首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文用受体的放射性配基结合分析方法观察了C_3H小鼠胚胎成纤维细胞C_3H_(10)T1/2 CL8(简称NC_3H_(10))和~3H-TdR恶性转化的C_3H_(10)T1/2CL8(简称TC_3H_(10))的表皮生长因子受体(EGFR)。结果表明细胞恶性转化前后的EGFR都存在高亲和力和低亲和力两种结合位点,细胞恶性转化后能结合表皮生长因子的EGFR结合位点减少,Western blotting和受体的亲和交联分析表明EGFR的分子量为170kD,是单链多肽。  相似文献   

2.
Ricin belongs to the type II ribosome-inactivating proteins that depurinate the universally conserved α-sarcin loop of rRNA. The RNA N-glycosidase activity of ricin also largely depends on the ribosomal proteins that play an important role during the process of rRNA depurination. Therefore, the study of the interaction between ricin and the ribosomal elements will be better to understand the catalysis mechanism of ricin. The antibody 6C2 is a mouse monoclonal antibody exhibiting unusually potent neutralizing ability against ricin, but the neutralization mechanism remains unknown. Here, we report the 2.8 Å crystal structure of 6C2 Fab in complex with the A-chain of ricin (RTA), which reveals an extensive antigen-antibody interface that contains both hydrogen bonds and van der Waals contacts. The complementarity-determining region loops H1, H2, H3, and L3 form a pocket to accommodate the epitope on the RTA (residues Asp96–Thr116). ELISA results show that Gln98, Glu99, Glu102, and Thr105 (RTA) are the key residues that play an important role in recognizing 6C2. With the perturbation of the 6C2 Fab-RTA interface, 6C2 loses its neutralization ability, measured based on the inhibition of protein synthesis in a cell-free system. Finally, we propose that the neutralization mechanism of 6C2 against ricin is that the binding of 6C2 hinders the interaction between RTA and the ribosome and the surface plasmon resonance and pulldown results confirm our hypothesis. In short, our data explain the neutralization mechanism of mAb 6C2 against ricin and provide a structural basis for the development of improved antibody drugs with better specificity and higher affinity.  相似文献   

3.
Wang Y  Guo L  Zhao K  Chen J  Feng J  Sun Y  Li Y  Shen B 《Biotechnology letters》2007,29(12):1811-1816
So far, no specific therapeutic agent is available for the treatment of ricin intoxication. Here, VH and VL genes were cloned from a hybridoma cell line secreting anti-ricin mAb 4C13, which could neutralize the toxicity of ricin. A chimeric antibody, c4C13, containing 4C13 mAb variable region genes fused to human constant region genes (gamma 1, kappa), was constructed. C4C13 retained the binding activity and recognized the same, or a closely related, epitope as the original mouse antibody. Furthermore, c4C13 blocked ricin-induced cytotoxicity to SP2/0 cells. Compared with its parental mouse antibody, c4C13 will be safer when used in human body to reverse clinical ricin intoxication. Yugang Wang and Leiming Guo contributed equally to this work.  相似文献   

4.
目的 有效结合分子对接预测和表面等离子体共振实验评价技术,获得亲和力更强、序列最短的最优适配体。方法 针对前期筛选出的靶向蓖麻毒素的3条80 nt单链DNA适配体(L14、P3、L7),在明确各自二维随机区茎环序列与靶蛋白结合能力的基础上,以H-DOCK分子对接为指导,分别确定蓖麻毒素适配体随机区的最短结合单元,从而构建两端延长步进序列群,以表面等离子体共振技术测定序列群序列的亲和力和动力学参数,明确适配体的结合关键结构,从而筛选得到最优适配体。结果 3条全长适配体的随机区适配体L14r、P3r、L7r均可形成一定的茎环结构,其中L14r较L14的亲和力增强9倍、L7r增强2倍、P3r基本不变。对随机区适配体和蓖麻毒素进行分子对接,结果显示,L14r、P3r、L7r的对接分数值皆优于阴性序列40T,结合关键氨基酸个数分别为11、8、9个,存在距离小于5 ?的预测结合位点分别为20、12、15个,具有良好的与蓖麻毒素的结合能力。进一步明确了蓖麻毒素活性口袋所容纳的适配体最短结合单元L14rm、P3rm、L7rm的序列构成,在此基础上构建出两端延长步进序列群。针对该步进群,基于结合关键氨基酸个数、结合位点个数、对接得分等参数的变化和表面等离子体共振测定结果筛选出最优适配体。所获得的最优适配体L14rm、L7rm-2亲和力继续增强了1~2倍。结论 随机区适配体能有效地与蓖麻毒素结合,较之全长适配体亲和力更强,分子对接结合步进序列群设计,仅使用17条序列,便有效获得了3条最优适配体并明确其结合作用。3条结合蓖麻毒素的最优适配体——L14rm、P3r、L7rm-2的KD值分别为(64±30)、(167±19)、(120±1)nmol/L,亲和力提高到全长适配体的14、1、4倍。  相似文献   

5.
The Fv is the smallest antigen binding fragment of the antibody and is made of the variable domains of the light and heavy chains, V(L) and V(H), respectively. The 26-kDa Fv is amenable for structure determination in solution using multi-dimensional hetero-nuclear NMR spectroscopy. The human monoclonal antibody 447-52D neutralizes a broad spectrum of HIV-1 isolates. This anti-HIV-1 antibody elicited in an infected patient is directed against the third variable loop (V3) of the envelope glycoprotein (gp120) of the virus. The V3 loop is an immunodominant neutralizing epitope of HIV-1. To obtain the 447-52D Fv for NMR studies, an Escherichia coli bicistronic expression vector for the heterodimeric 447-52D Fv and vectors for single chain Fv and individually expressed V(H) and V(L) were constructed. A pelB signal peptide was linked to the antibody genes to enable secretion of the expressed polypeptides into the periplasm. For easy cloning of any antibody gene without potential modification of the antibody sequence, restriction sites were introduced in the pelB sequence and following the termination codon. A set of oligonucleotides that prime the leader peptide genes of all potential antibody human antibodies were designed as backward primers. The forward primers for the V(L) and V(H) were based on constant region sequences. The 447-52D Fv could not be expressed either by a bicistronic vector or as single chain Fv, probably due to its toxicity to Escherichia coli. High level of expression was obtained by individual expression of the V(H) and the V(L) chains, which were then purified and recombined to generate a soluble and active 447-52D Fv fragment. The V(L) of mAb 447-52D was uniformly labeled with 13C and 15N nuclei (U-13C/15N). Preliminary NMR spectra demonstrate that structure determination of the recombinant 447-52D Fv and its complex with V3 peptides is feasible.  相似文献   

6.
Wang X  Zhong P  Luo PP  Wang KC 《PloS one》2011,6(4):e19023
A Fab-like antibody binding unit, ccFv, in which a pair of heterodimeric coiled-coil domains was fused to V(H) and V(L) for Fv stabilization, was constructed for an anti-VEGF antibody. The anti-VEGF ccFv showed the same binding affinity as scFv but significantly improved stability and phage display level. Furthermore, phage display libraries in the ccFv format were constructed for humanization and affinity maturation of the anti-VEGF antibody. A panel of V(H) frameworks and V(H)-CDR3 variants, with a significant improvement in affinity and expressibility in both E. coli and yeast systems, was isolated from the ccFv phage libraries. These results demonstrate the potential application of the ccFv antibody format in antibody engineering.  相似文献   

7.
In our previous study, a kind of novel hybrid immunoglobulin (Ig)-binding proteins (IBPs) was obtained with the characteristic structure of alternately arranged Finegoldia magna (formerly Peptostreptococcus magnus) protein L (P. magnus protein L, PpL) B3 domain (B3) and Staphylococcal protein A (SpA) D domain (D). In this study, two representative molecules of these novel proteins, LD3 (B3-D-B3) and LD5 (B3-D-B3-D-B3) (LD3/5), showed substantially higher affinity for IgG-F(ab')2, IgM, and IgA than 4L (B3-B3-B3-B3) or SpA, which were also demonstrated by surface plasmon resonance detection. Further, LD5 showed much stronger binding to single-chain Fv (scFv) KM38 (V(H)3-V(kappa)I) than to KM41 (V(H)1-V(kappa)III) or KM36 (V(H)3-V(kappa)III). Competitive inhibition studies showed that 4L alone or in combination with SpA (4L + SpA) was a weaker inhibitor than LD3/5 in inhibiting LD3/5's binding to IgG-F(ab')2, IgM, or IgA. The computer modeling suggested that the B3-D arrangement in LD3/5 could simultaneously bind to V(H)3 and V(kappa). Thus, our results indicated for the first time that alternate arrangement of B3 and D domains creates synergistic double-site binding to V(H)3 and V(kappa) regions of fragment of antigen binding. The different competitive inhibition pattern of binding of LD5 to scFv KM38 by 4L + SpA suggested strict use of antibody conformation for this simultaneous double-site binding. The demonstration of this novel binding property would promote to achieve the designed hybrid IBPs for useful immunological applications.  相似文献   

8.
The therapeutic efficacy of whole ricin, or recombinant ricin A chain, coupled to a monoclonal antibody that reacts with the idiotype of the surface IgM expressed on guinea pig L2C lymphoblasts, was assessed. In vitro studies were done to characterize the immunotoxins (IT) and to demonstrate their specificity before use in vivo. The concentration of whole ricin IT (M6-Ricin) that inhibited protein synthesis by 50% (IC50) in L2C cells was 1.4 X 10(-9) M, in a 5-hr assay, in the presence of lactose to block non-antibody-directed toxicity. M6-Ricin did not inhibit protein synthesis in two control guinea pig cell lines that did not express the idiotype, nor did a whole ricin IT prepared with an isotype-matched monoclonal antibody of irrelevant specificity inhibit protein synthesis in L2C cells. Two recombinant ricin A chain IT, which differed from one another by a factor of 2 to 3 in the number of A chains conjugated per antibody molecule, were less effective in vitro than M6-Ricin (IC50 of greater than 5 X 10(-8) M). For in vivo experiments, the IT were given by the i.p. route 24 hr after the i.p. inoculation of 1 X 10(5) L2C cells. The highest doses of M6-Ricin and M6-Ricin A chain IT tested, 30 micrograms/kg and 3000 micrograms/kg, respectively, were within fourfold to fivefold of their maximum tolerated doses; no deaths or ill effects due to ricin toxicity were noted. These doses increased the median survival time of L2C-bearing guinea pigs to 31 to 34 days, compared with 15 days for untreated animals. This magnitude of increase in survival indicates that 99.999% (5 logs) of injected tumor cells were eliminated, thus accounting for the 12% long-term survival rate obtained. Median survival times for guinea pigs treated with 30 micrograms/kg of the A chain IT were 18 and 21 days for the two conjugates tested, and the median survival for guinea pigs treated with 3000 micrograms/kg of unconjugated antibody was 18 days. Our data demonstrate that recombinant A chain IT are active in vivo and that the B chain of ricin can potentiate IT activity in vivo. Although the potency differs by 100-fold, the therapeutic index of the intact ricin IT is similar to that of the ricin A chain IT.  相似文献   

9.
Single-chain Fv fragments (scFvs) against a corticosteroid, 11-deoxycortisol (11-DC), have been generated as a template antibody fragment from which a comprehensive mutated antibody library containing various anti-steroid antibodies could be constructed. The cDNAs encoding variable heavy (V(H)) and light (V(L)) domains of a mouse anti-11-DC antibody (CET-M8), were amplified by RT-PCR, combined via a common linker to construct the sequence of 5'-V(H)-(Gly(4)Ser)(3)-V(L)-3', and cloned into a phagemid vector, pEXmide 5. The phage clones exhibiting binding activity to 11-DC were isolated after single panning against a hapten-immobilizing immunotube. The scFv gene in one of these clones was reamplified to introduce the ochre codons, and then expressed in the bacterial periplasm as the soluble antibody fragment. Two different scFvs (#6 and #12) were cloned, whose binding characteristics were examined by a radioimmunoassay using a tritium-labeled 11-DC. Both of them showed high affinity (K(a)=1.3x10(10)M(-1)) and practical specificity (cross-reactivity: cortisol, <0.2%; cortisone, <0.3%) to 11-DC, and furthermore, strong reactivity with an anti-idiotype antibody which recognizes the paratope of CET-M8. These results suggest that the present scFvs retain the three-dimensional structure of the paratope of the original monoclonal antibody.  相似文献   

10.
Antibody engineering provides an excellent tool for the generation of human immunotherapeutics for the targeted treatment of solid tumours. We have engineered and selected a completely human antibody to epithelial glycoprotein-2 (EGP-2), a transmembrane glycoprotein present on virtually all human simple epithelia and abundantly expressed on a variety of human carcinomas. We chose to use the procedure of "guided selection" to rebuild a high-affinity murine antibody into a human antibody, using two consecutive rounds of variable domain shuffling and phage library selection. As a starting antibody, the murine antibody MOC-31 was used. After the first round of guided selection, where the V(H) of MOC-31 was combined in Fab format with a human V(L)C(L) library, a small panel of human light chains was identified, originating from a segment of the VkappaIII family, whereas the MOC-31 V(L) is more homologous to the VkappaII family. Nevertheless, one of the chimaeric Fabs, C3, displayed an off-rate similar to MOC-31 scFv. Combining the V(L) of C3 with a human V(H) library, while retaining the V(H) CDR3 of MOC-31, clones were selected using human V(H) genes originating from the rarely used V(H)7 family. The best clone, 9E, shows over 13 amino acid mutations from the germline sequence, has an off-rate comparable to the original antibody and specifically binds to the "MOC-31"-epitope on EGP-2 in specificity and competition ELISA, FACS analysis and immunohistochemistry. In both V(L) and V(H) of antibody 9E, three germline mutations were found creating the MOC-31 homologue residue. Structural modelling of both murine and human antibodies reveals that one of the germline mutations, 53Y in V(H) CDR2, is likely to be involved in antigen binding. We conclude that, although they may bind the same epitope and have similar binding affinity to the antigen as the original murine antibody, human antibodies derived by guided selection unlike CDR-grafted antibodies, may retain only some of the original key elements of the binding site chemistry. The selected human anti-EGP-2 antibody will be a suitable reagent for tumour targeting.  相似文献   

11.
12.
An antibody variable domain fragment (Fv) is a candidate for a specific inhibitor of the hepatitis C virus (HCV) NS3 protease. Here we report the functional characterization of the Fv of antibody 8D4, which is specific for the active site of the HCV NS3 protease domain. The variable fragments of 8D4 in the forms of Fv and scFv (VH-(G(4)S)(3)-VL) were expressed as insoluble fractions in the periplasm of Escherichia coli, and were subsequently solubilized, purified under denaturing conditions, and refolded. The Fv had an inhibition profile almost identical to that of the parent IgG, with an IC(50) of 71.3 nM, whereas the scFv had a greatly decreased affinity to NS3 and was the same as the isolated VH fragment. To date, this is the first report of an antibody Fv fragment specific for the HCV NS3 protease domain, aimed at designing potent protease inhibitors and antiviral drugs.  相似文献   

13.
The catalytic site for C4 of C1s has been presumed to consist of a C4-binding domain and a proteolytic domain. A mAb to C1s, M81, blocked C4 activation and C4 binding to C1s. M81 recognized the H chain of C1s. Using M81 as a probe, we tried to define C4-binding site on C1s. Plasmin digestion of C1s generated four products of Mr 58,000 (P1), 48,000 (P2), 37,000 (P3), and 27,000 (P4). These products, except for P2, all possessed a 26,000-Da H chain fragment (26k-HF) connected to variable-sized L chain pieces. 26k-HF alone had an ability to interact with M81. Amino-terminal amino acid analysis of 26k-HF mapped the epitope for M81 to domain IV and/or V of gamma-domain of C1s. The gamma-domain therefore contains the C4-binding site. The confirm and further elucidate the role of the C4-binding site for C4, we used a substrate-blotting technique in which labeled C4 was incubated with nitrocellulose membrane-fixed C1s and its fragments. C4 was successfully blotted onto C1s and P1, but not P2-P4; i.e., further degradation of the L chain led to the loss of C4-binding. During the incubation, most of the added C4 was converted to C4b. The binding was augmented, if the proteolytic activity of C1s and P1 was blocked, so that the added C4 remained intact. Although C4b also bound to C1s and P1, its binding was less effective and abolished by the addition of cold C4. Based on these results, the gamma-domain and the L chain constitute the catalytic site of C1s to activate C4 to C4b. Moreover, the generated C4b, although it still has weak affinity for C1s, can be replaced by newly coming C4.  相似文献   

14.
The relative affinities of various muscarinic drugs in the antagonist ([3H]N-methyl scopolamine ([3H]NMS)) and agonist ([3H]Oxotremorine-m ([3H]OXO-M)) binding assays using a mixture of tissues containing M1–M4 receptor subtypes have been determined. [3H]NMS bound with high affinity (Kd=25±5.9 pM; n=3) and to a high density (Bmax=11.8±0.025 nmol/g wet weight) of muscarinic receptors. [3H]OXO-M appeared to bind to two binding sites with differing affinities (Kd1=2.5±0.1 nM; Kd2=9.0±4.9 M; n=4) and to a different population of binding sites (Bmax1=5.0±0.26 nmol/g wet weight; Bmax2=130±60 nmol/g wet weight). Well known antagonists exhibited high affinity for [3H]NMS binding but a lower affinity for [3H]OXO-M binding. The opposite was true for acetylcholine and other known agonists. However, pilocarpine and McN-A-343 had similar affinities for sites labeled by both radioligands. Using the ratios of antagonist-to-agonist binding affinities, it was possible to group compounds into apparently distinct full agonist (ratios of 180–665; e.g. carbachol, muscarine, OXO-M, OXO-S and arecoline), partial agonist (ratios of 14–132; e.g. McN-A-343, pilocarpine, aceclidine, bethanechol, OXA-22 and acetylcholine) and antagonist (ratios of 0.22–1.9; e.g. atropine, NMS, pirenzepine, methoctramine, 4-DAMP and p-fluorohexahydrosialo-difenidol) classes. These data suggest that the NMS/OXO-M affinity ratios using a mixture of M1–M4 muscarinic receptors may be a useful way to screen and group a large number of compounds into apparent agonist, partial agonist, and antagonist classes of cholinergic agents.  相似文献   

15.
Kobayashi N  Kato Y  Oyama H  Taga S  Niwa T  Sun P  Ohtoyo M  Goto J 《Steroids》2008,73(14):1485-1499
A single-chain Fv fragment (scFv) against estradiol-17beta (E(2)) was generated to begin the construction of a library of various mutated anti-steroid antibodies with an improved affinity and/or specificity. A hybridoma clone secreting a specific anti-E(2) antibody (Ab#E4-4) was established by the cell fusion using splenocytes from a mouse immunized with an immunogenic E(2)-carrier conjugate. DNA fragments encoding the variable heavy and light domains (V(H) and V(L)) of the Ab#E4-4 were cloned and combined to give the scFv gene fragment encoding the sequence 5'-V(H)-(GGGGS)(3)-V(L)-3'. Compared to the Ab#E4-4 Fab fragment, soluble scFv (scFv#E4-4) protein showed a similar affinity to E(2) (K(a)=8.6x10(7)M(-1)) and a similar cross-reaction profile. To further study the fundamentals for creating a comprehensive library of mutated scFvs, the scFvV(H) and V(L) genes were amplified using error-prone PCR conditions and the frequency and pattern of incorporated mutations were investigated. For this, regular Taq polymerase was used in the presence of unequal concentrations of dNTPs. At 1.0mM MnCl(2), the error frequency reached to 8.5% and 11% for the V(H) and V(L) respectively, although a significant transition/transversion bias was observed. ScFv#E4-4 and the mutated polyclonal scFvs were then displayed on filamentous phage under various packaging conditions. Cultivation of the transformed bacteria was more suitable at 25 degrees C than at higher temperatures for the packaging of scFv-bearing phagemid particles. Based on these experimental conditions, an scFv-displaying phage library, each scFv member in which has mutated complementarity-determining region (CDR) H2, H3, L1, and L3, was constructed. A soluble scFv clone (scFv#m1-e7) with a mutated amino acid (I-->V) in CDR L1, isolated from this library, showed threefold higher affinity (K(a)=2.6 x 10(8)M(-1)) than that of scFv#4-4.  相似文献   

16.
This study provided a pharmacological evaluation of prostaglandin binding to bovine luteal plasma membrane. It was found that [3H]PGF2 alpha' [3H]PGE2' [3H]PGE1 and [3H]PGD2 all bound with high affinity to luteal plasma membrane but had different specificities. Binding of [3H]PGF2 alpha and [3H]PGD2 was inhibited by non-radioactive PGF2 alpha (IC50 values of 21 and 9 nmol l-1, respectively), PGD2 (35 and 21 nmol l-1), and PGE2 (223 and 81 nmol l-1), but not by PGE1 (> 10,000 and 5616 nmol l-1). In contrast, [3H]PGE1 was inhibited by non-radioactive PGE1 (14 nmol l-1) and PGE2 (7 nmol l-1), but minimally by PGD2 (2316 nmol l-1) and PGF2 alpha (595 nmol l-1). Binding of [3H]PGE2 was inhibited by all four prostaglandins, but slopes of the dissociation curves indicated two binding sites. Binding of [3H]PGE1 was inhibited, resulting in low IC50 values, by pharmacological agonists that are specific for EP3 receptor and possibly EP2 receptor. High affinity binding of [3H]PGF2 alpha required a C15 hydroxyl group and a C1 carboxylic acid that are present on all physiological prostaglandins. Specificity of binding for the FP receptor depended on the C9 hydroxyl group and the C5/C6 double bond. Alteration of the C11 position had little effect on affinity for the FP receptor. In conclusion, there is a luteal EP receptor with high affinity for PGE1' PGE2' agonists of EP3 receptors, and some agonists of EP2 receptors. The luteal FP receptor binds PGF2 alpha' PGD2 (high affinity), and PGE2 (moderate affinity) but not PGE1 due to affinity determination by the C9 and C5/C6 moieties, but not the C11 moiety.  相似文献   

17.
This work aimed to evaluate a method to detect the residual ricin in animal tissues. Immunoprecipitation and sandwich enzyme-linked immunosorbent assay (ELISA) were used to detect ricin in the tissues of intoxicated mice. The monoclonal antibodies (Mabs) 4C13 and 3D74 were used to assay the whole ricin molecules via sandwich ELISA. Mab 4C13 was conjugated with Sepharose 4B to capture ricin or ricin A chain by immunoprecipitation. Mice injected intravenously with ricin at the dosage of 5 μg/mouse were killed at different time points after intoxication. The serum, liver, kidney, lung, and intestine were harvested. High levels of ricin were found in serum and liver samples at each poisoning time point by sandwich ELISA, suggesting the possibility of determining ricin intoxication by detecting residual ricin in the serum. However, this method turned out to be ineffective for examining ricin in the kidney, lung, and intestine of poisoned mice. Although the same tissue samples of intoxicated mice were analyzed by immunoprecipitation, positive bands were found. This indicated that some components in the kidney, lung, and intestine could bind with ricin and interfere in its binding activity with the coated antibody. Immunoprecipitation could be used to measure the existence of ricin in these samples.  相似文献   

18.
The Fv fragment, which is a smallest antigen-binding unit of immunoglobulin, has been used for a 1H-15N shift correlation NMR study of the dynamical structure of the antibody combining site. Fv has been prepared by clostripain digestion of a mouse anti-dansyl IgG2a monoclonal antibody that lacks the entire CH1 domain. We have previously reported that of the six hypervariable regions, three each from the heavy chain (H1, H2, and H3) and the light chain (L1, L2, and L3), H3 is primarily responsible for the antigen binding in the anti-dansyl Fv fragment. The backbone amide nitrogens of all non-proline amino acid residues in H3 have been multiply labeled with 15N. [15N]T2 relaxation times and hydrogen-deuterium exchange rates of the amide groups of the main chain were measured in the absence and presence of epsilon-dansyl-L-lysine (DNS-Lys). It has been shown that (1) in the absence of DNS-Lys H3 displays a significant degree of internal motion and (2) antigen binding induces a significant change in the dynamical structure of H3.  相似文献   

19.
20.
The B subunit (RTB) of ricin toxin is a galactose (Gal)−/N-acetylgalactosamine (GalNac)-specific lectin that mediates attachment, entry, and intracellular trafficking of ricin in host cells. Structurally, RTB consists of two globular domains with identical folding topologies. Domains 1 and 2 are each comprised of three homologous sub-domains (α, β, γ) that likely arose by gene duplication from a primordial carbohydrate recognition domain (CRD), although only sub-domains 1α and 2γ retain functional lectin activity. As part of our ongoing effort to generate a comprehensive B cell epitope map of ricin, we report the characterization of three new RTB-specific monoclonal antibodies (mAbs). All three mAbs, JB4, B/J F9 and C/M A2, were initially identified based on their abilities to neutralize ricin in a Vero cell cytotoxicty assay and to partially (or completely) block ricin attachment to cell surfaces. However, only JB4 proved capable of neutralizing ricin in a macrophage apoptosis assay and in imparting passive immunity to mice in a model of systemic intoxication. Using a combination of techniques, including competitive ELISAs, pepscan analysis, differential reactivity by Western blot, as well as affinity enrichment of phage displayed peptides, we tentatively localized the epitopes recognized by the non-neutralizing mAbs B/J F9 and C/M A2 to sub-domains 2α and 2β, respectively. Furthermore, we propose that the epitope recognized by JB4 is within sub-domain 2γ, adjacent to RTB’s high affinity Gal/GalNAc CRD. These data suggest that recognition of RTB’s sub-domains 1α and 2γ are critical determinants of antibody neutralizing activity and protective immunity to ricin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号