首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many algae have immense capability to sorb metals, and there is considerable potential for using them to treat wastewaters. Metal sorption involves binding on the cell surface and to intracellular ligands. The adsorbed metal is several times greater than intracellular metal. Carboxyl group is most important for metal binding. Concentration of metal and biomass in solution, pH, temperature, cations, anions and metabolic stage of the organism affect metal sorption. Algae can effectively remove metals from multi-metal solutions. Dead cells sorb more metal than live cells. Various pretreatments enhance metal sorption capacity of algae. CaCl2 pretreatment is the most suitable and economic method for activation of algal biomass. Algal periphyton has great potential for removing metals from wastewaters. An immobilized or granulated biomass-filled column can be used for several sorption/desorption cycles with unaltered or slightly decreased metal removal. Langmuir and Freundlich models, commonly used for fitting sorption data, cannot precisely describe metal sorption since they ignore the effect of pH, biomass concentration, etc. For commercial application of algal technology for metal removal from wastewaters, emphasis should be given to: (i) selection of strains with high metal sorption capacity, (ii) adequate understanding of sorption mechanisms, (iii) development of low-cost methods for cell immobilization, (iv) development of better models for predicting metal sorption, (v) genetic manipulation of algae for increased number of surface groups or over expression of metal binding proteins, and (vi) economic feasibility.  相似文献   

2.
Three by-products of fermentations containing Bacillus lentus, Aspergillus oryzae or Saccharomyces cerevisiae biomass were tested for the capacity to absorb Cu, Cd and Zn. The composition of the three biomasses was first determined and showed high contents of ashes in both B. lentus and A. oryzae biomass and high amounts of lipids in the bacterial biomass. Metal ion binding experiments were performed by contact of 0.1 g of biomass (protonated for all the metal tests and not protonated only for the Cd test) with 50 ml of solutions containing each of the metals in the concentration range from 10 to 500 mg/ml, at pH 4.5, 3.5 and 2.5. The final metal ion concentrations were determined using a plasma absorption spectrometer, and the metal removal levels for isotherm plots were determined using the Langmuir model. The results showed that B. lentus protonated biomass had the best sorption capacity for Cu and Cd, followed by protonated A. oryzae and S. cerevisiae biomass. The sorption of Zn was low for all tested biomasses, as also was the binding of all metals at acidic pH (2.5 and 3.5). A significant increase in Cd sorption was obtained using non-protonated biomass from B. lentus and A. oryzae.  相似文献   

3.
Appearance of metals as pollutants in the environment is an increasing global problem. Microalgae as subjects of biological remediation methods may provide a cost‐effective and environmentally friendly alternative to the removal of metals during wastewater treatment. Despite the high number of data in the topic, there is still little information on how the type and the concentration of the metal affect the process of removal. In this study, correlations among the algal species, quality and quantity of metals and characteristics of metal removal mechanism were investigated at lower metal concentrations (0.2–5.0 mg L?1) during zinc and copper removal of the green algae Desmodesmus communis and Monoraphidium pusillum. Analyses of the results proved that there is a statistically significant interaction (P < 0.05) between algal species and quality and concentration of the metals, that is, they have a significant effect on the mode and extent of removal. Both metals were mainly extracellularly bound, but at concentrations of 0.2–1.4 mg L?1, intracellular proportion could exceed the extracellular adsorption. Although there were differences between the two algae, generally copper appeared in a higher intracellular proportion than zinc in the whole studied concentration range. Overall, the quality and initial concentration of the metal is decisive for the way of removal, the knowledge of which is useful for planning post treatment retention times or post treatment processes of the used biomass during wastewater treatment.  相似文献   

4.
The biosorption process for removal of lead, cadmium, and zinc by Citrobacter strain MCM B-181, a laboratory isolate, was characterized. Effects of environmental factors and growth conditions on metal uptake capacity were studied. Pretreatment of biomass with chemical agents increased cadmium sorption efficiency; however, there was no significant enhancement in lead and zinc sorption capacity. Metal sorption by Citrobacter strain MCM B-181 was found to be influenced by the pH of the solution, initial metal concentration, biomass concentration, and type of growth medium. The metal sorption process was not affected by the age of the culture or change in temperature. Equilibrium metal sorption was found to fit the Langmuir adsorption model. Kinetic studies showed that metal uptake by Citrobacter strain MCM B-181 was a fast process, requiring <20 min to achieve >90% adsorption efficiency. The presence of cations reduced lead, zinc, and cadmium sorption to the extent of 11. 8%, 84.3%, and 33.4%, respectively. When biomass was exposed to multimetal solutions, metals were adsorbed in the order Co2+ < Ni2+ < Cd2+ < Cu2+ < Zn2+ < Pb2+. Among various anions tested, only phosphate and citrate were found to hamper metal sorption capacity of cells. Biosorbent beads prepared by immobilizing the Citrobacter biomass in polysulfone matrix exhibited high metal loading capacities. A new mathematical model used for batch kinetic studies was found to be highly useful in prediction of experimentally obtained metal concentration profiles as a function of time. Metal desorption studies indicated that Citrobacter beads could, in principle, be regenerated and reused in adsorption-desorption cycles. In an expanded scale trial, biosorbent beads were found to be useful in removal/recovery of metals such as lead from industrial wastewaters.  相似文献   

5.
New biosorbent material derived from ubiquitous marine algae has been examined in packed-bed flow for Pb2+ removal through sorption columns. Mixed biomass of marine algae has been used, consisting of representative species of the following algae: Ulva lactuca (green algae), Jania rubens (red algae), and Sargassum asperifolium (brown algae). A mixture of these three species showed a promising removal capacity for Pb2+ from aqueous solution. Lead uptake up to 281.8 mg/g dry algal mixture was observed. Equilibrium was achieved after 120 min. No significant effect of changing the flow rate on the removal capacity was noticed. It was found that Langmuir model expresses the system at pH 4. Mineral acids exhibited good elution properties (a mean of 93%) for recovery of sorbed biomass ions as compared with the tested alkalies (about 60%). Received: 21 December 1999 / Accepted: 24 April 2000  相似文献   

6.
Nirupama Mallick 《Biometals》2002,15(4):377-390
This presentation comprises a review on the use of immobilized algae for wastewater nitrogen, phosphorus and metal removal purposes. Details of the use of immobilized algae, the techniques of immobilization and the effects of immobilization on cell function are included. Particularly relevant in their use for heavy metal removal from wastewaters; upon enriching the biomass in metal, can be recoverd, thereby providing economic advantages. The use of immobilized microalgae in these processes is very adequate and offers significant advantages in bioreactors. The future of this area of algal cell biotechnology is considered.  相似文献   

7.
Biosorption of Heavy Metals by Marine Algae   总被引:7,自引:0,他引:7  
The ability of four different algae (three brown and one red) that have not been previously studied to adsorb Cr3+, Co2+, Ni2+, Cu2+, and Cd2+ ions was investigated. The metal uptake was dependent on the type of biosorbent, with different accumulation affinities towards the tested elements. The HCl-treated biomass decreased the metal biosorptive capacity particularly in the case of Cr3 adsorption with Laurencia obtusa. The extent of uptake of the different metals with the tested algae was assessed under different conditions such as pH, time of algal residence in solution with the metal, and concentration of algal biomass. The rate of uptake of the different metals was very fast in the first 2 h; thereafter the increase in metal uptake was insignificant. The amount of the metal uptake (5–15 mg range) increased steeply by increasing the weight of the biomass. An exception was L. obtusa, where a parallel increase of the uptake of different metals was observed on increasing the algal mass from 5 to 50 mg. Received: 21 December 1999 / Accepted: 24 April 2000  相似文献   

8.
A study was undertaken to determine the ability of the filamentous bacterium Thiothrix strain A1 to sorb heavy metals from solution. Cells of Thiothrix strain A1 were harvested, washed, and suspended in solutions of metals. After an equilibration period, biomass was separated from solution and the metal content in acid-digested cells and/or filtrates was determined by atomic absorption spectrophotometry. Sorption of nickel and zinc was very rapid; most of the sorbed metal was bound in less than 10 min. The sorption data for copper fit the Freundlich isotherm, and nickel and zinc data fit biphasic Freundlich isotherms. Sorption of both nickel and zinc was dependent on cell age. Cells harvested 24 h after inoculation sorbed approximately one-half of the amount of metal per gram cell protein than did cells harvested after 48, 72, or 96 h. Calcium and magnesium effectively competed with zinc for binding sites, whereas potassium had only a slight effect on the capacity of cells to sorb zinc. The primary mechanism of metal sorption apparently was ion exchange, because 66 to 75% of nickel or zinc could be desorbed by placing metal-laden cells in a solution of 5 mM CaCl2. A competition experiment with nickel and zinc indicated that both metals occupied the same sorption sites. The strong chelating agents EDTA and NTA effectively prevented metal uptake, but lactate enhanced the uptake of nickel. Thiothrix strain A1 grown in nickel-containing medium had a relatively low uptake of nickel compared with uptake by resting cells suspended in a simple buffer solution.  相似文献   

9.
Dried biomass of Spirogyra neglecta rapidly sorbed the test metals and the process became saturated in 10-20min. Maximum sorption of Pb(II) [116.1mgg(-1)] and Cu(II) [115.3mgg(-1)] occurred at 0.1gl(-1) biomass and 100mgl(-1) metal concentration in the solution. Sorption of Cu(II) and Pb(II) occurred optimally at pH 4.5 and 5.0, respectively. Lead(II) and Cu(II) sorption were lesser from binary metal solution than from single metal solution. Lead(II) more severely inhibited Cu(II) sorption than vice versa thus reflecting greater affinity of Pb(II) for the biomass. NaOH pretreatment slightly enhanced the metal removal ability of the biomass. During repeated sorption/desorption cycles, Pb(II) and Cu(II) sorption decreased by 11% and 27%, respectively, at the end of the fifth cycle due inter alia to 10-15% loss of biomass. Nevertheless, Spirogyra appears to be a good sorbent for removing metals Cu(II) and Pb(II) from wastewaters.  相似文献   

10.
The present study relates to the use of cyanobacterium Nostoc muscorum as a model system for removal of heavy metals such as Pb and Cd from aquatic systems. The effects of various physicochemical factors on the surface binding and intracellular uptake of Pb and Cd were studied to optimize the metal removal efficiency of the living cells of N. muscorum. Results demonstrated that a significant proportion of Pb and Cd removal was mediated by surface binding of metals (85 % Pb and 79 % Cd), rather than by intracellular accumulation (5 % Pb and 4 % Cd) at the optimum level of cyanobacterial biomass (2.8 g L?1), metal concentration (80 μg mL?1), pH (pH 5.0–6.0), time (15–30 min), and temperature (30–40 °C). N. muscorum has maximum amounts of metal removal (q max) capacity of 833 and 666.7 mg g?1 protein for Pb and Cd, respectively. The kinetic parameters of metal binding revealed that adsorption of Pb and Cd by N. muscorum followed pseudo-second-order kinetics, and the adsorption behavior was better explained by both Langmuir and Freundlich isotherm models. The surface binding of both the metals was apparently facilitated by the carboxylic, hydroxyl, and amino groups as evident from Fourier transform infrared spectra.  相似文献   

11.
The present work deals with the biosorption performance of raw and chemically modified biomass of the brown seaweed Lobophora variegata for removal of Cd(II) and Pb(II) from aqueous solution. The biosorption capacity was significantly altered by pH of the solution delineating that the higher the pH, the higher the Cd(II) and Pb(II) removal. Kinetic and isotherm experiments were carried out at the optimal pH 5.0. The metal removal rates were conspicuously rapid wherein 90% of the total sorption occurred within 90 min. Biomass treated with CaCl2 demonstrated the highest potential for the sorption of the metal ions with the maximum uptake capacities i.e. 1.71 and 1.79 mmol g−1 for Cd(II) and Pb(II), respectively. Kinetic data were satisfactorily manifested by a pseudo-second order chemical sorption process. The process mechanism consisting of both surface adsorption and pore diffusion was found to be complex. The sorption data have been analyzed and fitted to sorption isotherm of the Freundlich, Langmuir, and Redlich–Peterson models. The regression coefficient for both Langmuir and Redlich–Peterson isotherms were higher than those secured for Freundlich isotherm implying that the biosorption system is possibly monolayer coverage of the L. variegata surface by the cadmium and lead ions. FT-IR studies revealed that Cd(II) and Pb(II) binding to L. variegata occurred primarily through biomass carboxyl groups accompanied by momentous interactions of the biomass amino and amide groups. In this study, we have observed that Lvariegata had maximum biosorption capacity for Cd(II) and Pb(II) reported so far for any marine algae. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
ABSTRACT

The state of the art in the field of biosorption using algae as biomass is reviewed. The available data of maximum sorption uptake (qmax) and biomass-metal affinity (b) for Cd2 +, Cu2 +, Ni2 +, Pb2 + and Zn2 + were statistically analyzed using 37 different algae (20 brown algae, 9 red algae and 8 green algae). Metal biosorption research with algae has used mainly brown algae in pursuit of treatments, which improve its sorption uptake. The information available in connection with multimetallic systems is very poor. Values of qmax were close to 1 mmol/g for copper and lead and smaller for the other metals. Metal recovery performance was worse for nickel and zinc, but the number of samples for zinc was very small. All the metals except lead present a similar affinity for brown algae. The difference in the behavior of lead may be due to a different uptake mechanism. Brown algae stand out as very good biosorbents of heavy metals. The best performer for metal biosorption is lead.  相似文献   

13.
ABSTRACT

Microbial waste biomass, a by-product of the fermentation industry, was developed as a biosorbent to remove hexavalent chromium (Cr) from the acidic effluent of a metal processing industry. In batch sorption, 100% Cr(VI) removal was achieved from aqueous solution in 30 min contact at pH 4.0–5.0. The Cr(VI) sorption equilibrium was evaluated using the Langmuir and Freundlich models, indicating the involvement of ion exchange and physicochemical interaction. Fourier transform infrared (FTIR) analysis revealed the presence of amine, hydroxyl, and imine functional groups present on the surface of microbial biomass that are involved in Cr binding. In a continuous sorption system, 95 mg L?1 of Cr(VI) was adsorbed before the column reached a breakthrough point of 0.1 mg L?1 Cr(VI) at the column outlet. An overall biosorption capacity of 12.6 mg Cr(VI) g?1 of dry microbial waste was achieved, including the partially saturated portion of the dynamic sorption zone. Insignificant change in metal removal was observed up to 10 cycles. In pilot-scale studies, 100% removal of Cr(VI) was observed up to 5 weeks, and the method was found to be cost-effective, commercially viable, and environmentally friendly, as it does not generate toxic chrome sludge.  相似文献   

14.
Biosorption is potentially an attractive technology for treatment of wastewater for retaining heavy metals from dilute solutions. This study investigated the feasibility of anaerobic granules as a novel type of biosorbent, for lead, copper, cadmium, and nickel removal from aqueous solutions. Anaerobic sludge supplied from a wastewater treatment plant in the province of Quebec was used. Anaerobic granules are microbial aggregates with a strong, compact and porous structure and excellent settling ability. After treatment of the biomass with Ca ions, the cation exchange capacity of the biomass was approximately 111 meq/100 g of biomass dry weight which is comparable to the metal binding capacities of commercial ion exchange resins. This work investigated the equilibrium, batch dynamics for the biosorption process. Binding capacity experiments using viable biomass revealed a higher value than those for nonviable biomass. Binding capacity experiments using non-viable biomass treated with Ca revealed a high value of metals uptake. The solution initial pH value affected metal sorption. Over the pH range of 4.0-5.5, pH-related effects were not significant. Meanwhile, at lower pH values the uptake capacity decreased. Time dependency experiments for the metal ions uptake showed that adsorption equilibrium was reached almost 30 min after metal addition. It was found that the q(max) for Pb2+, Cd2+, Cu2+, and Ni2+ ions, were 255, 60, 55, and 26 mg/g respectively (1.23, 0.53, 0.87, and 0.44 mmol/g respectively). The data pertaining to the sorption dependence upon metal ion concentration could be fitted to a Langmiur isotherm model. Based on the results, the anaerobic granules treated with Ca appear to be a promising biosorbent for removal of heavy metals from wastewater due to its optimal uptake of heavy metals, its particulate shape, compact porous structure, excellent settling ability, and its high mechanical strength.  相似文献   

15.
Abstract

Besides several toxic heavy metals, electroplating effluents can have in solution different cations and anions, which may influence heavy metals removal by the biomass. Among them, fluorides are commonly used in the electroplating industries and thus can be found in the respective wastewaters. In the present work, the effect of the presence of fluorides in the efficiency of chromium(III), copper(II) and nickel(II) removal, from an effluent, by heat-inactivated cells of a brewing flocculent strain of Saccharomyces cerevisiae was evaluated. The presence of fluorides severely decreased (>60%) the removal of chromium(III) by yeast biomass. This effect impaired the effective treatment of the effluent according to the US Environmental Protection Agency and the Portuguese law; conversely, a higher removal of copper(II) and nickel(II) was observed. This behaviour can be understood by metal speciation. In the presence of fluorides, chromium(III) was mainly complexed, becoming unavailable for yeast accumulation; this effect decreased the efficiency of chromium(III) removal. Thus, in the presence of fluorides, less chromium(III) is associated with biomass and consequently more yeast binding sites remain available for the uptake of other metals present in solution. This fact explains the increase of copper(II) and nickel(II) removal in the presence of fluorides.  相似文献   

16.
The present work deals with the biosorption performance of dried and non-growing biomasses of Exiguobacterium sp. ZM-2, isolated from soil contaminated with tannery effluents, for the removal of Cd2+, Ni2+, Cu2+, and Zn2+ from aqueous solution. The metal concentrations studied were 25 mg/l, 50 mg/l, 100 mg/l, 150 mg/l and 200 mg/l. The effect of solution pH and contact time was also studied. The biosorption capacity was significantly altered by pH of the solution. The removal of metal ions was conspicuously rapid; most of the total sorption occurred within 30 min. The sorption data have been analyzed and fitted to the Langmuir and Freundlich isotherm models. The highest Qmax value was found for the biosorption of Cd2+ at 43.5 mg/g in the presence of the non-growing biomass. Recovery of metals (Cd2+, Zn2+, Cu2+ and Ni2+) was found to be better when dried biomass was used in comparison to non-growing biomass. Metal removal through bioaccumulation was determined by growing the bacterial strain in nutrient broth amended with different concentrations of metal ions. This multi-metal resistant isolate could be employed for the removal of heavy metals from spent industrial effluents before discharging them into the environment.  相似文献   

17.
The dead Kluyveromyces marxianus biomass, a fermentation industry waste, was used to explore its sorption potential for lead, mercury, arsenic, cobalt, and cadmium as a function of pH, biosorbent dosage, contact time, agitation speed, and initial metal concentration. The equilibrium data fitted the Langmuir model better for cobalt and cadmium, but Freundlich isotherm for all metals tested. At equilibrium, the maximum uptake capacity (Qmax) was highest for lead followed by mercury, arsenic, cobalt, and cadmium. The RL values ranged between 0–1, indicating favorable sorption of all test metals by the biosorbent. The maximum Kf value of Pb showed its efficient removal from the solution. However, multi-metal analysis depicted that sorption of all metals decreased except Pb. The potentiometric titration of biosorbent revealed the presence of functional groups viz. amines, carboxylic acids, phosphates, and sulfhydryl group involved in heavy metal sorption. The extent of contribution of functional groups and lipids to biosorption was in the order: carboxylic>lipids>amines>phosphates. Blocking of sulfhydryl group did not have any significant effect on metal sorption.  相似文献   

18.
Non-living (dried) biomass of five common filamentous algae belonging to Chlorophyta and Cyanophyta (Cyanobacteria) were screened for their metal ion sorption and removal efficiency in a batch system. A considerably higher magnitude of sorption of Pb2+ and Cu2+ by all the tested algae suggests the prevalence of Pb2+- and Cu2+-binding ligands in them. The Langmuir isotherm could more appropriately describe metal sorption by the test algae than the Freundlich isotherm. A 1 g l−1 biomass concentration of Pithophora odeogonia and Spirogyra neglecta, respectively removed 97 and 89% Pb2+in 30 min from a solution containing 5 mg l−1 initial concentration of Pb2+. Metal ion removal by the test algae decreased with increase in metal concentration in the solution. S. neglecta could remove >70% Pb2+ even from a solution containing 75 mg Pb2+ l−1. S. neglecta and P. oedogonia could remove more than 75% of Pb2+ and Cu2+ from a multi-metal solution, and therefore have tremendous potential for removing Pb2+and Cu2+ from wastewaters containing several metal ions simultaneously. Other test algae, namely, Hydrodictyon reticulatum, Cladophora calliceima and Aulosira fertilissima were relatively less efficient in removing metal ions from solution.  相似文献   

19.
The hexavalent chromium Cr(VI) poses a threat as a hazardous metal and its removal from aquatic environments through biosorption has gained attention as a viable technology of bioremediation. We evaluated the potential use of three green algae (Cladophora glomerata, Enteromorpha intestinalis and Microspora amoena) dry biomass as a biosorbent to remove Cr(VI) from aqueous solutions. The adsorption capacity of the biomass was determined using batch experiments. The adsorption capacity appeared to depend on the pH. The optimum pH with the acid-treated biomass for Cr(VI) biosorption was found to be 2.0 at a constant temperature, 45?°C. Among the three genera studied, C. glomerata recorded a maximum of 66.6% removal from the batch process using 1.0?g dried algal cells/100?ml aqueous solution containing an initial concentration of 20?mg/L chromium at 45?°C and pH 2.0 for 60?min of contact time. Langmuir and Freundlich isotherm equations fitted to the equilibrium data, Freundlich was the better model. Our study showed that C. glomerata dry biomass is a suitable candidate to remove Cr(VI) from aqueous solutions.  相似文献   

20.
Phytoremediation and phycoremediation are cost-effective and environmentally sound technologies for the treatment of polluted streams and wastewaters contaminated with metals. Currently, the most commonly used parameter to assess the metal uptake of biomass is (q) expressed as mg metal g dry weight?1. By contrast, the bioconcentration factor (BCF) is one of the most widely used factors to evaluate the metal uptake capacity of macrophytes. However, both parameters the metal uptake (q) and the BCF cannot be applied to differentiate between the ability of live plants or photosynthetic microorganisms to adsorb the metal onto their surface through passive mechanisms or to accumulate the contaminant at intracellular level through metabolically active mechanisms. This mini review has the objective of discussing the need to differentiate between bioadsorption and bioaccumulation of metals in live plants and photosynthetic microorganisms used in phytofiltration and phycoremediation processes, respectively. The use of two specific factors, the bioadsorption factor (BAF) and the intracellular accumulation factor (IAF) that have been previously reported in order to make a clear differentiation between these two metal removal mechanisms in Salvinia minima and Leptolyngbya crossbyana is highlighted. It is suggested that the BAF and the IAF can be used in phytofiltration wetlands and phycoremediation lagoons, where there is the need of specific information indicating the fate of the metal in order to gain information about possible removal mechanisms. These factors could also provide a tool to decide whether it is possible to harvest the biomass and to recover a fair amount of metal adsorbed onto the surface by means of desorbent agents. A critical assessment of the use of EDTA as desorbent agent is also included.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号