首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 521 毫秒
1.
Understanding and controlling the interaction between the polymer methyldopa (2‐amino‐3‐(3,4‐dihydroxyphenyl)‐2‐methyl‐propanoic acid) (PMDP)–γ‐Fe2O3 nanoparticles and biological fluids is important if the potential of nanoparticles (NPs) in biomedicine is to be realized. Physicochemical studies on the interactions between proteins and NPs are influenced by the surface properties of the NPs. To identify the effects of the NP surface, interactions between human serum albumin (HSA) and PMDP–γ‐Fe2O3 NPs were investigated. Here, the adsorption of HSA onto small (10–30 nm diameter) PMDP–γ‐Fe2O3 NPs was quantitatively analyzed using spectroscopic methods. The fluorescence quenching data were checked for the inner‐filter effect, the main confounding factor in the observed quenching. The binding constants, Ka, were calculated at different temperatures, using a nonlinear fit to the experimental data, and the thermodynamic parameters ?H, ?S and ?G were given. The obtained thermodynamic signature suggests that hydrophobic interactions at least are present. This result indicates that the structure of the protein turns from a structureless denatured state at pH 3 into an ordered biologically active native state on addition of PMDP–γ‐Fe2O3 NPs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Increasing concerns about biosafety of nanoparticles (NPs) has raised the need for detailed knowledge of NP interactions with biological molecules especially proteins. Herein, the concentration-dependent effect of magnetic NPs (MNPs) on bovine serum albumin and hen egg white lysozyme was explored. The X-ray diffraction patterns, zeta potential, and dynamic light scattering measurements together with scanning electron microscopy images were employed to characterize MNPs synthesized through coprecipitation method. Then, we studied the behavior of two model proteins with different surface charges and structural properties on interaction with Fe3O4. A thorough investigation of protein–MNP interaction by the help of intrinsic fluorescence at different experimental conditions revealed that affinity of proteins for MNPs is strongly affected by the similarity of protein and MNP surface charges. MNPs exerted structure-making kosmotropic effect on both proteins under a concentration threshold; however, binding strength was found to determine the extent of stabilizing effect as well as magnitude of the concentration threshold. Circular dichroism spectra showed that proteins with less resistance to conformational deformations are more prone to secondary structure changes upon adsorption on MNPs. By screening thermal aggregation of proteins in the presence of Fe3O4, it was also found that like chemical stability, thermal stability is influenced to a higher extent in more strongly bound proteins. Overall, this report not only provides an integrated picture of protein–MNP interaction but also sheds light on the molecular mechanism underling this process.  相似文献   

3.
In situ cell separation and immobilization of bacterial cells for biodesulfurization were developed by using superparamagnetic Fe3O4 nanoparticles (NPs). The Fe3O4 NPs were synthesized by coprecipitation followed by modification with ammonium oleate. The surface-modified NPs were monodispersed and the particle size was about 13 nm with 50.8 emu/g saturation magnetization. After adding the magnetic fluids to the culture broth, Rhodococcus erythropolis LSSE8-1 cells were immobilized by adsorption and then separated with an externally magnetic field. The maximum amount of cell mass adsorbed was about 530 g dry cell weight/g particles to LSSE8-1 cells. Analysis showed that the nanoparticles were strongly absorbed to the surface and coated the cells. Compared to free cells, the coated cells not only had the same desulfurizing activity but could also be easily separated from fermentation broth by magnetic force. Based on the adsorption isotherms and Zeta potential analysis, it was believed that oleate-modified Fe3O4 NPs adsorbed bacterial cells mainly because of the nano-size effect and hydrophobic interaction.  相似文献   

4.
Covalent organic frameworks (COFs) are a promising gas separation material which have been developed recently. In this work, we have used grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations to investigate the adsorption and diffusion properties of CO2 and CH4 in five recent synthesised COF materials. We have also considered the properties of amino-modified COFs by adding –NH2 group to the five COFs. The adsorption isotherm, adsorption/diffusion selectivity, self/transport diffusion coefficients have been examined and discussed. All of the five COFs exhibit promising adsorption selectivity which is higher than common nanoporous materials. An S-shaped adsorption isotherm can be found for CO2 instead of CH4 adsorption. The introduction of –NH2 group is effective at low pressure region (<200?kPa). The diffusion coefficients are similar for TS-COFs but increase with the pore size for PI-COFs, and the diffusion coefficients seem less dependent on the –NH2 groups.  相似文献   

5.
Magnetic targeted drug delivery (MTD), using magnetic gold nanoparticles (Fe3O4@Au NPs) conjugated with an anti-cancer drug is a promise modality for cancer treatment. In this study, Fe3O4@Au NPs were prepared and functionalized with thiol-terminated polyethylene glycol (PEG), then loaded with anti-cancer drug doxorubicin (DOX). The physical properties of the prepared NPs were characterized using different techniques. Transmission electron microscopy (TEM) revealed the mono dispersed nature of Fe3O4@Au NPs with an average size of 20 nm which was confirmed using Dynamic light scattering (DLS) measurements. Zeta potential measurements along with UV–VIS spectroscopy demonstrated surface DOX loading on Fe3O4@Au NPs. Energy Dispersive X-ray Spectroscopy (EDX) assured the existence of both iron and gold elements in the prepared NPs. The paramagnetic properties of the prepared NPs were assessed by vibrating sample magnetometer (VSM). The maximum DOX-loading capacity was 100 μg DOX/mg of Fe3O4@Au NPs. It was found that DOX released more readily at acidic pH. In vitro studies on MCF-7 cell line elucidated that DOX loaded Fe3O4@Au NPs (Fe3O4@Au-PEG-DOX) have more potent therapeutic effect than free DOX. Knowledge gained in this study may open the door to pursue Fe3O4@Au NPs as a viable nanocarriers for different molecules delivery in many diagnostic and therapeutic applications.  相似文献   

6.
The aim of this study was to investigate the ability of Lemna minor for Toluidine Blue (TB) removal. Influence of the initial concentration over the removal process was considered. Experimental data have been analyzed using Langmuir, Freundlich, Dubinin–Radushkevich (D–R), and Elovich isotherm models. In addition, several kinetic models, pseudo-first-, pseudo-second-order, intraparticle and film diffusion models were considered. Langmuir and Freundlich isotherm suggested a favorable adsorption of TB by Lemna minor plants. From the D–R the mean free energy was calculated to be 11.18 kJ/mol, which indicates that TB adsorption was characterized by a chemisorption process. Kinetic studies showed that liquid film diffusion plays an important role during the process. Adsorption capacities of up to 26.69 mg/g and a high capacity of adaptation indicated that phytoremediation using Lemna minor could be a valuable alternative for dyes removal from wastewaters.  相似文献   

7.
Fe3O4 (Fe3O4-CS) coated with magnetic chitosan was prepared as an adsorbent for the removal of Orange I from aqueous solutions and characterized by FTIR, XRD, SEM, TEM and TGA measurements. The effects of pH, initial concentration and contact time on the adsorption of Orange I from aqueous solutions were investigated. The decoloration rate was higher than 94% in the initial concentration range of 50–150 mg L−1 at pH 2.0. The maximum adsorption amount was 183.2 mg g−1 and was obtained at an initial concentration of 400 mg L−1 at pH 2.0. The adsorption equilibrium was reached in 30 minutes, demonstrating that the obtained adsorbent has the potential for practical application. The equilibrium adsorption isotherm was analyzed by the Freundlich and Langmuir models, and the adsorption kinetics were analyzed by the pseudo-first-order and pseudo-second-order kinetic models. The higher linear correlation coefficients showed that the Langmuir model (R2 = 0.9995) and pseudo-second-order model (R2 = 0.9561) offered the better fits.  相似文献   

8.
We have studied in vitro toxicity of iron oxide nanoparticles (NPs) coated with a thin silica shell (Fe3O4/SiO2 NPs) on A549 and HeLa cells. We compared bare and surface passivated Fe3O4/SiO2 NPs to evaluate the effects of the coating on the particle stability and toxicity. NPs cytotoxicity was investigated by cell viability, membrane integrity, mitochondrial membrane potential (MMP), reactive oxygen species (ROS) assays, and their genotoxicity by comet assay. Our results show that NPs surface passivation reduces the oxidative stress and alteration of iron homeostasis and, consequently, the overall toxicity, despite bare and passivated NPs show similar cell internalization efficiency. We found that the higher toxicity of bare NPs is due to their stronger in-situ degradation, with larger intracellular release of iron ions, as compared to surface passivated NPs. Our results indicate that surface engineering of Fe3O4/SiO2 NPs plays a key role in improving particles stability in biological environments reducing both cytotoxic and genotoxic effects.  相似文献   

9.
Comparative studies were carried out on the adsorption of copper by a range of laboratory-cultured algae and freshwater phytoplankton samples. The level of surface mucilage associated with the cultured algae ranged from high (Anabaena spiroides, Eudorina elegans) to moderate (Anabaena cylindrica, Microcystis aeruginosa) to complete absence (Chlorella vulgaris, Asterionella formosa, Aulacoseira varians, Ceratium hirundinella). With laboratory cultures, the rapid uptake, EDTA release and quantitative similarity between living and dead (glutaraldehyde-fixed) algae were consistent with physical binding of Cu at the cell surface. The higher Cu adsorption per unit surface area and longer adsorption time of mucilaginous algae in the time-course study, and the relatively high level of Cu bound to mucilage found by X-ray microanalysis suggest that mucilage played an important role in metal binding. For all species examined, Cu adsorption kinetics (external Cu concentrations 1 to 1000 mg L−1) showed a clear fit to the Freundlich, but not the Langmuir isotherm, indicating a monolayer adsorption model with heterogenous binding sites. The Freundlich adsorption capacity constant (Kf) was higher in mucilaginous (3.96–12.62) compared to nonmucilaginous (0.36–3.63) species, but binding intensity (Freundlich constant 1/n) did not differ between the two cell types. The results suggest that mucilaginous algal species may have potential as biosorbents for treatment of industrial effluents containing heavy metals. Investigation of the Cu adsorption behavior of four mixed phytoplankton samples also revealed a good fit to the Freundlich, but not the Langmuir, isotherm. Freundlich constants were in the range 2.3–3.2 for samples dominated by Chlorophyta, Bacillariophyta and Cyanophyta, but recorded a value of 7.4 in the sample dominated by Dinophyta. Comparison with data from laboratory monocultures suggested that the adsorption kinetics of mixed environmental phytoplankton samples cannot be predicted simply in terms of the major algal species.  相似文献   

10.
11.
A novel magnetic nano-adsorbent was prepared by covalently binding polyacrylic acid (PAA) on Fe3O4 superparamagnetic nanoparticles (13.2 nm) via carbodiimide activation. The maximum weight ratio of PAA to Fe3O4 was 0.12 (i.e., average of two PAA molecules on a magnetic nanoparticle). The magnetic nano-adsorbent possessed a high ionic exchange capacity of 1.64 meq g–1 and was efficient for the recovery of lysozyme. The lysozyme could be completely adsorbed in 0.1 M phosphate buffer at pH 3–5 and completely desorbed in NaSCN solution (>1 M) within 1 min, and retained 95% activity after adsorption/desorption. In addition, the adsorption behavior followed the Langmuir adsorption isotherm with a maximum adsorption amount of 0.224 mg mg–1 and a Langmuir adsorption equilibrium constant of 10 ml mg–1 at 25 °C. The change of enthalpy at 15–35 °C was –4.2 kJ ml mol–1 mg–1.  相似文献   

12.
Adsorption of human serum proteins (Albumin and total protein) onto high purity synthesis nano-hydroxyapatite (HA), Ca10(PO4)6(OH)2, has been studied in a wide temperature range by UV–visible spectrophotometer. Adsorption isotherm is basically important to describe how solutes interact with adsorbent, and is critical in optimizing the use of adsorbent. In the present study, the experimental results were fitted to the Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (DR) models to obtain the characteristic parameters of each model and square of the correlation coefficients (R2). According to the results, the DR isotherm model had the best agreement with the experimental data. The effect of temperature on adsorption of human serum proteins (HSP) onto the synthesized nano-HA was studied. The experimental results indicated that temperature increase generally causes an increase in the adsorption of HSP onto the nano-HA. This is basically due to the effect of temperature on the HSP activity and its diffusion rate on HA surfaces.  相似文献   

13.
In this study, molecular dynamics simulation is used to investigate the adsorption of an anticancer drug, doxorubicin, on bundles of functionalized single-walled carbon nanotubes (SWNTs) in an aqueous solution. Carboxylic group has been selected as the functional group. Molecular dynamics (MD) simulations are performed for both separated systems containing a SWNT bundle and a functionalized carbon nanotube bundle, and results are compared with existing experimental data. MD results show that doxorubicin can be adsorbed on CNTs using different methods such as entrapment within CNT bundle, attachment to the side wall of the CNT, and adsorption on the CNT inner cavity. For functionalized CNT, the adsorption of drugs on the functional groups is essential for predicting the enhancement of drug loading on the functionalized nanotubes. Furthermore, the adsorption behavior of doxorubicin on CNTs is fitted with Langmuir and Freundlich isotherm models. The results show that Langmuir model can predict the adsorption behavior of doxorubicin on CNTs more accurately than Freundlich model does. As predicted by this isotherm model, the adsorption process of doxorubicin on CNTs is relatively difficult, but it can be improved by increasing the functional groups on the CNTs surface.  相似文献   

14.
A clear understanding of physicochemical factors governing nanoparticle toxicity is still in its infancy. We used a systematic approach to delineate physicochemical properties of nanoparticles that govern cytotoxicity. The cytotoxicity of fourth period metal oxide nanoparticles (NPs): TiO2, Cr2O3, Mn2O3, Fe2O3, NiO, CuO, and ZnO increases with the atomic number of the transition metal oxide. This trend was not cell-type specific, as observed in non-transformed human lung cells (BEAS-2B) and human bronchoalveolar carcinoma-derived cells (A549). Addition of NPs to the cell culture medium did not significantly alter pH. Physiochemical properties were assessed to discover the determinants of cytotoxicity: (1) point-of-zero charge (PZC) (i.e., isoelectric point) described the surface charge of NPs in cytosolic and lysosomal compartments; (2) relative number of available binding sites on the NP surface quantified by X-ray photoelectron spectroscopy was used to estimate the probability of biomolecular interactions on the particle surface; (3) band-gap energy measurements to predict electron abstraction from NPs which might lead to oxidative stress and subsequent cell death; and (4) ion dissolution. Our results indicate that cytotoxicity is a function of particle surface charge, the relative number of available surface binding sites, and metal ion dissolution from NPs. These findings provide a physicochemical basis for both risk assessment and the design of safer nanomaterials.  相似文献   

15.
A batch study on the removal of As(III) and As(V) ions from contaminated water by biosorption using powdered Psidium guajava (Guava) leaf as biosorbent was carried out in the present work. FT-IR (Fourier transform infrared) and SEM (scanning electron microscopy) were used to characterize the surface of the biosorbent. The effect of sorption parameters such as pH, temperature (T c), adsorbent dose (D c), and contact time (t c) were studied. At optimum treatment conditions, the maximum uptake of 1.06 mg of As(III) per gram and 2.39 mg of As(V) per gram onto the surface of biosorbent were obtained. Langmuir and Freundlich isotherm models were examined for sorption equilibrium at various temperatures. The sorption isotherm was favorable with the Freundlich model with the experimental data. Furthermore, higher uptake kinetics was tested for the pseudo-first-order and pseudo-second-order models. The pseudo-second-order model appeared to be the more suitable model to describe arsenic biosorption. ΔG 0 values were negative at all temperatures, confirming the feasible and spontaneous nature of the biosorption process. Solvent desorption studies help in understanding the mechanism of the adsorption process and also to check the stability of the loaded/spent adsorbents. HCl was found to show maximum effectiveness in the desorption of both As(III) and As(V) with the comparison of other solvents.  相似文献   

16.
The polymeric functionalization of superparamagnetic iron oxides nanoparticles is developed for cancer targeting capability and magnetic resonance imaging. Here the nanoparticles (NP) are decorated through the adsorption of a polymeric layer around the particle surface for the formation of core-shell. The synthesized magnetic nanoparticles (MNPs) are conjugated with fluorescent dye, targeting ligand, and drug molecules for improvement of target specific diagnostic and possible therapeutics applications. In this investigation doxorubicin was loaded into the shell of the MNPs and release study was carried out at different pH. The core-shell structure of magnetic NP coated chitosan matrix was visualized by TEM observation. The cytotoxicity of these magnetic NPs is investigated using MTT assay and receptor mediated internalization by HeLa and NIH3T3 cells are studied by fluorescence microscopy. Moreover, compared with T2-weighted magnetic resonance imaging (MRI) in the above cells, the synthesized nanoparticles are showed stronger contrast enhancements towards cancer cells.  相似文献   

17.
With the ongoing commercialization of nanotechnology products, the increasing use of engineered nanoparticles (NPs) could lead potentially to environmental risks. This study investigated the dynamic influences of three iron-based NPs (Fe0, Fe3O4, and Fe2O3) applied into a red soil (RS) and a Wushan soil (WS) with different application rates (2 to 6 g kg?1) on soil physicochemical properties such as pH, dissolved organic carbon (DOC), available ammonium nitrogen (NH4 +-N), available phosphorus (AP), and enzymatic activities. The results showed that the addition of Fe0 NPs increased DOC and available NH4 +-N, but significantly decreased AP, while Fe3O4 and Fe2O3 NPs slightly reduced soil pH in both soils and significantly declined available NH4 +-N in the WS and AP in the RS. No significant difference was observed between the effects of Fe3O4 and Fe2O3 NPs on soil properties except AP in the RS. All iron-based NPs decreased the activities of urease and acid phosphatase in both soils. The effects on soil physicochemical properties, especially available NH4 +-N and AP induced by iron-based NPs, varied greatly with soil types. These results implied that cautions should be paid for the environmental application of iron-based NPs, especially iron oxide NPs in soils.  相似文献   

18.
Barley straw, an agricultural waste, was chemically modified and evaluated for the removal of emulsified oils from aqueous solution. The chemical modification was performed using NaOH and a cationic surfactant, hexadecylpyridinium chloride monohydrate (CPC). The surface textural and chemical properties of the surfactant modified barley straw (BMBS) were characterized by N2 adsorption, FT-IR, SEM and water soluble mineral content. The adsorption tests were carried out in batch adsorption system for removal of standard mineral oil (SMO) and canola oil (CO) from water. For both emulsified oils in wastewater, adsorption was found to be strongly related with solution pH. The isotherm study indicated that emulsified oil adsorption on BMBS could be fitted well with the Langmuir model other than Freundlich model. The maximum adsorption capacity for CO and SMO at 25 °C determined from the Langmuir isotherm is 613.3 and 584.2 mg g−1, respectively. Desorption tests in water solution show that oil is strongly bonded with adsorbent and desorption is only about 1–2% in 24 h.  相似文献   

19.
Abstract

The Grand Canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulation methods were used to investigate the adsorption and diffusion properties of CH4 and CO2 in montmorillonite slit-nanopores. It is found that, both CH4 and CO2 could adsorb closely onto the pore surface, while different adsorption states occur for CH4 and CO2, respectively, in montmorillonite slit-nanopores. Competitive adsorption of CO2 over CH4 exists in montmorillonite slit-nanopores, especially at the lower pressures, which is attributed to the different interaction intensity between the CH4–CO2 molecules and the pore surface. The diffusion coefficients of CH4 and CO2 both decrease with the enhanced pressures, while the CO2 has a relative weak diffusion coefficient comparing with CH4. A well displacement of the residual CH4 by CO2 in montmorillonite slit-nanopores was investigated, which is found that the displacement efficiency increases with the enhanced bulk pressures. It was determined that, the CO2 can be captured and reserved in the montmorillonite slit-nanopores during the displacement, and the sequestration amount of CO2 gets enhanced with the bulk pressure increasing. This study provides micro-behaviours of CH4 and CO2 in montmorillonite slit-nanopores, for the purpose to give out useful guidance for enhancing shale gas extraction by injecting CO2.  相似文献   

20.

In the present report, we focused on the detail study of the optical properties and structural characterization of the Ag NPs for the nanobioconjugate analysis and detection of the conformational structural change of the Hb. The detail optical and structural analysis of Ag NPs has been studied from UV–Vis absorption, emission spectrum, XRD, and HRTEM study. The proteins/Hb are attached immediately onto Ag NPs surface when NPs touch the biological fluids, forming protein corona (PC), which gives their biological identity. The NPs-PC bioconjugate is, more specifically, the true identity of NPs in the physiological world. The adsorption of Hb with Ag NP surfaces has been studied by monitoring the soret band and tryptophan band of Hb. The dynamics of the Hb adsorption on the Ag NPs showed the time constant of surface binding t1?=?5.79 min and 10.23 min and surface reorganization t2?=?500 min and 251.75 min with the use of small and large concentrations of Ag NPs, respectively. The absorption peak shape and size around the wavelength, λ ≈ 406.2 nm of the bioconjugate has been examined by Gaussian and Lorentz curve fitting analysis. The bioconjugate along with the PC formation has been analyzed by HRTEM images and DLS observations. The tertiary deformation of Hb and energy transfer efficiency connecting Ag NPs and Hb are discussed from the emission-quenching phenomenon. The change of the secondary structural elements (α-helix, β-sheets, intermolecular aggregates, intramolecular aggregates) of the bioconjugate has been analyzed from FTIR spectrum.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号