首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The generation of toxic non-native protein conformers has emerged as a unifying thread among disorders such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Atomic-level detail regarding dynamical changes that facilitate protein aggre- gation, as well as the structural features of large-scale ordered aggregates and soluble non-native oligomers, would contribute signifi- cantly to current understanding of these complex phenomena and offer potential strategies for inhibiting formation of cytotoxic species. However, experimental limitations often preclude the acquisition of high-resolution structural and mechanistic information for aggregating systems. Computational methods, particularly those combine both aU-atom and coarse-grained simulations to cover a wide range of time and length scales, have thus emerged as crucial tools for investigating protein aggregation. Here we review the current state of computational methodology for the study of protein self-assembly, with a focus on the application of these methods toward understanding of protein aggregates in human neurodegenerative disorders.  相似文献   

2.
The formation of paired helical filaments arising from the short hexapeptide in the third repeat of tau protein, 306VQIVYK311, is critical for tau polymerisation. The atomic structure of the VQIVYK oligomer has revealed a dry, tightly self-complementing structure between the neighbouring β-sheet layers, termed as ‘steric zipper’. In this study, several molecular dynamics simulations with all-atom explicit water were conducted to investigate the structural stability and aggregation behaviour of the VQIVYK peptide with various sizes and its single alanine replacement mutations. Our results indicate that the van der Waals interaction between side chains of Q2, the π–π stacking interaction between aromatic rings of Y5, and the electrostatic interaction between K6 and the C-terminus play an important role in stabilising the VQIVYK oligomers within the same β-sheet layer, while hydrophobic steric zipper involving V1, I3 and Y5 is responsible for holding the neighbouring β-sheet layers together. The twisted angles of the VQIVYK oligomers were also analysed and shown to be size dependent. The present results not only provide atomic insights into amyloid formation, but are also helpful for designing new or modified capping peptides and inhibitors to prevent fibril formation of the VQIVYK peptide from tau protein.  相似文献   

3.
Huntington disease is a neurodegenerative disorder caused by the expansion of polyglutamine (polyQ) at the N-terminal of the huntingtin exon 1 protein. The detailed structure and the mechanism behind this aggregation remain unclear and it is assumed that the polyQ undergoes a conformational transition to the β-sheet structure when it aggregates. Investigating the misfolding of polyQ facilitates the determination of the molecular mechanism of aggregation and can potentially help in developing a novel approach to inhibit polyQ aggregation. Moreover, the flanking sequences of the polyQ region play a vital role in structural changes and the aggregation mechanism. We performed all-atom molecular dynamics simulations to gain structural insights into the aggregation mechanism using eight different models with glutamine repeat lengths Q27, Q27P11, Q34, Q35, Q36, Q40, Q50, and Q50P11. In the models without flanking polyPs, we noticed that the transformation of a random coil to β-sheet occurs when the number of Q increases. We also found that the flanking polyPs prevent aggregation by decreasing the probability of forming a β-sheet structure. When polyQ length increases, the 17 N-terminal flanking residues are more likely to adopt a β-sheet conformation from α-helix and coil. From our simulations, we suggest that at least 34 glutamines are required for initiating aggregation and 40 residues length is critical for the aggregation of huntingtin exon 1 protein for disease onset. This study provides structural insights into misfolding and the role of flanking sequences in huntingtin aggregation which will further help in developing therapeutic strategies for Huntington's disease.  相似文献   

4.
Molecular dynamics simulations were used to investigate the aggregation of two partially overlapped graphene sheets in hexane, dodecane and eicosane. When partially overlapped graphene sheets are adjacent to one another, they will expel the adsorbed layers of the solvent molecules on the graphene surface, and the amount of overlap will increase. When the overlapped regions of the graphene sheets are separated by solvent molecules, they cannot expel the adsorption layers between them, and so the sheets remain separated. The driving force for aggregation is the van der Waals interaction between the two graphene sheets, while the van der Waals interaction between the graphene sheets and the solvent molecules inhibits graphene aggregation. The diffusion rate of the hydrocarbon molecules with shorter chain lengths is higher. Thus, they diffuse faster during graphene aggregation, which leads to a higher rate of graphene overlapping in the shorter hydrocarbons. This work provides useful insights into graphene aggregation in linear hydrocarbon solvents of varying lengths at the nanoscale.  相似文献   

5.
为了分析LITAF、RAB7、LMNA和MTMR2基因在中国人腓骨肌萎缩症(Charcot-Marie-Tooth disease, CMT)的突变特点, 文章分别应用PCR结合DNA序列分析方法和PCR-单链构象多态性(PCR-SSCP)结合DNA序列分析方法对6个常染色体显性遗传家系先证者和27个散发病例进行LITAF和RAB7基因突变分析; 应用PCR-SSCP结合DNA序列分析方法对14个常染色体遗传的CMT家系先证者和27个散发患者进行LMNA和MTMR2基因突变分析。结果发现: LITAF基因c.269G→A、c.274A→G序列变异和LMNA基因c.1243G→A、c.1910C→T序列变异, 未发现RAB7和MTMR2基因的序列变异。其中LITAF基因c.269G→A、LMNA基因c.1243G→A和c.1910C→T为新发现的单核苷酸多态; LITAF基因c.274A→G为已知多态。说明LITAF、RAB7、LMNA和MTMR2基因突变在中国人CMT患者中罕见。  相似文献   

6.
Stefan Auer  Dimo Kashchiev 《Proteins》2010,78(11):2412-2416
Under favorable conditions, many proteins can assemble into macroscopically large aggregates such as the amyloid fibrils that are associated with Alzheimer's, Parkinson's, and other neurological and systemic diseases. The overall process of protein aggregation is characterized by initial lag time during which no detectable aggregation occurs in the solution and by maximal aggregation rate at which the dissolved protein converts into aggregates. In this study, the correlation between the lag time and the maximal rate of protein aggregation is analyzed. It is found that the product of these two quantities depends on a single numerical parameter, the kinetic index of the curve quantifying the time evolution of the fraction of protein aggregated. As this index depends relatively little on the conditions and/or system studied, our finding provides insight into why for many experiments the values of the product of the lag time and the maximal aggregation rate are often equal or quite close to each other. It is shown how the kinetic index is related to a basic kinetic parameter of a recently proposed theory of protein aggregation. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
8.
9.
Misfolding and aggregation of Cu, Zn Superoxide Dismutase (SOD1) is often found in amyotrophic lateral sclerosis (ALS) patients. The central apo SOD1 barrel was involved in protein maturation and pathological aggregation in ALS. In this work, we employed atomistic molecular dynamics (MD) simulations to study the conformational dynamics of SOD1barrel monomer in different concentrations of trifluoroethanol (TFE). We find concentration dependence unusual structural and dynamical features, characterized by the local unfolding of SOD1barrel. This partially unfolded structure is characterized by the exposure of hydrophobic core, is highly dynamic in nature, and is the precursor of aggregation seen in SOD1barrel. Our computational studies supports the hypothesis of the formation of aggregation ‘building blocks’ by means of local unfolding of apo monomer as the mechanism of SOD1 fibrillar aggregation. The non-monotonic TFE concentration dependence of protein conformational changes was explored through simulation studies. Our results suggest that altered protein conformation and dynamics within its structure may underlie the aggregation of SOD1 in ALS.  相似文献   

10.
Mutations in the fused in sarcoma/translocated in liposarcoma (FUS/TLS) gene have been associated with amyotrophic lateral sclerosis (ALS). FUS-positive neuropathology is reported in a range of neurodegenerative diseases, including ALS and fronto-temporal lobar degeneration with ubiquitin-positive pathology (FTLD-U). To examine protein aggregation and cytotoxicity, we expressed human FUS protein in yeast. Expression of either wild type or ALS-associated R524S or P525L mutant FUS in yeast cells led to formation of aggregates and cytotoxicity, with the two ALS mutants showing increased cytotoxicity. Therefore, yeast cells expressing human FUS protein recapitulate key features of FUS-positive neurodegenerative diseases. Interestingly, a significant fraction of FUS expressing yeast cells stained by propidium iodide were without detectable protein aggregates, suggesting that membrane impairment and cellular damage caused by FUS expression may occur before protein aggregates become microscopically detectable and that aggregate formation might protect cells from FUS-mediated cytotoxicity. The N-terminus of FUS, containing the QGSY and G rich regions, is sufficient for the formation of aggregates but not cytotoxicity. The C-terminal domain, which contains a cluster of mutations, did not show aggregation or cytotoxicity. Similar to TDP-43 when expressed in yeast, FUS protein has the intrinsic property of forming aggregates in the absence of other human proteins. On the other hand, the aggregates formed by FUS are thioflavin T-positive and resistant to 0.5% sarkosyl, unlike TDP-43 when expressed in yeast cells. Furthermore, TDP-43 and FUS display distinct domain requirements in aggregate formation and cytotoxicity.  相似文献   

11.
Additives are widely used to suppress aggregation of therapeutic proteins. However, the molecular mechanisms of effect of additives to stabilize proteins are still unclear. To understand this, we herein perform molecular dynamics simulations of lysozyme in the presence of three commonly used additives: arginine, lysine, and guanidine. These additives have different effects on stability of proteins and have different structures with some similarities; arginine and lysine have aliphatic side chain, while arginine has a guanidinium group. We analyze atomic contact frequencies to study the interactions of the additives with individual residues of lysozyme. Contact coefficient, quantified from contact frequencies, is helpful in analyzing the interactions with the guanidine groups as well as aliphatic side chains of arginine and lysine. Strong preference for contacts to the additives (over water) is seen for the acidic followed by polar and the aromatic residues. Further analysis suggests that the hydration layer around the protein surface is depleted more in the presence of arginine, followed by lysine and guanidine. Molecular dynamics simulations also reveal that the internal dynamics of protein, as indicated by the lifetimes of the hydrogen bonds within the protein, changes depending on the additives. Particularly, we note that the side-chain hydrogen-bonding patterns within the protein differ with the additives, with several side-chain hydrogen bonds missing in the presence of guanidine. These results collectively indicate that the aliphatic chain of arginine and lysine plays a critical role in the stabilization of the protein.  相似文献   

12.
The reliable identification of beta-aggregating stretches in protein sequences is essential for the development of therapeutic agents for Alzheimer's and Parkinson's diseases, as well as other pathological conditions associated with protein deposition. Here, a model based on physicochemical properties and computational design of beta-aggregating peptide sequences is shown to be able to predict the aggregation rate over a large set of natural polypeptide sequences. Furthermore, the model identifies aggregation-prone fragments within proteins and predicts the parallel or anti-parallel beta-sheet organization in fibrils. The model recognizes different beta-aggregating segments in mammalian and nonmammalian prion proteins, providing insights into the species barrier for the transmission of the prion disease.  相似文献   

13.
Witham S  Takano K  Schwartz C  Alexov E 《Proteins》2011,79(8):2444-2454
Large-scale next generation resequencing of X chromosome genes identified a missense mutation in the CLIC2 gene on Xq28 in a male with X-linked intellectual disability (XLID) and not found in healthy individuals. At the same time, numerous nsSNPs (nonsynonomous SNP) have been reported in the CLIC2 gene in healthy individuals indicating that the CLIC2 protein can tolerate amino acid substitutions and be fully functional. To test the possibility that p.H101Q is a disease-causing mutation, we performed in silico simulations to calculate the effects of the p.H101Q mutation on CLIC2 stability, dynamics, and ionization states while comparing the effects obtained for presumably harmless nsSNPs. It was found that p.H101Q, in contrast with other nsSNPs, (a) lessens the flexibility of the joint loop which is important for the normal function of CLIC2, (b) makes the overall 3D structure of CLIC2 more stable and thus reduces the possibility of the large conformational change expected to occur when CLIC2 moves from a soluble to membrane form, and (c) removes the positively charged residue, H101, which may be important for the membrane association of CLIC2. The results of in silico modeling, in conjunction with the polymorphism analysis, suggest that p.H101Q may be a disease-causing mutation, the first one suggested in the CLIC family.  相似文献   

14.
15.
The binding free energy difference for the Gly-169 → Ala-169 (G169A) mutation in subtilisin BPN′ complexed with a tripeptide substrate analogue is explored using the thermodynamic integration approach. The structure of the mutant enzyme–substrate complex obtained from free energy simulation is in good agreement with experimental X-ray refinement. The near perfect reversibility is obtained in the present work for ensuring the correctness of the free energy calculations. The results of the binding free energy difference are close to similar experimental data. © 1993 Wiley-Liss, Inc.  相似文献   

16.
Alterations in the local dynamics of Cu/Zn Superoxide dismutase (SOD1) due to mutations affect the protein folding, stability, and function leading to misfolding and aggregation seen in amyotrophic lateral sclerosis (ALS). Here, we study the structure and dynamics of the most devastating ALS mutation, A4V SOD1 in aqueous trifluoroethanol (TFE) through experiments and simulation. Far‐UV circular dichroism (CD) studies shows that TFE at intermediate concentrations (~15% ‐ 30%) induce partially unfolded β‐sheet‐rich extended conformations in A4V SOD1 which subsequently aggregates. Molecular dynamics (MD) simulation results shows that A4V SOD1 increases local dynamics in the active site loops that leads to the destabilization of the β‐barrel and loss of hydrophobic contacts, thus stipulating a basis for aggregation. Free energy landscape (FEL) and essential dynamics (ED) analysis demonstrates the conformational heterogeneity in A4V SOD1. Our results thus shed light on the role of local unfolding and conformational dynamics in aggregation of SOD1.  相似文献   

17.
18.
The biogenesis of mitochondrial matrix proteins involves the translocase of the outer membrane, the presequence translocase of the inner membrane and the presequence translocase-associated motor. The mitochondrial heat shock protein 70 (mtHsp70) forms the central core of the motor. Recent studies led to the identification of Zim17, a mitochondrial zinc finger motif protein that interacts with mtHsp70. Different views have been reported on the localization of Zim17 in the mitochondrial inner membrane or matrix. Depletion of Zim17 impairs several critical mitochondrial processes, leading to inhibition of protein import, defects of Fe/S protein biogenesis and aggregation of Hsp70s in the matrix. Additionally, we found that inactivation of Zim17 altered the morphology of mitochondria. These pleiotropic effects raise the question of the specific function of Zim17 in mitochondria. Here, we report that Zim17 is a heat shock protein of the mitochondrial matrix that is loosely associated with the inner membrane. To address the function of Zim17 in organello, we generated a temperature-sensitive mutant allele of the ZIM17 gene in yeast. Upon a short-term shift of the yeast mutant cells to a non-permissive temperature, matrix Hsp70s aggregated while protein import, Fe/S protein activity and mitochondrial morphology were not, or only mildly, affected. Only after a long-term shift to non-permissive temperature, were strong defects in protein import, Fe/S protein activity and mitochondrial morphology observed. These findings suggest that the heat shock protein Zim17 plays a specific role in preventing protein aggregation in the mitochondrial matrix, and that aggregation of Hsp70s causes pleiotropic effects on protein biogenesis and mitochondrial morphology.  相似文献   

19.
Various posttranslational modifications like hyperphosphorylation, O-GlcNAcylation, and acetylation have been attributed to induce the abnormal folding in tau protein. Recent in vitro studies revealed the possible involvement of N-glycosylation of tau protein in the abnormal folding and tau aggregation. Hence, in this study, we performed a microsecond long all atom molecular dynamics simulation to gain insights into the effects of N-glycosylation on Asn-359 residue which forms part of the microtubule binding region. Trajectory analysis of the stimulations coupled with essential dynamics and free energy landscape analysis suggested that tau, in its N-glycosylated form tends to exist in a largely folded conformation having high beta sheet propensity as compared to unmodified tau which exists in a large extended form with very less beta sheet propensity. Residue interaction network analysis of the lowest energy conformations further revealed that Phe378 and Lys353 are the functionally important residues in the peptide which helped in initiating the folding process and Phe378, Lys347, and Lys370 helped to maintain the stability of the protein in the folded state.  相似文献   

20.
Integrin-linked kinase (ILK) is an evolutionarily conserved Ser/Thr protein kinase, involved in many physiological functions such as signal transduction, actin rearrangement, cell proliferation, migration, polarisation, angiogenesis and apoptosis. An increased expression of ILK is associated with different cancers and thus considered as an attractive target for cancer therapy. We have successfully cloned, expressed and purified the kinase domain (193–446 residues) of ILK. To see the effect of pH on the structure and conformation, we performed circular diachroism, fluorescence and absorbance measurements in a wide range of pH conditions. We observed that within the range of pH 7.5–11.0, ILK193–446 maintains its both secondary and tertiary structures. While visible aggregates were observed under the acidic pH 2.0–5.5 conditions, in order to complement these observations, we have performed molecular dynamics simulations of this kinase domain by mimicking diverse pH conditions which enabled us to see conformational preferences of the protein under such conditions. A significant correlation between the spectroscopic and molecular dynamics simulation was observed. These findings are useful to understand the conformation of ILK protein under certain pH condition which may be further implicated in the drug design and discovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号