. A conformational analysis of the B'-B' junction has been performed in which a single variable base pair has been inserted between two regions of B' structure. We have calculated low-energy structures for AnGAn,AnCAn,AnTAn,AnCTn, and TnCAn duplexes, where the An and Tn tracts were fixed in the anomalous B' conformation. Upon optimization, all these structures were found to contain a pronounced roll-like bending into the major groove at the site of the insertion. The important factors in the formation of these B'-B' bends are the destruction of the B' conformation and the concomitant widening of the minor groove at the junction region in order to reduce minor groove interstrand base clashes and improve interstrand stacking energy. If the B' conformation has strong negative inclination, the improved intrastrand stacking energy also contributes to the bending. In calculations of duplexes with An and Tn tracts in the B conformation instead of B', the bending disappears.  相似文献   

4.
Chemical determinants of DNA bending at adenine-thymine tracts   总被引:10,自引:0,他引:10  
H S Koo  D M Crothers 《Biochemistry》1987,26(12):3745-3748
DNA fragments having homopolymeric adenine-thymine tracts phased with the helix screw are known to be bent. According to our working model, adenine-thymine tracts adopt a polymorphic structure (H-DNA), and juxtaposition of H-DNA with B-DNA results in bending at the junction between the two structures. We incorporated different base analogues in addition to the four ordinary bases into oligonucleotides; ligated multimers of oligonucleotide duplexes were run on polyacrylamide gels. By comparison of gel mobility data for different sequences, we identified factors both necessary and irrelevant for bending, corresponding to the formation of H-DNA. The 5-methyl group on pyrimidines is not essential, and the 2-amino group on purines interferes with the formation of H-DNA, either because it provides a third H bond between the bases or because it alters water structure in the minor groove. The strong base stacking of A may be an important contributing factor to stabilization of the anomalous DNA structure responsible for bending.  相似文献   

5.
A-tracts are functionally important DNA sequences which induce helix bending and have peculiar structural properties. While A-tract structure has been qualitatively well characterized, their mechanical properties remain controversial. A-tracts appear structurally rigid and resist nucleosome formation, but seem flexible in DNA looping. In this work, we investigate mechanical properties of symmetric AnTn and asymmetric A2n tracts for n = 3, 4, 5 using two types of coarse-grained models. The first model represents DNA as an ensemble of interacting rigid bases with non-local quadratic deformation energy, the second one treats DNA as an anisotropically bendable and twistable elastic rod. Parameters for both models are inferred from microsecond long, atomic-resolution molecular dynamics simulations. We find that asymmetric A-tracts are more rigid than the control G/C-rich sequence in localized distortions relevant for nucleosome formation, but are more flexible in global bending and twisting relevant for looping. The symmetric tracts, in contrast, are more rigid than asymmetric tracts and the control, both locally and globally. Our results can reconcile the contradictory stiffness data on A-tracts and suggest symmetric A-tracts to be more efficient in nucleosome exclusion than the asymmetric ones. This would open a new possibility of gene expression manipulation using A-tracts.  相似文献   

6.
The ubiquitous, eukaryotic, high-mobility group box (HMGB) chromosomal proteins promote many chromatin-mediated cellular activities through their non-sequence-specific binding and bending of DNA. Minor-groove DNA binding by the HMG box results in substantial DNA bending toward the major groove owing to electrostatic interactions, shape complementarity, and DNA intercalation that occurs at two sites. Here, the structures of the complexes formed with DNA by a partially DNA intercalation-deficient mutant of Drosophila melanogaster HMGD have been determined by X-ray crystallography at a resolution of 2.85 Å. The six proteins and 50 bp of DNA in the crystal structure revealed a variety of bound conformations. All of the proteins bound in the minor groove, bridging DNA molecules, presumably because these DNA regions are easily deformed. The loss of the primary site of DNA intercalation decreased overall DNA bending and shape complementarity. However, DNA bending at the secondary site of intercalation was retained and most protein-DNA contacts were preserved. The mode of binding resembles the HMGB1 box A-cisplatin-DNA complex, which also lacks a primary intercalating residue. This study provides new insights into the binding mechanisms used by HMG boxes to recognize varied DNA structures and sequences as well as modulate DNA structure and DNA bending.  相似文献   

7.
Abstract

We propose some specific DNA conformations that explain, in terms of molecular conformations, the anomalous gel electrophoretic behavior of the sequences (VA4T4X)1, and (V2A3X2)1 where V and X are either G or C. Previously (J. Biomole. Struct. Dyn. 4, 41, 1986) we considered hydrophobic interactions a mong aliphatic hydrocarbon groups in A/T sequences. In the sequences (T)n · (A)n, the T's are slightly bent to yield structures with tightly stacked methyl groups along one side of the major groove. By folding together the two pairs of stacked methyls on the opposite sides of the major groove, TTAA might yield a relatively sharp bend. On this basis, we show below that the sequences (VT4A4X)1 might form a very tightly coiled super-helix whereas the sequences (VA4T4X)1 form a broad super-helix of radius ~ 120 A for i = 25. The sequence (V2A3T3X2)1 forms a slightly smaller radius super-helix. The time of passage through the gel has been taken to be inversely proportional to the smallesuiimension of the molecule. Specifically we are taking the ratio of the apparent molecular weight to the actual molecular weight to be related to the moment of inertia I1 about the smallest principal axis of the molecular conformation. We find a good fit to the experimental gel mobility data of Hagerman (2) if we assume this ratio to be proportional to (I1)1/5.  相似文献   

8.
Abstract

The development and assessment of a prediction method for gel retardation and sequence dependent curvature of DNA based on dinucleotide step parameters are described. The method is formulated using the Babcock-Olson equations for base pair step geometry (1) and employs Monte Carlo simulated annealing for parameter optimization against experimental data. The refined base pair step parameters define a structural construct which, when the width of observed parameter distributions is taken into account, is consistent with the results of DNA oligonucleotide crystal structures. The predictive power of the method is demonstrated and tested via comparisons with DNA bending data on sets of sequences not included in the training set, including A-tracts with and without periodic helix phasing, phased A4T4 and T4A4 motifs, a sequence with a phased GGGCCC motif, some “unconventional” helix phasing sequences, and three short fragments of kinetoplast DNA from Crithidia fasiculata that exhibit significantly different behavior on non-denaturing polyacrylamide gels. The nature of the structural construct produced by the methodology is discussed with respect to static and dynamic models of structure and representations of bending and bendability. An independent theoretical account of sequence dependent chemical footprinting results is provided. Detailed analysis of sequences with A-tract induced axis bending forms the basis for a critical discussion of the applicability of wedge models, junction models and non A-tract, general sequence models for understanding the origin of DNA curvature at the molecular level.  相似文献   

9.
The hydration shell of several conformations of the polynucleotides poly(dA).poly(dT), poly(dA).poly(dU), and poly(dA-dI).poly(dT-dC) has been simulated using the Monte Carlo method (Metropolis sampling). Calculations have shown that the structure of the hydration shell of the minor groove greatly depends on its width. In conformations with a narrowed minor groove, the first layer of the hydration shell of this groove has only one molecule per nucleotide pair that forms H bonds with purine N3 of one pair and pyrimidine O2 of the next pair. The second layer of the hydration shell of such conformations contains molecules that form H bonds between two adjacent molecules of the first layer. The probability of formation of hydration spine is about 20% while the bridges of the first layer are formed with a probability of about 70%. In the first layer of the minor groove of the B-DNA conformation with wide minor groove there are approximately two water molecules per base pair that form H bonds with purine N3 or pyrimidine O2 and with the sugar ring oxygen of the adjacent nucleotide. The probability of simultaneous H bonding of a water molecule with N3 (or O2) and O of sugar ring is about 30%. The results of simulation suggest that hydration spine proposed for the narrowed minor groove of oligonucleotide crystals [H. R. Drew, and R. E. Dickerson (1981) Journal of Molecular Biology, Vol. 151, pp. 535-556] can be formed in fibers of poly(dA).poly(dT), poly(dA).poly(dU), and poly(dA-dI).poly(dT-dC) as well as in DNA fragments of these sequences in solution.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Abstract

Trinucleotide parameter sets published previously were used for the development of the predictive method for the determining the nucleosome positions along the DNA. The choice of the type of parameter sets used depends upon AT-content of the fragment. Some limitations are imposed on these predictions due to the presence of An, Tn tracts (in our case n>5 or =5) within the 145 bp fragment leading to the displacement or even the prohibition for the corresponding site to be occupied by nucleosomes. The predicted nucleosome positioning site with the large potential may influence on the choice of the proximal nucleosome positions with the weaker bending potentials as is revealed by the comparison with the micrococcal nuclease digestion map. Trinucleotide methods may be considered as advantageous in the comparison with the dinucleotide ones.  相似文献   

11.
The results of the search for low-energy conformations of poly(dA).poly(dT) and of the poly(dA).poly(dT) "complex" with the spine of hydration similar to that found by Dickerson and co-workers (Kopka, M.L., Fratini, A.V., Drew, H.R. and Dickerson, R.E. (1983) J. Mol. Biol. 163, 129-146) in the minor groove of the CGCGAATTCGCG crystals are described. It is shown that the existence of such a spine in the minor groove of poly(dA).poly(dT) is energetically favourable. Moreover, the spine of hydration makes the polynucleotide conformation similar to the poly(dA).poly(dT) structure in fibers and to the conformation of the central part of CGCGAATTCGCG in crystals; it also acquires features characteristic of the structure of poly(dA).poly(dT) and DNA oligo(dA)-tracts in solution. It is shown that the existence of the TpA step in conformations characteristic of the poly(dA).poly(dT) complex with the spine of hydration is energetically unfavourable (in contrast to the ApT step) and therefore this step should result in destabilization of the spine of hydration in the DNA minor groove. Thus, it appears that the spine of hydration as described by Dickerson and co-workers is unlikely to exist in the poly d(A-T).poly d(A-T) structure. The data obtained permit us to interpret a large body of experimental facts concerning the unusual structure and properties of poly(dA).poly(dT) and oligo(dA)-tracts in DNA both in fibers and in solution. The results provide evidence of the existence of the minor groove spine of hydration both in fibers and in solution on A/T tracts of DNA which do not contain the TpA step. The spine plays an active role in the formation of the anomalous conformation of these tracts.  相似文献   

12.
The effect of structural factors on the stability of duplexes formed by DNA minor groove binders conjugated with oligonucleotide mono- or diphosphoramidates of the general formula Oligo-MGBm (where Oligo is an oligonucleotide; m = 1 or 2; MGB is -L(Py)2R, -L(Py)4R, -L(Im)4R, or -L(Py)4NH(CH2)3CO(Py)4R; Py is a 4-aminopyrrole-2-carboxylic acid residue; L is a -aminobutyric acid or an -aminocaproic acid residue, R = OEt, NH(CH2)6NEt2, or NH(CH2)6N+Me3) was studied by the method of thermal denaturation. The mode of binder interaction with the minor groove depends on the conjugate structure; it may be of the parallel head to head type for bisphosphoramidates and of the antiparallel head to tail type for monophosphoramidates of a hairpin structure. The effects of the duplexes with parallel orientation (bisphosphoramidates, MGB is L(Py)4R, m = 2) and those of the hairpin structure with the antiparallel orientation (monophosphoramidates, MGB is L(Py)4(CH2)3CO(Py)4R, m = 1) on T m values were close. The influence of the linker (L) and substituent (R) structures upon T m was more pronounced for monophosphoramidate (MGB is L(Py)nR, m = 1) than for bisphosphoramidate (MGB is L(Py)nR, m = 2). No more than two oligopyrrolecarboxamide residues (either in parallel or antiparallel orientations) can be incorporated into the duplex minor groove. Moreover, it was shown by the example of monophosphoramidates (Oligo-L(Py)4R and Oligo-L(Py)4NH(CH2)3CO(Py)4R) that the addition of a second ligand capable of incorporation into the minor groove increased T m of the corresponding duplex in comparison with the duplex formed by the starting monophosphoramidate. At the same time, the introduction of a ligand incapable of incorporating decreased the T m value. The mode of interaction of the conjugated binder with the oligonucleotide duplex is determined by its structure. For example, dipyrrolecarboxamide containing an ethoxy group at the binder C-end stabilizes the duplex due to stacking interaction with the terminal A · T pair, whereas tetrapyrrolecarboxamides stabilize the duplex by incorporation into the minor groove.__________Translated from Bioorganicheskaya Khimiya, Vol. 31, No. 2, 2005, pp. 159–166.Original Russian Text Copyright © 2005 by Ryabinin, Butorin, Elen, Denisov, Pyshnyi, Sinyakov.  相似文献   

13.
The solution structure and hydration of the chimeric duplex [d(CGC)r(aaa)d(TTTGCG)]2, in which the central hybrid segment is flanked by DNA duplexes at both ends, was determined using two-dimensional NMR, simulated annealing and restrained molecular dynamics. The solution structure of this chimeric duplex differs from the previously determined X-ray structure of the analogous B-DNA duplex [d(CGCAAATTTGCG)]2 as well as NMR structure of the analogous A-RNA duplex [r(cgcaaauuugcg)]2. Long-lived water molecules with correlation time τc longer than 0.3 ns were found close to the RNA adenine H2 and H1′ protons in the hybrid segment. A possible long-lived water molecule was also detected close to the methyl group of 7T in the RNA–DNA junction but not with the other two thymines (8T and 9T). This result correlates with the structural studies that only DNA residue 7T in the RNA–DNA junction adopts an O4′-endo sugar conformation, while the other DNA residues including 3C in the DNA–RNA junction, adopt C1′-exo or C2′-endo conformations. The exchange rates for RNA C2′-OH were found to be ~520 s–1. This slow exchange rate may be due to the narrow minor groove width of [d(CGC)r(aaa)d(TTTGCG)]2, which may trap the water molecules and restrict the dynamic motion of hydroxyl protons. The minor groove width of [d(CGC)r(aaa)d(TTTGCG)]2 is wider than its B-DNA analog but narrower than that of the A-RNA analog. It was further confirmed by its titration with the minor groove binding drug distamycin. A possible 2:1 binding mode was found by the titration experiments, suggesting that this chimeric duplex contains a wider minor groove than its B-DNA analog but still narrow enough to hold two distamycin molecules. These distinct structural features and hydration patterns of this chimeric duplex provide a molecular basis for further understanding the structure and recognition of DNA·RNA hybrid and chimeric duplexes.  相似文献   

14.
Abstract

Previous studies of the dinucleotides flanking both the 5′ and 3′ ends of homooligomer tracts have shown that some flanks are consistently preferred over others (1,2). In the first preferred group, the homooligomer tracts are flanked by the same nucleotide and/or the complementary nucleotides, e.g., ATAn, TTAn, CCGn, where n=2–5. Runs flanked by nucleotides with which they cannot base pair are distinctly disfavored. (In this group A/Tn are flanked by C and/or G; Gn/Cn are flanked by A/T, e.g., CGAn, TnGG, G., AT). The frequencies of runs flanked by AorT, and G or C (“mixed” group) are as expected. Here we seek the origin of this effect and its relevance to protein-DNA interactions. Surprisingly, within the first group, runs flanked by their complements with a pyrimidine-purine junction (e.g., TTAn, CnGG) are greatly preferred. The frequencies of their purine-pyrimidine junction mirror-images is just as expected. This effect, as well as additional ones enumerated below, is seen universally in eukaryotes and in prokaryotes, although it is stronger in the former. Detailed analysis of regulatory regions shows these strong trends, particularly in GC sequences. The potential relationship to DNA conformation and DNA-protein interaction is discussed.  相似文献   

15.
Bending and flexibility of kinetoplast DNA   总被引:10,自引:0,他引:10  
S D Levene  H M Wu  D M Crothers 《Biochemistry》1986,25(14):3988-3995
We have evaluated the extent of bending at an anomalous locus in DNA restriction fragments from the kinetoplast body of Leishmania tarentolae using transient electric dichroism to measure the rate of rotational diffusion of DNA fragments in solution. We compare the rate of rotational diffusion of two fragments identical in sequence except for circular permutation, which places the bend near the center in one case and near one end of the molecule in the other. Hydrodynamic theory was used to conclude that the observed 20% difference in rotational relaxation times is a consequence of an overall average bending angle of 84 +/- 6 degrees between the end segments of the fragment that contains the bending locus near its center. If it is assumed that bending results from structural dislocations at the junctions between oligo(dA).oligo(dT) tracts and adjacent segments of B DNA, a bend angle of 9 +/- 0.5 degrees at each junction is required to explain the observations. The extent of bending is little affected by ionic conditions and is weakly dependent on temperature. Comparison of one of the anomalous fragments with an electrophoretically normal control fragment leads to the conclusion that they differ measurably in apparent stiffness, consistent with a significantly increased persistence length or contour length in the kinetoplast fragments.  相似文献   

16.
Abstract

To investigate the intrinsic bending of DNA at sites where proteins bind, we analyzed catabolite gene activator protein (CAP) binding sites and various operators from the viewpoint of DNA bending flexibility. Theoretical conformational analysis, DNase I digestion and x-ray crystallography data indicate that bending of B-DNA is highly anisotropic and sequence-dependent. Certain dimers prefer to bend into the major groove (“major-philic”) and others prefer to bend into the minor groove (“minor-philic” dimers). From these data we considered TA CG, CA:TG and GG:CC as major-philic dimers and AT, AA:TT and GT:AC as minor-philic ones.

Analysis of 31 CAP binding sites has identified strong major-philic tendencies 5–7 base pairs (bp) away from the center. In addition, we found minor-philic poly-A tracts extending 4–5 bp away from the proposed major-philic bends. Finally, to analyze the central regions we followed the lead of Shumilov and classified the DNA sites by their spacer lengths [V.Y. Shumilov, Mol. Biol. (Mosk) 21, 168–187 (1987)]. In this way, we identified two subsets of CAP binding sites: one with 6 bp between the TGTGA:TCACA consensus boxes (N6-set) and one with 8 central bp (N8-set). We discovered that the dimer at the center of an N6-set site was usually major-philic, whereas at the center of an N8-set site more often minor-philic. Analysis of phages 434, P22, λ and trp operators revealed similar results.

In conclusion, our data show that CAP binding sites have major-philic and minor-philic dimers at specific positions; the location of these dimers may facilitate wrapping of DNA around CAP. A similar pattern is seen in nucleosomes.  相似文献   

17.
Variations of the shape and polarity of the DNA grooves caused by changes of the DNA conformation play an important role in the DNA readout. Despite the fact that non-canonical trans and gauche- conformations of the DNA backbone angle γ (O5′–C5′–C4′–C3′) are frequently found in the DNA crystal structures, their possible role in the DNA recognition has not been studied systematically. In order to fill in this gap, we analyze the available high-resolution crystal structures of the naked and complexed DNA. The analysis shows that the non-canonical γ angle conformations are present both in the naked and bound DNA, more often in the bound vs. naked DNA, and in the nucleotides with the A-like vs. the B-like sugar pucker. The alternative angle γ torsions are more frequently observed in the purines with the A-like sugar pucker and in the pyrimidines with the B-like sugar conformation. The minor groove of the nucleotides with non-canonical γ angle conformation is more polar, while the major groove is more hydrophobic than in the nucleotides with the classical γ torsions due to variations in exposure of the polar and hydrophobic groups of the DNA backbone. The propensity of the nucleotides with different γ angle conformations to participate in the protein–nucleic acid contacts in the minor and major grooves is connected with their sugar pucker and sequence-specific. Our findings imply that the angle γ transitions contribute to the process of the protein–DNA recognition due to modification of the polar/hydrophobic profile of the DNA grooves.  相似文献   

18.
The RepA protein from bacteriophage P1 binds DNA to initiate replication. RepA covers one face of the DNA and the binding site has a completely conserved T that directly faces RepA from the minor groove at position +7. Although all four bases can be distinguished through contacts in the major groove of B-form DNA, contacts in the minor groove cannot easily distinguish between A and T bases. Therefore the 100% conservation at this position cannot be accounted for by direct contacts approaching into the minor groove of B-form DNA. RepA binding sites with modified base pairs at position +7 were used to investigate contacts with RepA. The data show that RepA contacts the N3 proton of T at position +7 and that the T=A hydrogen bonds are already broken in the DNA before RepA binds. To accommodate the N3 proton contact the T+7 /A+7 base pair must be distorted. One possibility is that T+7 is flipped out of the helix. The energetics of the contact allows RepA to distinguish between all four bases, accounting for the observed high sequence conservation. After protein binding, base pair distortion or base flipping could initiate DNA melting as the second step in DNA replication.  相似文献   

19.
Abstract

The structure of d(TTAAAAGAAAAGGG):d(CCCTTTTCTTTTAA) has been characterized by NMR. The minor grooves of the two dA-tracts are suggested to be rather narrow, and the portion linking the two dA tracts exhibits a slightly deviated structure from a standard B DNA, in order to maintain the narrowness of the minor groove. The structure of the dG-tract is also slightly deviated. Additionally, specific broadening of resonances is observed for the residues at or near the junction between the dA-tract and the dG-tract, suggesting local structural polymorphology.

  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号